ENTRANCE EXAMINATION FOR ADMISSION, MAY 2011.

M.Sc. FIVE YEAR INTEGRATED PROGRAMME (MATHEMATICS, COMPUTER SCIENCE AND STATISTICS)

COURSE CODE: 384

Register	Number :		
			Circutum of the Invigilation
			Signature of the Invigilator (with date)

COURSE CODE: 384

Time: 2 Hours Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- Avoid blind guessing. A wrong answer will fetch you -1 mark and the correct answer will fetch 4 marks.
- Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.		wn B is 12 A is	km so	uth a	ınd 18 kı	m east	of and	other town	A. Then	the	distance	of B
	(A)	$6\sqrt{13}$		(B)	$6\sqrt{5}$		(C)	$6\sqrt{10}$	(]	D) 6	3	
2.	The	parametric	equati	on of	the circl	$e x^2 +$	$y^2 - 8$	x - 6y + 16 =	= 0 is			
	(A)	$(3\cos\theta - 4$,3 sin 6	9-3)			(B)	$(4+9\cos\theta)$	9,3 + 9 si	$in \theta$		
	(C)	$(4+3\cos\theta)$	9,3+3s	$\sin \theta$)			(D)	$(2+3\cos\theta)$	9,3 + 2 si	$\ln \theta$)		
3.	The	vertex of th	e paral	bola	$y^2 - 8y -$	x + 19	= 0 is					
	(A)	(3, 3)	. ((B)	(4, 4)		(C)	(3, 4)	(I	O) (4, 3)	
4.	The	condition fo	r the li	ine y	= mx + c	touch	es the	circle x2 +	$y^2 = a^2$	is		
	(A)	$m^2 = \frac{a^2}{c^2} +$	1				(B)	$c^2 = a^2(1 -$	$+m^2$)			
	(C)	$a^2 = c^2(1 +$	m^2)				(D)	$\alpha^2 = \frac{1}{c^2}(1$	+ m ²)			
5.		latus rectu ntricity is	ım of	an e	llipse is	equal	to ha	lf the leng	th of it	s mi	nor axis.	Its
	(A)	$\frac{1}{\sqrt{2}}$	((B)	$\frac{\sqrt{3}}{\sqrt{2}}$		(C)	$\frac{\sqrt{3}}{2}$	(I	0) -	1/2	
6.	The a	angle betwe	en the	asyn	nptotes o	$f \frac{x^2}{a^2} -$	$\frac{y^2}{b^2} = 1$	is equal to)			
	(A)	$\tan^{-1} a$. ((B)	$\tan^{-1} b$		(C)	$\tan^{-1}\frac{b}{a}$	(I	0) 2	$2\tan^{-1}\frac{b}{a}$	
7.		equation of ls twice its				nrough	the p	oint (2, 3)	such th	at its	s x intere	cept
	(A)	x+2y=8	(B)	2x+y=7		(C)	x+y=5	(I)) 3	x+y=9	
8.	If the	three lines	x-2y+	1=0,	2x-5y+3:	=0 and	5x-9y	+k=0 are co	ncurren	t, the	value of	k is
	(A)			B)			(C)			0) 0		
9.		equation of ls intercept				hich pa	asses t	hrough the	point (2,–3)	and cuts	off
	(A)	x+y=1	. (B)	2x+y=1		(C)	x+y+1=0	(I) x	-y-5=0	

10.	If the point $(\frac{9}{16}, \frac{3}{4})$ is one end of the focal chord of the parabola $y^2 = x$; its other end
	is
	(A) $(\frac{1}{9}, -\frac{1}{3})$ (B) $(\frac{1}{9}, \frac{1}{3})$ (C) $(-\frac{1}{9}, \frac{1}{3})$ (D) $(-\frac{1}{9}, -\frac{1}{3})$
11.	Equation of the tangent to the parabola $y^2 = 8x$ perpendicular to the line x-3y+8 = 0

- is
 - 9x+3y+2 = 0

(B) 9x+3y-2=0

9x+3y-1 = 0(C)

- (D) 9y+3x+2 = 0
- The locus of a variable point whose distance from (-2, 0) is $\frac{2}{3}$ times its distance from 12. the line $x = -\frac{9}{2}$ is
 - (A) ellipse
- (B) hyperbola
- (C) parabola
- (D) circle
- When the eccentricity of an ellipse becomes zero then the ellipse becomes a 13.
 - straight line

(B) pair of straight lines

point

- circle
- The value of 'a' so that the curves $y = 3e^x$ and $y = \frac{a}{3}e^{-x}$ intersect orthogonally is
 - (A) (-1)
- (C) $\left(\frac{1}{3}\right)$
- (D) 3
- 15. The product of length of perpendicular from a point on the hyperbola (4x+3y-1) (3x-4y-2) = 8 to its asymptotes is
 - (A) 8

- (B) $\frac{8}{5}$ (C) $\frac{8}{25}$
- (D) 16
- The area bounded by the curve $y=2x-x^2$ and the straight line y=-x is given by 16.
 - (A) $\frac{9}{2}$
- (B) $\frac{43}{6}$ (C) $\frac{35}{6}$

- The volume obtained by revolving the area bounded by $y = \tan(x^2)$ between x = 0 and $x = \frac{\sqrt{\pi}}{2}$ about y-axis

 - (A) $x = \frac{\sqrt{\pi}}{2}$ (B) $\frac{\pi^2 \pi \log 4}{4}$ (C) $\frac{\pi^2 \log 2}{4}$ (D) $\frac{\pi^2 \pi \log 2}{4}$
- The length of the curve $y = \log x$ between the points whose abscissa are 1 and 3 is 18.
 - (A) $\sqrt{10} \sqrt{2} + \log \left(\frac{(\sqrt{2} = 1)(2 + \sqrt{10})}{4 + \sqrt{10}} \right)$ (B) $\sqrt{10} \sqrt{2} + \log (\sqrt{2} + 1)$

- (C) $\sqrt{10} + \sqrt{2} + \log(2 + \sqrt{10})$
- (D) $\sqrt{10} + \sqrt{2} + \log(4 + \sqrt{10})$
- The eccentricity of the ellipse $4x^2 + y^2 8x 6y 3 = 0$ is
 - (A) $\frac{1}{\sqrt{2}}$
- (C) $\sqrt{3}$
- If $y = 6x x^2$ and x increases at the rate of 5 units per second, the rate of change of slope when x = 3 is
 - (A) (-90) units/sec
- 90 units/sec (B)
- (C) 180 units/sec
- (D) -180 units/sec
- If 3x+4y+k=0 is a tangent to the hyperbola $9x^2-16y^2=144$, then the value of k is 21.
 - (A) 0

- (B) 1
- (C) -1
- 22. The normal "t" of the rectangular hyperbola xy = 16 meets the x - axis at
 - (A) $\left(\frac{4}{t} 4t^3, 0\right)$

(B) $\left(0, \frac{4}{t} - 4t^3\right)$

(C) $\left(4t - \frac{4}{t^3}, 0\right)$

- (D) $\left(\frac{4}{t^3} 4t^3, 0\right)$
- The normal drawn at $(-2c, \frac{c}{2})$ to the rectangular hyperbola $xy = c^2$ meets the curve 23. again at
- (A) $\left(\frac{c}{8}, 8c\right)$ (B) $\left(\frac{c}{2}, 2c\right)$ (C) $\left(-\frac{c}{8}, -8c\right)$ (D) $\left(2c, \frac{c}{2}\right)$

24.	The critical points of the fun	ction f(x) = cos	x in the	e interval $\left(-\frac{\pi}{2}\right)$	$\left(\frac{\pi}{2}\right)$ is at	
	(A) $x = -\frac{\pi}{2}$ (B) 2	$x = \frac{\pi}{2}$	C) x	= 0	(D) $x = \frac{\pi}{4}$	
25.	If α, β, γ represents the re $\alpha^2 + \beta^2 + \gamma^2$ is	oots of the equa	ation 2	$2x^3 - 5x^2 + x + 9$	0=0, the value of	of
	(A) 1/4 (B) 5	5/4 (C) -5	5/4	(D) 21/4	
26.	If α and β are the roots of	of the equation x	$^{2}+4x-7$	=0, the equati	on whose roots ar	e
	$\frac{\alpha}{1+\alpha}$ and $\frac{\beta}{1+\beta}$ is					
	(A) $2x^2 + 3x + 7 = 0$	(B) 10	$)x^2 - 18x + 7 =$	0	
	(C) $2x^2 - 3x - 7 = 0$	(D) 10	$0x^2 + 18x - 7 = 0$)	
27.	If α and β are the roots of	the equation x ² +	x+1=0,	then the value	of $\frac{1}{\alpha^3} + \frac{1}{\beta^3}$ is	
	(A) 2 (B) 1	1 (C) -1		(D) -2	

If a, b, c are the reciprocals of x, y, z respectively then the value of the determinant

(A) (a+1) (b+1) (c+1)

(B) abc (1+a+b+c)

(C) abc $(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c})$

(D) $\frac{1}{abc}$ (1+a+b+c)

The solution of the system -10x+2y+3z = 0,2x-8y+7z = 4 and 2x + 5y - 6z = 5 is 29.

- (A) (1, 2, 2) (B) $(0, 23, \frac{20}{13})$ (C) (-1, 2, 0) (D) non existent

The value of f(x) + f(1-x) if $f(x) = \frac{25^x}{25^x + 5}$ is

- (A) 5
- (B) 25
- (C) 4

(D) 1

- 31. If $f(x) = \frac{6x-3}{2x+4}$, then $f^{-1}(x)$ is
 - (A) $\frac{2x+4}{6x-3}$ (B) $\frac{6x-4}{2x+3}$
- (C) $\frac{4x+3}{6-2x}$
- (D) does not exist

- The period of the function $f(x) = 5\cos 3x 2$ is 32.
 - (A) 2π
- (B) $\frac{\pi}{2}$
- (C) $\frac{2\pi}{3}$
- (D) $\frac{\pi}{3}$

- $\int \tan^{-1} x dx =$
 - (A) $\sec x \tan x + C$

- (B) $x \tan^{-1} x \frac{1}{2} \log(1 + x^2) + C$
- (C) $x \tan^{-1} x + \frac{1}{2} \log(1 + x^2) + C$
- (D) $x \tan^{-1} x + \sec x \tan x + C$
- The value of $\int_{0}^{\pi/2} \frac{(\sin x)^{5/2}}{(\sin x)^{5/2} + (\cos x)^{5/2}} dx$ is
- (B) 0
- (C) 1
- $|2x,0 < x \le 1|$ The value of $\int_{0}^{4} f(x)dx$, when $f(x) = \left\{\sin \frac{\pi x}{2}, 1 < x < 3 \right\}$ is $2x^2 - 19.3 \le x \le 4$
 - (A) 1

- (B) 100/3
- (C) 20/3
- (D) 32
- Volume of solid obtained by revolving the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ about major and minor axes are in the ratio
 - (A) $b^2:a^2$
- (B) $a^2:b^2$
- (C) a:b
- (D) b: a
- The 'c' of Lagranges Mean value theorem for the function $f(x) = x^2 + 2x 1$; a=0, b=1 is
 - (A) -1
- (B) 1

- (C) 0
- (D) $\frac{1}{2}$

38.	If $s = \tan^{-1} t + \cot^{-1} t$,	then t	the velocity of th	ne par	ticles is		
	(A) 0	(B)	S	(C)	2s	(D)	$\frac{2}{1+t^2}$
39.	The radius of the sp respect to the radius		l bubble is r. '	The ra	ate of the change	e of it	s volume with
	(A) πr^2	(B)	$2\pi r$	(C)	$2\pi r^2$	(D)	$4\pi r^2$
40.	A cylinder whose here the rate of $60 cm^2$ /se area is $1 m^2$?						
	(A) 1 mm/sec	(B)	0.001 cm/sec	(C)	2 mm/sec	(D)	0.002 cm/sec
41.	The maximum value	of cos	x + sin x is				
	(A) $\sqrt{2}$	(B)	_ \sqrt{2}	(C)	0	(D)	1
42.	If $xy = 1$, then the m	inimu	m value of x	+ y	is		
	(A) –2	(B)	2	(C)	0	(D)	-1
43.	In the interval $-\frac{\pi}{2}$	< x	$<\frac{\pi}{2}$ the cur	rve y	$= \sin^2 x$		
	(A) is nowhere cond	ave or	convex	(B)	is convex upwa	rds	
	(C) has a point of ir	nflectio	on	(D)	is concave upwa	rds	
44.	The value of $\lim_{x\to 0} \left(\frac{1}{12}\right)^{x}$	$\frac{4^x - 8^x}{2^x - 24}$	$\left(\frac{1}{x}\right)$ is				
	(A) 1	(B)	0	(C)	-1	(D)	2
45.	The equation of motion seconds. What is its					metr	es and t is in
	(A) 61.732 m/sec			(B)	$\left(\frac{\pi}{3} + \sqrt{3}\right)$ m/sec	:	
	(C) 123.732 m/sec			(D)	$\left(\frac{2\pi}{3} + \sqrt{3}\right)$ m/se	ес	
			*				

A Circular plate expands under the influence of heat so that its radius increases 46. from 12.5 cm. The approximate increase in area is

 $3.25 \ \pi \, \text{cm}^2$ (B) $3.75 \ \pi \, \text{cm}^2$ (C) $3 \ \pi \, \text{cm}^2$ (D) $3.05 \ \text{cm}^2$

The area included between the curves $(y-1)^2 = 4x$ and $x^2 = (y-1)$ is 47.

(A) $\left(\frac{1}{2}\right)$

(B) $\left(\frac{4}{3}\right)$ (C) $\left(\frac{8}{3}\right)$ (D) $\left(\frac{16}{3}\right)$

Which one of the following statement is true with respect to the curve $y = \frac{x^4}{4} - \frac{5x^2}{2}$? 48.

increasing in $(0, \sqrt{2})$

(B) increasing in $(0, \sqrt{5})$

(C) decreasing in $(0, \sqrt{5})$

(D) decreasing in $(-2\sqrt{5}, 0)$

The area bounded by the straight line y = x, the x-axis and the ordinates x = -1 and 49. x = 1 revolves about the x-axis. The volume generated is

(A) $\frac{\pi}{2}$ cubic unit

(B) $\frac{2\pi}{2}$ cube unit

 π cubic unit (C)

(D) $\frac{4\pi}{2}$ cubic unit

The volume generated by revolving the loop of the curve $y^2(a+x) = x^2(3a-x)$ about 50. the x - axis is given by

(A) $\pi \int_{0}^{3a} \left(\frac{x^2(3a-x)}{(a+x)} \right) dx$

(B) $\pi \int_{0}^{3a} \left(\frac{x^2 (3a - x)}{(a + x)} \right) dx$

(C) $\pi \int_{0}^{\infty} \left(\frac{x^2 (3a+x)}{(a-x)} \right) dx$

(D) $\pi \int_{0}^{3a} \left(\frac{x^2 (3a - x)}{(a + x)} \right) dx$

The solution of the equation |z| = z + 5 + 7i51.

(A) z = 3 - 2i (B) $z = \frac{3}{2} + 2i$ (C) $z = \frac{3}{2} - 2i$ (D) $z = \frac{12}{5} - 7i$

If ω is a complex cube root of unity, which of the following is not true? 52.

(A) $\omega^3 - 1 = 0$ (B) $1 + \omega + \omega^2 = 0$ (C) $(\omega^2 + \omega)^2 = 1$ (D) $\omega = 1$

53.	The value of $i^n + i^{n+3} + i^{n+4}$	$^5 + i^{n+7}$ where n i	s any	positive integer		
	(A) $i^{n}(1+i)$ (B)	i" (1-i)	(C)	i ⁿ	(D)	0
54.	If $ x+iy = 1$ then $\frac{1+x-1}{1+x}$	$\frac{+iy}{-iy} = $				
	(A) $(4x - iy)$ (B)	12(x +iy)	(C)	(x + iy)	(D)	(2y + ix)
55.	If z_1 and z_2 are any two	complex number	rs the	$ z_1 + z_2 ^2 + z_1 - z_2 ^2 + z_2 - z_2 ^$	2 =	
	(A) $2z_1z_2$ (B)	$2\{ z_1 + z_2 \}$	(C)	$2\{ z_1 ^2+ z_2 ^2\}$	(D)	$2\{ z_1 ^2 - z_2 ^2\}$
56.	If $ z = 3$ then $ z^2 + z $ w	ill be				
	(A) > 12 (B)	> 20	(C)	≤ 12	(D)	< 10
57.	If $arg(x + iy) = \theta$ then are	g(-y + ix) is				
	(A) θ (B)	-θ	(C)	$(\theta + \frac{\pi}{2})$	(D)	$(\theta - \frac{\pi}{2})$
58.	If $z^2 = (0, 1)$ then z is					
	(A) $\frac{1}{\sqrt{2}} \pm \frac{i}{\sqrt{2}}$ (B)	$\frac{3}{\sqrt{2}} \pm \frac{i}{\sqrt{2}}$	(C)	$\pm \frac{1 \pm i}{\sqrt{2}}$	(D)	0
59.	If z_1 and z_2 are two com	plex numbers su	ch tha	at $z_1 \neq z_2$ and $ z $	=	z_2 . If z_1 has
	positive real part and z_2	has negative ima	ginary	part then $\operatorname{Re}\left(\frac{z}{z}\right)$	$\frac{z_1 + z_2}{z_1 - z_2}$	is
	(A) Real and positive		(B)	Real and negat	ive	
	(C) Zero		(D)	Cannot be equa	l to ze	ero
60.	The distance between the	two complex nun	nbers	(2+2i) and (3	+ i) i	S
	(A) $\sqrt{2}$ (B)	2	(C)	1	(D)	$4\sqrt{2}$
61.	4i, (4 + 2i), (-2) are three	e vertices of a squ	uare it	s fourth vertex	is	
	(A) (9:) (P)	(0.0:)	(0)	(0 , 0:)	(D)	(0 0:)

62.	2. The value of $[3] + ([5] + ([6])$ is		
	(A) [0] (B) [1] (C) [2]	(D)	[3]
63.	3. If $(G,*)$ is a group, then the solution of the equation	x * a = b is	
	(A) $x = b * a^{-1}$ (B) $x = a^{-1} * b$ (C) $x = a^{-1}$	a * b (D)	x = b * a
64.	4. If a and b are elements of a group G and $a^2 = e$, is equal to	$b^2 = e$, ab =	ba then $(ab)^2$
	(A) ab (B) e (C) a^2	(D)	b^2
65.	5. If the operation is defined on $R - \{1\}$ by $a * b = a + b$ the inverse of a is	- ab for all a, b	$\in R-\left\{ l\right\} ,then$
	(A) $\left(\frac{1}{a}\right)$ (B) $\left(\frac{1}{a-1}\right)$ (C) $\left(\frac{-a}{a+1}\right)$	$\left(\frac{a}{+1}\right)$ (D)	$\left(\frac{a}{a-1}\right)$
66.	3. If $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$ then α^{-1} is		
	(A) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$ (B) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix}$ (C) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 2 & 1 & 3 \end{pmatrix}$	$\begin{pmatrix} 2 & 3 & 4 \\ 4 & 3 & 1 \end{pmatrix}$ (D)	$ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix} $
67.	7. If the binary operation * is defined as multiplication equal to	modulo 7, then	4 * (5 * 6) is
	(A) 1 (B) 2 (C) 6	(D)	4
68.	3. If $g = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$ and $h = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$ are two persymmetric group s_4 then $(h \circ g)(2)$ is	rmutations belo	nging to the
	(A) 1 (B) 2 (C) 3	(D)	4
69.	 Which one of the following statements is in corrects? (A) (Z, .) is a group (B) (N, +) is a semi group (C) (N, .) is a monoid (D) The set of all even integers under usual addition 		

70	The order of [7] in $(z_9, +_9)$ is				
70.	(A) 9 (B) 6	(C)	3	(D)	1
71.	If the projection of \vec{b} on \vec{a} is $\vec{a}.\vec{b}$ then	\bar{a}_{is}			
	(A) perpendicular to \vec{b}	(B)	a unit vector		
	(C) collinear with \vec{b}	(D)	parallel to \vec{b}		
72.	If $ \vec{a} \times \vec{b} = \vec{a} \cdot \vec{b}$ then angle between \vec{a} and	\vec{b}	is		
	(A) 0° (B) π	(C)	$\frac{\pi}{4}$	(D)	$\frac{\pi}{2}$
73.	The two perpendicular sides of a triangle and $\lambda \vec{i} - 2\vec{j} - 6\vec{k}$ are respectively, then the	are re	epresented by the	e vect	ors $2\vec{i} - \vec{j}$ +
	(A) $\frac{1}{2}\sqrt{16}$ (B) $\frac{1}{2}\sqrt{66}$	(C)	$\sqrt{66}$	(D)	66
74.	The value of $\tan \frac{\pi}{20} \tan \frac{3\pi}{20} \tan \frac{5\pi}{20} \tan \frac{7\pi}{20} \tan$	$\frac{9\pi}{20}$ is			
	(A) $1/2$ (B) $\frac{\sqrt{3}}{2}$	(C)	1	(D)	$\frac{1}{\sqrt{2}}$
75.	If $\tan^{-1}(\frac{1}{3}) + \tan^{-1}(\frac{1}{5}) + \tan^{-1}(\frac{1}{7}) = \tan^{-1} x$, the	n the	value of x is		
	(A) 3/4 (B) 7/9	(C)	12/13	(D)	13/12
76.	The general solution of $\cot^2 \theta = 3$ is				
	(A) $\left(2n\pi \pm \frac{3\pi}{4}\right)$ (B) $\left(n\pi \pm \frac{2\pi}{3}\right)$	(C)	$\left(n\pi\pm\frac{\pi}{6}\right)$	(D)	$\left(n\pi\pm\frac{2\pi}{6}\right)$
77.	If $u = \cos\left(\frac{x}{y}\right) + \sin\left(\frac{x}{y}\right)$ then $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y}$ is	S			

(D) 3u

(B) u

(C) 2u

(A) 0

- 78. If $u = \sin^{-1}\left(\frac{x+y}{\sqrt{x+\sqrt{y}}}\right)$ then $2\left(x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y}\right)$ is
 - (A) tan u (B) cot u
- (C) $\left(\frac{1}{2}\tan u\right)$ (D) $\left(\frac{1}{2}\cot u\right)$
- The solution of the differential equation $\frac{dy}{dx} = \frac{1-y}{1-x}$ is 79.
 - (A) (1-x)(1+y) = c

(B) $\frac{1-x}{1-y} = c$

(C) (1-x)(1-y) = c

- (D) $\frac{1+x}{1-y} = c$
- The order and degree of the differential equation $\left[\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2\right]^{\frac{1}{2}} = \frac{d^3y}{dx^3}$ are
 - (A) 1, 2
- (B) 2, 1
- (C) 3, 2
- (D) 2, 3
- An integrating factor for the differential equation y log y $\frac{dy}{dx}$ + x log y = 0 is
 - log (log y) (B) log y
- (C) $\frac{1}{\log y}$ (D) $\frac{1}{\log(\log y)}$
- The particular integral of the differential equation $(D^2 + 16)y = 2\cos^2 2x$ is
- (A) $\frac{1}{6}\cos^2 2x$ (B) $\frac{x}{8}\sin 4x$ (C) $\frac{1}{16} + \frac{x}{8}\sin 4x$ (D) $1 + x \sin 4x$
- The complete solution of the differential equation $(D^2 + 6D + 9)y = 4e^{-3x}$ is y =
 - (A) $\frac{2x}{3}e^{-3x} + (A+Bx)e^{-3x}$

(B) $\frac{e^{-3x}}{9} + Ae^{-3x} + Axe^{-3x}$

(C) $2x^2 + Ae^{-3x} + Be^{-3x}$

- (D) $(2x^2 + A + Bx)e^{-3x}$
- If ${}^{15}P_{r-1}$: ${}^{15}P_{r-2} = 2:1$, the value of r is
 - (A) 15
- (C) 1

(D) 30

	(A)	6	(B)	7	(C)	8	(D)	9
86.	The	value of C ₀ +C ₂ +C	24+	in the expansion	of (1	+x)n (where nCr=	C _r) is	
	(A)	2 ⁿ	(B)	2n+1	(C)	2 ⁿ⁻¹	(D)	2n-1
87.	Prob	ability of sure ev	ent is					
	(A)	0	(B)	1	(C)	1/2	(D)	1/3
88.		ir dice is thrown			ility o	of getting a num	ber la	arger than the
	(A)	20/54	(B)	15/216	(C)	21/216	(D)	5/54
89.		and B are two fability of random					ly (m	\leq n), then the
	(A)	$^{n}P_{m}/n^{m}$	(B)	$^{m}P_{n}/n^{m}$	(C)	$^{n}P_{m}/m^{n}$	(D)	$^{m}P_{n}/m^{n}$
90.	Ifa	die is thrown on	ice, th	ne expectation of	the n	umber on it is		
	(A)	$\frac{1}{6}$	(B)	$\frac{7}{2}$	(C)	3	(D)	6
91.	If th	e probability den	sity f	unction of a rand	lom va	ariable X is		
	F(x	$=\begin{cases} \frac{x}{2}if & 0 < x \\ 0 & other \end{cases}$	$\times 2$ wise	. Then E(x) is				
	(A)	1.	(B)	$\frac{2}{5}$	(C)	4/3	(D)	2
92.	If E	$(x^2) = 5, \mathbf{E}(\mathbf{x}) =$	2, tl	hen the variable	of X	is		
	(A)	0	(B)	3	(C)	1	(D)	5
93.		e probability der		function of a ran	dom v	variable X is f(x	() = 2x	x (0 < x < 1)
	(A)	1	(B)	2	(C)	<u>5</u> 12	(D)	$\frac{1}{3}$
				10				994

85. The number of terms in the expansion of $(a + 2b + 3c)^n$ is 55. The value of n is

94.	In eight throws of a die 5 or 6 is considered a success. Then the mean and standard deviation of success are
	(A) 8 and 4 (B) 5 and 6 (C) 8 and 6 (D) $\frac{8}{3}$ and $\frac{4}{3}$
95.	If a random variable x follows a Poisson distribution such that $P(x=1) = P(x=2)$ and $P(x=0)$ is
	(A) e^2 (B) e^{-2} (C) $e^{\frac{1}{2}}$ (D) $2 e^{-2}$
96.	In a binomial distribution the mean is 6 and variance is 4. Then the number of trial is
	(A) 24 (B) 18 (C) 10 (D) 9
97.	A box contains 6 red and 4 white balls. If 3 balls are drawn at random, the probability of getting 2 white balls without replacement, is
	(A) $\frac{1}{20}$ (B) $\frac{18}{125}$ (C) $\frac{4}{25}$ (D) $\frac{3}{10}$
98.	The distribution function $F(x)$ of a random variable X is
	(A) a decreasing function
	(B) a non-decreasing function
	(C) a constant function
	(D) increasing first and then decreasing
	(2) more during more data discretization
99.	If f(x) is a p.d.f of a normal distribution with mean μ then $\int_{-\infty}^{\infty} f(x) dx$ is
	(A) 1 (B) 0.5 (C) 0 (D) 0.25
100.	If f(x) is a p.d.f of a normal variate X and X \sim N $\left(\mu,\sigma^2\right)$ then $\int\limits_{-\infty}^{\mu}f(x)dx$ is
	(A) undefined (B) 1 (C) 0.5 (D) -0.5