ENTRANCE EXAMINATION FOR ADMISSION, MAY 2013.

M.Sc. Five Year Integrated Programme (MATHEMATICS, COMPUTER SCIENCE AND STATISTICS) COURSE CODE: 384

Register N	[umber :		
		· ·	
•			Signature of the Invigilator (with date)

COURSE CODE: 384

Time: 2 Hours

Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

Notation: R- Real Line, Q- Set of rationals, Z- set of Integers. The derivative of a function f is denoted by f'. The complement of a set A is denoted by A^c

1. The domain of the function $5\cos^{-1}\frac{2x}{3}$ is

(A)
$$\left[\frac{-3}{2}, \frac{3}{2}\right]$$

$$(B) \quad \left[\frac{-15}{2}, \frac{15}{2}\right]$$

(C)
$$\left[\frac{-5}{3}, \frac{5}{3}\right]$$

(D)
$$\left[\frac{-2}{3}, \frac{2}{3}\right]$$

2. The range of tan(-3x) over the open interval $\left(\frac{-\pi}{6}, \frac{\pi}{6}\right)$

(A)
$$\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$$

(C)
$$(-\infty,\infty)$$

(D)
$$[0,\infty)$$

- 3. The system of linear equations y + 2z = 0, x z = 0, x + y + z = 0
 - (A) has no solution
 - (B) has at most two solutions
 - (C) has a unique solution
 - (D) has more than n solutions for every positive integer n
- 4. Vector equation of the straight line passing through (-1,2,1) and (2,3,0) is

(A)
$$\vec{r} = (3t-1)i + (t+2)j + (1-t)k$$

(B)
$$\vec{r} = ti - j + (1-t)k$$

(C)
$$\vec{r} = (-1-2t)i + (2-3t)i + k$$

(D)
$$\vec{r} = (-1+2t)i + (2+3t)j + k$$

- 5. If |x| < 1, the coefficient of x^4 in the binomial expansion of $(2-x^2)^{-1}$ is
 - (A) $\frac{1}{8}$

(B) 4

(C) $\frac{1}{2}$

(D) 2

- 6. If $\vec{a} = i 2j k$ then \vec{a} is perpendicular to every vector of the plane
 - $(A) \quad x + 2y + z = 0$

(B) x - 2y - z = 0

 $(C) \quad x - 2y + z = 0$

(D) x + 2y - z = 0

- 7. The polar form of $(-i)^{13}$ is
 - (A) $\cos \frac{\pi}{2} + i \sin \frac{\pi}{2}$

(B) $\cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2}$

(C) $\cos \pi + i \sin \pi$

- (D) $\cos \pi i \sin \pi$
- 8. If z is a complex number that satisfies |3z 1| = 3|z + 1| then z lies on
 - (A) the circle $|z| = \frac{1}{3}$

- (B) the straight line x = 0
- (C) The straight line $x = \frac{-1}{3}$
- (D) The circle |z|=3

- 9. If $\cos 2\theta = \frac{1}{\alpha}$ then
 - (A) $\theta = \frac{1}{2} \tan^{-1} \sqrt{1 \alpha^2}$

(B) $\theta = \frac{1}{2} \tan^{-1} \sqrt{\alpha^2 - 1}$

(C) $\theta = \tan^{-1} \left(\frac{\sqrt{1 + \alpha^2}}{2} \right)$

(D) $\theta = \tan^{-1} \left(\frac{\sqrt{1-\alpha^2}}{2} \right)$

- 10. If $f(x) = \begin{cases} 2x^2, & x \le 1 \\ x+1, & x > 1 \end{cases}$ then
 - (A) f is not continuous
 - (B) f is continuous and monotone increasing
 - (C) f is continuous but not differentiable
 - (D) f is differentiable
- 11. $e^{x \log 3} =$
 - $(A) \quad 3x$

(B) x

(C) e^{3x}

(D) 3

6. If $\vec{a} = i - 2j - k$ then \vec{a} is perpendicular to every vector of the plane

$$(A) \quad x + 2y + z = 0$$

$$(B) \quad x - 2y - z = 0$$

$$(C) \quad x - 2y + z = 0$$

(D)
$$x + 2y - z = 0$$

7. The polar form of $(-i)^{13}$ is

(A)
$$\cos \frac{\pi}{2} + i \sin \frac{\pi}{2}$$

(B)
$$\cos \frac{3\pi}{2} + i \sin \frac{3\pi}{2}$$

(C)
$$\cos \pi + i \sin \pi$$

(D)
$$\cos \pi - i \sin \pi$$

8. If z is a complex number that satisfies |3z-1| = 3|z+1| then z lies on

(A) the circle
$$|z| = \frac{1}{3}$$

(B) the straight line
$$x = 0$$

(C) The straight line
$$x = \frac{-1}{3}$$

(D) The circle
$$|z|=3$$

9. If $\cos 2\theta = \frac{1}{\alpha}$ then

(A)
$$\theta = \frac{1}{2} \tan^{-1} \sqrt{1 - \alpha^2}$$

(B)
$$\theta = \frac{1}{2} \tan^{-1} \sqrt{\alpha^2 - 1}$$

(C)
$$\theta = \tan^{-1} \left(\frac{\sqrt{1 + \alpha^2}}{2} \right)$$

(D)
$$\theta = \tan^{-1} \left(\frac{\sqrt{1-\alpha^2}}{2} \right)$$

- 10. If $f(x) = \begin{cases} 2x^2, & x \le 1 \\ x+1, & x > 1 \end{cases}$ then
 - (A) f is not continuous
 - (B) f is continuous and monotone increasing
 - (C) f is continuous but not differentiable
 - (D) f is differentiable
- 11. $e^{x \log 3} =$

(B)
$$x^2$$

(C)
$$e^{3\lambda}$$

$$(D)$$
 3

12.
$$\int_{0}^{\frac{\pi}{4}} \theta \sec^{2} \theta d\theta \text{ is}$$

(A)
$$\frac{\pi}{2}$$

(B)
$$\frac{\pi}{4} - \log \sqrt{2}$$

(C)
$$\frac{\pi}{4}\log\sqrt{2}$$

(D)
$$\log \sqrt{2} - \frac{\pi}{4}$$

13. If
$$f(x) = \frac{|2x-3|-|x+1|}{|3x-5|}$$
 then

- (A) f is discontinuous for exactly two values of x
- (B) f is discontinuous for exactly 3 values of x
- (C) f is continuous for all values of x
 - (D) f is discontinuous exactly for one value of x

14. If
$$f(x) = 5x^{23} - 7x^{20} + 8x^{10} - x^5 + x^3 - 1$$
 then the value of the 43rd derivative of f at $x = -1$ is

15.
$$\sqrt{i}$$
 equals

(A)
$$1 + \frac{i}{\sqrt{2}}$$

(B)
$$i\cos\frac{\pi}{3}$$

(C)
$$\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}$$

(D)
$$1-\frac{i}{\sqrt{2}}$$

16. If
$$i-2$$
 is a root of the quadratic equation $x^2 + bx + c = 0$ then b is

17. If
$$xy = \tan(xy)$$
 then $\frac{dy}{dx} =$

(A)
$$\frac{-y}{x}$$

(B)
$$1 + \sec^2(xy)$$

(C)
$$\frac{x}{y}$$

(D)
$$1-x\sec^2(xy)$$

	*	•					•					
18.	$\lim_{x \to \frac{3}{2}}$	$\frac{(2x)^5-}{2x-}$	$\frac{3^5}{3}$ =									
	(A)	0	·	(B)	51		(C)	405		(D)	15	
19.			ne throug e value o		two points	(2,5) a	nd (4	,6) and	the poin	t (7,K	() is on the l	in
	(A)	15/2		(B)	7/2		(C)	9/2	-	(D)	11/2	
20.					e distance $(x-1)^2 + $				(-2,-2) a	nd an	y point on	$ ag{th}$
	(A)	1		(B)	4	•	(C)	2		(D)	3	•
21.	$\int_{-1}^{1} \log$	$g\left(\frac{3-x}{3+x}\right)$	$\left(\frac{x}{x}\right)dx$					· .				
	(A)	1		(B)	Ó		(C)	e^{-3}		(D)	e^3	
22.	If f	(x)=(x-	$-1)^2$ and $g($	$(x) = \sqrt{x}$	then $(g \circ f)$	f(x) =					•	,
	(A)	x-1		(B)	x+1		(C)	x	•	(D)	x-2	
23.	The	area o	f the circ	le x ² +	y^2-8y-6	48 = 0	is,	•				
	(A)	64π		(B)	32π		(C)	27π	•	(D)	π	
24.			dinates o $y^2 = 4 \text{ a}$			f inter	sectio	n of the	parabol	$\mathbf{a} \cdot \mathbf{y}^2$ =	=x+2 and	th
	(A)	$0,\sqrt{3},$	$-\sqrt{3}$	(B)	0, 1, -1		(C)	0, 3, -3		(D)	0, 2, –2	
25.	cylir		have the								10cm. The ton between	
	(A)	150π		(B)	1000π		(C)	15000π	:	(D)	1500π	
26.	The	functi	on $f(x) = s$	sin2x ($1 + \cos 2x$)	nas a n	naxim	um, if x	is			
	(A)	$-\pi/2$		(B)	π/2		(C)	π/3		(D)	π/6	
27.	If x	$x^2 + ax$	+b=0, x	$^{2} + bx +$	$a=0 (a \neq i$	b) have	e a co	mmon ro	ot, then	the c	ommon root	is
	(A)	3		(B)	2		(C)	1		(D)	(-1)	

- 28. If $\Delta = \begin{vmatrix} \omega & 1 & 0 \\ \omega^2 & \omega & 1 \\ 0 & \omega^2 & \omega \end{vmatrix}$ where ω is a cube root of unity, then $\Delta^2 + \Delta =$
 - (A) 0
- (B) 2
- (C) 1
- (D) -1
- 29. The vectors $2\vec{i}-\vec{j}+l\vec{k}$, $4\vec{i}+2\vec{j}-2\vec{k}$ and $m\vec{i}+n\vec{j}+2\vec{k}$ are mutually perpendicular. Then the values of l, m, n are
 - (A) 3, 1, -4
- (B) -3, 1, -4
- (C) 3, -1, 4
- (D) 3, -1, -4

- 30. The angle between two diagonals of a cube
 - $(A) \quad \cos^{-1}\left(\frac{1}{2}\right)$

(B) $\cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$

(C) $\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$

- (D) $\cos^{-1}\left(\frac{1}{3}\right)$
- 31. The solution of the differential equation $x \frac{dy}{dx} y = x^2$
 - $(A) \quad 2y = x^3 + cx$

 $(B) \quad y = x^2 - c$

(C) $2y = x^2 + c$

- $\mathbf{(D)} \quad y = x + 1$
- 32. The direction cosines of a vector normal to the plane passing through the points (3,4,2), (-3,1,4) and (1,2,3) are
 - (A) 1, 2, 6

(B) $-\frac{1}{\sqrt{41}}, -\frac{2}{\sqrt{41}}, \frac{6}{\sqrt{41}}$

(C) $-\frac{1}{\sqrt{41}}, \frac{2}{\sqrt{41}}, -\frac{6}{\sqrt{41}}$

- (D) $\frac{1}{\sqrt{41}}, \frac{2}{\sqrt{41}}, \frac{6}{\sqrt{41}}$
- 33. The angle between the planes 2x + y z = 9 and x + 2y + z = 7 is
 - (A) 90°
- (B) 60°
- (C) 45°
- · (D) 30°
- 34. To which one of the following functions, Roll's theorem is applicable?
 - (A) $f(x) = e^x \sin x, 0 \le x \le \pi$
- (B) $f(x) = \tan x, 0 \le x \le \frac{\pi}{2}$
- (C) $f(x) = x^3 3x + 3, 0 \le x \le 1$
- (D) $f(x) = |x|, -1 \le x \le 1$

	(A) 0	(B)		(C)	-9	(D)	$\frac{9}{8}$
-	(A) 0	(D)	1	(0)	· -2	(1)	8
36.	In the multiplication		p of non-zero	congrue	ence class modu	lo 7, t	he order of
	elements [2] and	[5] are					
	elements [2] and (A) 3 and 6	(B)	3 and 4	(C)	2 and 6	(D)	2 and 4
37.		• •	3 and 4	(C)	2 and 6	(D)	2 and 4

- (C) $2x \frac{(2x)^3}{3!} + \frac{(2x)^5}{5!} \dots$ (D) $x \frac{4x^3}{3!} + \frac{16x^5}{5!} \dots$
- 39. The order of -1 in the group (Z, +) is

 (A) 2 (B) finite (C) infinite (D) empty
- 40. If $|z_1| = |z_2|$ and $Arg(z_1) + Arg(z_2) = 0$ with $Arg(z_1) \neq 0$ then

 (A) $z_1 + z_2 = 0$ (B) $z_1 + \overline{z_2} = 0$
 - (C) $z_1 = \overline{z_2}$ (D) $z_1 = z_2$
- 41. If one root of $x^2 + ax + b = 0$ is $3 i\sqrt{2}$ and a and b are real, then the value of a and b are
 - (A) -6, 11 (B) 6, -11 (C) -6, -11 (D) 6, 11

42.
$$\Delta = \begin{vmatrix} 1 & x & x \\ 1 & x+y & y \\ 1 & x & x+y \end{vmatrix}$$
 and $y = e^{\frac{i\pi}{4}}$ then Δ equals
$$(A) \quad 1$$
 (B) 0 (C) i (D) -i

384

43.		locus of a poi $z_1 = z - z_2 $, is	nt P	which	represer	ıts a	complex nur	nber z	that satisfies
·	(A)	a circle with cer	ntre 2	$z_{_{ m I}}$ and ${ m ra}$	$\operatorname{idius} \mid z_2$	1			
÷	(B)	a circle with cer	itre 2	z_2 and ra	adius $z_{\scriptscriptstyle 1}$	l .	·	÷	. •
	(C)	an ellipse							
•	(D)	perpendicular b	isect	or of the	line joini	$ng z_1$	and z_2		
44 .	The	function $f(x) = x$	· 3 – 6	$5x^2 - 36x$: + 7 is a	decre	asing function	if	
	(A)	x lies in the inte	erval	(-3, 3)		(B)	x is in the in	terval (-2, 6)
	(C)	x lies in the inte	erval	$(-\infty, \infty)$		(D)	x lies outside	the inte	rval (-3, 3)
45.	If pa	$x^2 + qx + 4$ attain	ıs its	minimu	m value -	–1 at	x = -1, then	the valu	es of p and q
	(A)	5, 5	(B)	5, -10		(C)	5,5	(D)	10, –10
46.	If f	$(x) = e^{e^x}$ then	the v	alue of f	r (0) is				•
	(A)	e^2	(B)	e		(C)	1.	(D)	e^{ϵ}
47.	If u	$(x, y) = e^{\frac{x^2}{y^2}} + e^{\frac{y^2}{x^2}}$	then	$x\frac{\partial u}{\partial x} + y$	$\frac{\partial u}{\partial y} =$,	,		A
	(A)	u	(B)	0		(C)	$\frac{y^2}{x^2}$	(D)	$\frac{x^2}{y^2}$
48.	The	values of x satisf	ying	the equa	tion (x 1	$\binom{1}{-1}$	$\begin{pmatrix} 2 \\ 1 \end{pmatrix} \begin{pmatrix} x \\ 2 \end{pmatrix} = 0$		•
	(A)	1, 2	(B)	-1, 2		(C)	-1, -2	(D)	1, -2
49.	The	value of $\begin{vmatrix} \log_3 64 \\ \log_3 8 \end{vmatrix}$	log,	$\begin{vmatrix} 3 \\ 9 \end{vmatrix} \times \begin{vmatrix} \log_2 \\ \log_3 \end{vmatrix}$	3 log ₈ 3 4 log ₃ 4	is		,	
	(A)	1	(B)	6		(C)	$\log_3 4$	(D)	log ₂ 3 log ₃ 4
50.	If x	$y = e^5, x = e^3 y$ the	n the	value of	x and y a	are			•
	(A)	4,1	(B)	e^{-4}, e^{-1}		(C)	e^4 , e	(D)	1,4
		•			,				•

- Angle between the parabolas $y^2 = x$ and $x^2 = y$ at origin is (B) $\tan^{-1}(4/3)$ (C) $\frac{\pi}{2}$ $2 \tan^{-1}(3/4)$ (A)
- When the eccentricity of an ellipse becomes zero the ellipse becomes a 52. (A) straight line (B) pair of straight lines (C) point circle
- The area bounded by curve xy 12 = 0 and x = 0, y = 1, $y = e^2$ is 53.
- 24 sq. units (B) e¹² sq. units (D) (C) 12 sq. units 48 sq. units
- 54. If f(x) = |x-3|, then for each real x, $f(x^2) = (f(x))^2$ (B) f(|x|) = |f(x)|(A)
 - (D) f(|x-1|) = 0 at x = -2(C) f(-x)=f(x)
- The two circles $(x-2)^2 + (y+1)^2 = 8$ and $x^2 + (y-3)^2 = 16$
 - (A) intersect each other at exactly two points
 - touch each other at a single point
 - neither intersect nor touch each other
 - are such that one lies entirely within the other.
- $56. \quad \frac{db^x}{dx} =$ (A) $\mathbf{b}^{\mathbf{x}}$ (B) b* x log x
 - (C) bx log b (D) $b^x \log x$
- The solution of the differential equation $e^x \frac{dy}{dx} + y = e^{-x}$ is satisfies 57.
 - $(A) \quad y = \frac{e^{3x}}{2} + ce^x$ (B) $y = e^{2x} + ce^{-x}$ (D) $y = ce^{-x}$
 - $(C) y = e^x + ce^{-x}$
- 58. If $f(x) = \frac{x+2}{3}$ then f'(x), the inverse of f at x is
 - $(A) \quad \frac{3}{x+2}$ (B) 3x - 2(C) 2x - 3(D) 3x+2

(D)

59 .	The	value	of ($(1+i)^4$	is

- (A) 4
- (B) 4i
- (C) -4
- (D) -4i

- 60. The value of $(\log_x xy) (\log_{xy} x^y)$ is
 - (A) 1
- (B) X
- (C) Y
- (D) XY
- 61. If f is differentiable on [0, 2] and f(0) = -3 and $1 \le f'(x) \le 5$ for $0 \le x \le 2$ then
 - (A) $f(2) \ge 10$

(B) $-1 \le f(2) \le 7$

(C) f(2) < -2

(D) $-2 \le f(2) < -1$

62.
$$\int_0^2 |x-1| \, dx =$$

- (A) 0
- (B) 1
- (C) 2
- (D) 4

$$63. \quad \lim_{x\to 0} x^3 \cos\left(\frac{2}{x}\right) =$$

- (A) ∞
- (B) 1
- (C) $\frac{\pi}{2}$
- (D) 0
- 64. If the derivation of a map f is given by f(x) = 6(x-2)(x+1) for any real x then
 - (A) f is monotone increasing if $1 \le x \le 2$
 - (B) f is monotone decreasing if x>2
 - (C) f is monotone increasing if $-1 \le x \le 0$
 - (D) f is monotone decreasing if $-1 \le x \le 2$
- 65. If the perimeter of a rectangle of length 1 and breath b is 500, then the area of the rectangle is maximum when
 - (A) l = b = 125

(B) l = 200 and b = 50

(C) l = 150 and b = 100

- (D) l = 175 and b = 75
- 66. The values of x for which the function $\log(\frac{x-1}{x+2})$ is continuous are
 - (A) x < 1

(B) x > 1 and x < -2

(C) x < 1 and x > -2

(D) x > 1

67.
$$\int \frac{dx}{1+\sqrt{x}}$$
 is

(A) $2\log\left|\sqrt{x}+1\right|$

(B) $\sqrt{x} + 1$

(C) $2\left[\sqrt{x} - \log\left|\sqrt{x} + 1\right|\right]$

(D) $2(1+\sqrt{x})^{-1}$

- 68. The binary operation on A is a function from
 - (A) A to A

(B) A to A X A

(C) AXA to AXA

- A X A to A(D)
- In the group (Q, +), the inverse of 0 is
 - (A) -1
- $(B) \quad 0$
- (C) 1
- (D) ∞
- If 0.01011000... is the binary expansion of a real number x is then x = 70.
- (B) $\frac{5}{16}$
- (D) $\frac{11}{32}$
- 71. Choose the matrix for which the inverse does not exist.

 - (A) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ (B) $\begin{vmatrix} \frac{1}{\sqrt{2}} & \frac{\sqrt{3}}{2} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{vmatrix}$ (C) $\begin{vmatrix} \frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{2} \\ \frac{1}{2} & \frac{1}{2} \end{vmatrix}$ (D) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

- The rank of the matrix $\begin{pmatrix} 1 & -2 & 3 \\ -2 & 4 & -6 \\ 5 & 1 & -1 \end{pmatrix}$ is
 - (A) 1
- (B)
- (C)
- (D)

- 73. If $\alpha = \begin{vmatrix} 1 & a & a^3 \\ 1 & b & b^3 \\ 1 & c & c^3 \end{vmatrix}$ then
 - (A) a + b c divides α

(B) a - b + c divides α

(C) a - b - c divides α

- (D) a + b + c divides α
- If $A = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$, then the value of the determinant of $(A^5 A^{-1})$ is
 - (A) 1296
- (B) 7776
- (C) 216
- (D) = 0
- The smallest angle of the triangle ABC, with sides AC = 12, AB = 13 and BC = 14, is
 - (A) CAB

(B) CAB and ABC

(C) ABC (D) ACB

	(A)	5/6	(B)	1/12	(C)	7/12	(D)	8/12	
77.	Eve	nts having no sai	mple j	points in commo	n are c	called			
	(A)	Independent ev			(B)	Exhaustive eve	nts		
	(C)·	Exclusive even	ts		(D)	Conditional eve	nts		
78.	The	standard deviati	ion of	the following nu	mbers	25, 35, 15, 20, 4	0 is		
•	(A)	50.20	(B)	9.27	(C)	4.40	(D)	8.6	
79.	If P	(A) = 1/2, P(B A)	x) = 4/	5 then P(A ∩ B	3) is eq	ual to		•	
	(A)	1/5	(B)	3/5	(C)	2/5	(D)	4/5	
80.	the the	examination, 65	passe is sel	ed in Maths, 75 lected at randon	passe	tics, of the 120 st d in statistics ar at is the probabi	nd 35	passed in bot	h
	(A)	1/8	(B)	7/8	(C)	1/120	(D)	7/120	
81.	The	probability of th	rowin	g a total of 3 or	5 or 11	with 2 dice is		·	
		1	(B)	1		1		2	
	(A)	18	(B)	9	(C)	6	(D)	9	
82.	A ra	ndom variable Y	has t	the following dis	tributi	on			
				Y=y : -1	0 1	2		÷	-
		•		P(Y=y) : 3c :	2c 0.4	4 0.1			
÷	The	value of the cons	stant (c is:	•				
	(A)	0.10	(B)	0.15	(C)	0.20	(D)	0.01	
83.	If f(x) has probability	dens	sity function cx2,	0 < x	<1. The value of	c is ec	qual to	
•	(A)	0	(B)	1	(C)	2	(D)	3	
84.	Wha	at is the mean of	the fo	ollowing distribu $x:12$		n			
				f_x : 1 2		n			
•	(A)	n(n+1)		7.	(B)	$\frac{n(n+1)(2n+1)}{6}$			
	(xx)	2			(D)				
	(C)	1			(D)	$\frac{2n+1}{3}$			
994		4		1.0					

If P (A) = 1/3, P (B) = 1/4 and P(A \cap B) = 1/6. What is the value of P (A^c \cap B)?

85.	If two independe parameters 3 and					sson distribution with
	(A) e^{-3}	(B)	e^{-4}	(C)	e^{-7}	(D) e^{-12}
86.	X takes the value mean of $Y = x^2 + 2$		3 with respecti	ve proba	abilities 0.1, 0.	3, 0.5, 0.1. What is the
	(A) 20	(B)	16	(C)	15.1	(D) 6.4
87.	If the mean and parameters (n, p)		e of Binomial	distribu	ution are $\frac{3}{2}, \frac{3}{4}$	respectively then the
	(A) 3, 1/2		2, 1/3	(C)	4, 1/8	(D) 3, 3/4
: QQ				117700 011	it anah athan a	
88.	The two types of contact (A) Median	umutau	ve frequency c		First quartile	
	(C) Mode			(D)	Third quarti	
	(c) Mode		•	(2)	riira quaru	
89.	If median of 3, 4,		is 5, then the			
	(A) 3	(B)	4	(C)	5	(D) 6
90.	The probability d mean and standar (A) 3, 1/4	ensity f d deviat (B)	lon are		stribution is 4, 1/2	$\sqrt{\frac{2}{\pi}}e^{-\frac{1}{2}(2x-6)^2}$. Then the
	ı					
91.	Which one of them	*	a property of c	umulati	ve distributior	function F(x)?
	(i) Step function					
	(ii) Right continuous $F(\infty) = 0$	uous			,	
٠	(A) Only (i)	(B)	Only (ii)	(C)	Only (iii)	(D) All the three
	(ii) Only (i)	(1)	Omy (n)	(0)	Only (III)	(B) I'm the three
92.	If X has a Poisson is	distribu	ition and P(X=	=2) = P(X)	(=3) then the n	nean of the distribution
	(A) 2	(B)	1	(C)	3	(D) 4
93.	The difference be $n = 25$ is 1. Then			the vari	ance of a bind	omial distribution with
	(A) 0.04	(B)	0.2	(C)	0.96	(D) 0.8
			•			•

94.		is a normal veen 12 and 32		with mear	20 an	d var	riance 64, t	he proba	oility that	t X lie
	(A)	0.4332	(B)	0.1189	1	(C)	0.7475	(D	0.3143	
	[Fro	m the Normal	table is	given tha	t Z:		-1.0	1.5	;	
	·				Ф(Z):		0.3143	0.4	1332]	
95.	_	p.d.f. of a contribution functi		random va	ariable	X is	$f(x) = e^{-x}; x$	$t \geq 0$. The	n its cum	ulativ
	(A)	-e:x	(B)	1 - e-x		(C)	e^x	(D	$e^{-x}-1$	
96.	If m	odal value is n	ot clear	in a distri	bution,	it ca	n be ascert	ained by t	he metho	d of
	(A)	Grouping				(B)	Guessing		-	٠
	(C)	Summarising	3			(D)	Trial and	Error		
97.	If for	r a Binomial d	istributi	on, mean	= 4, va	riance	e = 4/3, the	probabili	ty, P (X ≥	5) is
	(A)	$(2/3)^6$	(B)	$(2/3)^5 (1/3)^5$	3)	(C)	$(1/3)^6$	(D) 4(2/3)6	
98.	f(x)	ntinuous rand = $1/3$; $-1 \le x$ = $2/3$; $0 \le x$	≤ 0 ≤ 1 ,	then E		,		_	1/0	
	(A)	1/9	(B)	2/3		(C)	3/2	(D)	1/3	
99.	Let	X be a continu	ous rand	lom varial	ole with	n prok	ability den	sity funct	ion,	
	f(x) =	$= \mathbf{k}\mathbf{x}; 0 \le \mathbf{x} \le$ $= \mathbf{k}; 1 \le \mathbf{x} \le$ $= 0; \text{ otherwise}$	2							
	The	value of k is		* * * * * * * * * * * * * * * * * * *				·		
	(A)	1/4	(B) .	2/3		(C)	2/5	(D)	3/4	. ,
100.		ch one of the son distribution		ng is corre	ct? B	inomi	al distribu	tion, say	B(n, p) to	ends t
,	(A)	$n \to \infty, p \to 0$	and np	= µ (finite	e) .	(B)	$n \to \infty$, p	$\rightarrow 1/2$ and	$d np = \mu_{\cdot}(d)$	inite)
•	(C)	$n \to 0, p \to 0$	and np	→ 0		(D)	$n \rightarrow 0$, p	→ 0 and	$np \rightarrow \mu$	