1.	If ω	is an imaginary	cube 1	root of unity	y, then (1+0	ο-ω ²) ⁷ equals			
	(A)	128 ω	(B)	-128ω	(C)	$128 \omega^2$	(D)	$-128 \omega^2$	
2.	If A	$= \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$	$\left(\theta \right), \text{ the }$	n which of t	the followin	g statement	is not cor	rect?	
	(A)	A is orthogona	al matr	ix	(B)	A' is orthog	onal mat	rix	
	(C)	Determinant	A=1		(D)	A is not inv	vertible		
3.	star	article of mass ts from rest an nds?						-	
	(A)	(2,4,5)	(B)	(4,8,10)	(C)	(6,12,15)	(D)	(10,0,0)	
4.		ody completes lacement to dis				dius R in 2	0 second	s. The ratio	of
	(A)	7:11	(B)	10:1	(C)	11:7	(D)	1:10	
5.		ody falls freely nd of motion ar			e distance o	covered in th	e first, se	econd and th	ird
	(A)	1:2:3	(B)	1:4:9	(C)	1:3:5	(D)	2:4:6	
6.	Whi	ch of the waves	does n	ot belong t	o electroma	gnetic wave	spectrum	?	
	(A)	X-rays			(B)	Visible ligh	t		
	(C)	Sound waves			(D)	Infra-red ra	ays		
7.		ch is the essent sources of light		dition for p	producing st	tationary Int	erference	e pattern due	e to
	(A)	Coherent			(B)	Incoherent			
	(C)	Monochromat	ic		(D)	Both (A) an	d (C)		
8.	Ben	ding of light are	ound a	obstacle is l	known as				
	(A)	diffraction			(B)	reflection			
	(C)	polarization			(D)	none of the	above		
9.	Mira	age formation is	due to	the variat	ion of layer:	s of			
	(A)	refractive inde	ex		(B)	colour			
	(C)	frequency			(D)	none of the	above		

1.	If ω is an imaginary cube root of unity,	then $(1+\omega-\omega^2)^7$ equals
	(A) 128 ω (B) -128 ω	(C) $128 \omega^2$ (D) $-128 \omega^2$
	(acc, 0, cir, 0)	
2.	If $A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$, then which of the	e following statement is not correct?
	(A) A is orthogonal matrix	(B) A' is orthogonal matrix
	(C) Determinant A=1	(D) A is not invertible
3.		a force of (4i+8j+10k) Newton. If the particle nitially, what are it new coordinates after 3
	(A) (2,4,5) (B) (4,8,10)	(C) (6,12,15) (D) (10,0,0)
4.	A body completes one round of a cir displacement to distance after 10 secon	ccle of radius R in 20 seconds. The ratio of ds is
	(A) 7:11 (B) 10:1	(C) 11:7 (D) 1:10
5.	A body falls freely under gravity. The second of motion are in the ratio	distance covered in the first, second and third
	(A) 1:2:3 (B) 1:4:9	(C) 1:3:5 (D) 2:4:6
6.	Which of the waves does not belong to	electromagnetic wave spectrum?
	(A) X-rays	(B) Visible light
	(C) Sound waves	(D) Infra-red rays
7.	Which is the essential condition for protocol two sources of light?	oducing stationary Interference pattern due to
	(A) Coherent	(B) Incoherent
	(C) Monochromatic	(D) Both (A) and (C)
8.	Bending of light around a obstacle is ki	nown as
	(A) diffraction	(B) reflection
	(C) polarization	(D) none of the above
9.	Mirage formation is due to the variatio	on of layers of
	(A) refractive index	(B) colour
	(C) frequency	(D) none of the above

10. A hollow metal sphere of radius 5 cm is charged such that the potential on its surface is 10 volts. The potential at the centre of the sphere is

(A) zero

(B) 10 V

(C) same as at a point 5 cm away from the surface

- (D) same as at a point 25 cm away from the surface
- 11. A charge q is placed at the centre of the line joining two equal charges Q. The system of three charges will be in equilibrium if q is equal to

(A) -Q/4 (B) -Q/2 (C) +Q/4 (D) +Q/2

12. An electron of mass m_e, initially at rest, moves through a certain distance in a uniform electric field in time t₁. A proton of mass m_p, also, initially at rest, takes time t₂ to move through an equal distance in this uniform electric filed. Neglecting the effect of gravity, the ratio t₂/t₁ is nearly equal to

(A) 1.0 (B) $(m_p/m_e)^{0.5}$ (C) $(m_s/m_p)^{0.5}$ (D) 1836

- Sodium has 11 electrons. If the sequence in which the energy levels are filled is 1s, 2s, 2p, 3s, 3p, 4s, 3d,... the ground state of sodium is
 - (A) ${}^{3}P_{1/2}$ (B) ${}^{2}P_{1/2}$ (C) ${}^{1}P_{1/2}$ (D) ${}^{3}S_{1/2}$

14. The maximum kinetic energy of electrons in a photoelectric effect depends on

- (A) intensity of incident light (B) frequency of the incident light
- (C) polarization of the incident light (D) angle of incidence

15. Electromagnetic radiations will be emitted in the case of a

(A) neutron moving in a straight line with a constant speed

- (B) proton is moving in straight line with a constant speed
- (C) proton moving in a circle with a constant speed
- (D) electron moving in a straight line with a constant speed
- 16. The de Broglie wave length of an electron of Kinetic energy 500 eV is

(A) 14	4.82 Å	(B)	24.82 A	(C)	34.82 Å	(D)	44.82 A
--------	--------	-----	---------	-----	---------	-----	---------

 The maximum number of electrons in an atomic orbit of principal quantum number n = 3 is

(A) 3 (B) 6 (C) 9 (D) 18

18.		ensitive galvano: stance in ———				nmeter by con	necting	a
	(A)	Low, parallel		2 R	(B)	Low, series		
	(C)	High, parallel			(D)	High, series		
19.	The	intensity of the	magne	etic field H a	at a point o	on the axial line	e of a ba	ar magnet is
	(A)	$2Md/(d^2{-}l^2)^{1/2}$	(B)	$2Md/(d^2-l^2)$) ² (C)	$2Md/(d^2-l^2)$	(D)	$2Md/(d^2 \text{-} l^2)^3$
20.	If a	particle is movi	ng in a	a uniform m	agnetic fie	ld, then		
	(A)	its momentum	chang	ges but total	energy rei	nains same		
	(B)	both momentu	m and	total energy	y remains	the same		
	(C)	its total energ	y chan	ges but mon	nentum rei	nains same		
	(D)	both momentu	m and	total energ	y will chan	ge		
21.	ΜL	² T ⁻² is the dimer	nsional	formula of				
	(A)	angular mome	ntum	k.;	(B)	linear momer	ntum	
	(C)	angular veloci	ty		(D)	none of the al	bove	
22.	Whi	ch of the followi	ng qua	antity has th	ne same din	nensions as the	e latent	heat?
	(A)	Work per unit	mass		(B)	Specific heat	per uni	t mass
	(C)	Force per unit	veloci	ty	(D)	Acceleration	per unit	t displacement
23.		object is projecte ke the ground in			velocity of	10 m/sec. If g =	= 10 m/s	sec², then it wi
	(A)	1 sec	(B)	2 sec	(C)	3 sec	(D)	5 sec
24.	*	assenger (facing ind him, the tra				ses a coin in a	train.	If the coin fall
	(A)	an acceleratio	n		(B)	retardation		
	(C)	uniform speed			(D)	any of these		
25.	An	electron in Bohr	's orbit	t has a const	ant (i) acc	eleration (ii) M	omentu	m (iii) force
	(A)	(i) only	(B)	(ii) only	(C)	(iii) only	(D)	none of these
26.	Kin	etic energy per g	gram n	nolecule is g	iven by			
	(A)	3/2 RT	(B)	3/2 KT	(C)	5/2 KT	(D)	$1/2 \mathrm{KT}$
380					4			

27. A gas will behave as an ideal gas at

(A) High pressure and low temperature

(B) High temperature and high pressure

(C) At very low pressure and high temperature

(D) None of these

 The resistance of a device dropped drastically when the polarity of the meter changed. The device could be a

(A) Resistor (B) Inductor (C) Capacitor (D) Diode

29. The half life period of neutron is 13 minutes approximately. The intensity of neutron beam traveling in free space with a velocity of 30 km per sec is reduced to half when it cover a distance of

(A) 390000 km (B) 11700 km (C) 46800 km (D) 23400 km

30. Magnetic field does not cause deflection in

(A) γ -rays (B) β -rays (C) β +-rays (D) α -rays

31. Which of the following represents the possible oxidation states of iodine in its compounds?

(A) -1, 0
(B) -1, +1, +2, +3, +4, +5, +6, +7
(C) -1, +1, +3, +5, +7
(D) -1, -3, -5, -7

32. Which of the following metal ion is essential for blood coagulation?

(A) Iron (B) Phosphorous

(C) Potassium (D) Calcium

33. Oxide of which of the elements among Mn, Pb, S, and Ba in its highest oxidation state will be acidic as well as oxidizing?

(A) Sulphur (B) Manganese (C) Lead (D) Barium

34. The hybridization and geometry of the molecule XeOF2 is

(A) sp³d, T shaped (B) sp³, tetrahedral

(C) dsp², square planar (D) sp², trigonal planar

 $\mathbf{5}$

A nuclear reaction between ^{14}N and ^{4}He balanced equation for the reaction is	produ	aces ^{17}O as one of the products. The
(A) ${}^{14}N + {}^{4}He \longrightarrow {}^{17}O + {}^{1}p + \gamma$		
(B) ${}^{14}N + {}^{4}He \longrightarrow {}^{17}O + {}^{1}n + \beta$	3	
(C) ${}^{14}N + {}^{4}He$ ${}^{17}O + {}^{1}n + \gamma$	1	
(D) ${}^{14}N + {}^{4}He$ ${}^{17}O + \alpha + \gamma$		
Which among the following halides is not	a Lewi	is acid?
(i) CCl ₄ (ii) BCl ₃ (iii) SnCl ₂ (iv) InB	r3	
(A) (ii) (B) (i)	(C)	(iv) (D) (iii)
Third ionization energy of titanium is reprocesses?	quired	d to carry out which of the following
$(A) Ti^{3+}(g) + e^- \rightarrow Ti^{2+}(g)$	(B)	$Ti^{2*}(g) \rightarrow Ti^{3+}(g) + e^{-}$
$(C) 3Ti~(g) \rightarrow ~Ti^{\scriptscriptstyle +}(g)~+ 3~e^{\scriptscriptstyle -}$	(D)	$\mathrm{Ti}~(g) \rightarrow ~\mathrm{Ti}^{3\text{+}}(g) ~+~ 3e^{\text{-}}$
Which of the following ion has longest rad	ius?	
(A) Ca ²⁺ (B) K ⁺	(C)	S ²⁻ (D) Cl ⁻
	1.0	
(A) 58 (B) 72	(C)	71 (D) 56
(A) F ₂ O, fluorine oxide	(B)	OF2, Oxygen fluoride
(C) OF, Oxygen monofluoride	(D)	FO, Fluorine monoxide
Which of the following halide will readily	underg	go hydrolysis?
(A) CCl ₄ (B) SiCl ₄	(C)	NaCl (D) HCl
Which of the following compounds would h	nave tł	ne highest boiling point?
$(A) CH_3CH_2CH_2CH_3$	(B)	CH ₃ NH ₂
(C) CH ₃ OH	(D)	$\mathrm{CH}_{2}\mathrm{F}_{2}$
6		
	balanced equation for the reaction is (A) ¹⁴ N + ⁴ He \rightarrow ¹⁷ O + ¹ p + γ (B) ¹⁴ N + ⁴ He \rightarrow ¹⁷ O + ¹ n + β (C) ¹⁴ N + ⁴ He \rightarrow ¹⁷ O + ¹ n + γ (D) ¹⁴ N + ⁴ He \rightarrow ¹⁷ O + α + γ Which among the following halides is not β (i) CCl ₄ (ii) BCl ₃ (iii) SnCl ₂ (iv) InB (A) (ii) (B) (i) Third ionization energy of titanium is re- processes? (A) Ti ³⁺ (g) + e ⁻ \rightarrow Ti ²⁺ (g) (C) 3Ti (g) \rightarrow Ti ⁺ (g) + 3 e ⁻ Which of the following ion has longest rad (A) Ca ²⁺ (B) K ⁺ An element present in 6 th period 3 rd gro- number of the element present in 6 th period (A) 58 (B) 72 Which of the following statement is corre- binary compound between oxygen and fluc (A) F ₂ O, fluorine oxide (C) OF, Oxygen monofluoride Which of the following halide will readily γ (A) CCl ₄ (B) SiCl ₄ Which of the following compounds would F (A) CH ₃ CH ₂ CH ₂ CH ₃ (C) CH ₃ OH	balanced equation for the reaction is (A) ${}^{14}N + {}^{4}He \longrightarrow {}^{12}O + {}^{1}p + \gamma$ (B) ${}^{14}N + {}^{4}He \longrightarrow {}^{17}O + {}^{1}n + \beta$ (C) ${}^{14}N + {}^{4}He \longrightarrow {}^{17}O + {}^{1}n + \gamma$ (D) ${}^{14}N + {}^{4}He \longrightarrow {}^{17}O + \alpha + \gamma$ Which among the following halides is not a Lewi (i) CCl ₄ (ii) BCl ₃ (iii) SnCl ₂ (iv) InBr ₃ (A) (ii) (B) (i) (C) Third ionization energy of titanium is required processes? (A) Ti ³⁺ (g) + e ⁻ \rightarrow Ti ²⁺ (g) (B) (C) 3Ti (g) \rightarrow Ti ⁺ (g) + 3 e ⁻ (D) Which of the following ion has longest radius? (A) Ca ²⁺ (B) K ⁺ (C) An element present in 6 th period 3 rd group ha number of the element present in 6 th period 4 th g (A) 58 (B) 72 (C) Which of the following statement is correct with binary compound between oxygen and fluorine? (A) F ₂ O, fluorine oxide (B) (C) OF, Oxygen monofluoride (D) Which of the following compounds would have th (A) CCl ₄ (B) SiCl ₄ (C) Which of the following compounds would have th (A) CH ₃ CH ₂ CH ₂ CH ₃ (B) (C) CH ₃ OH (D)

43. What is the total number of sigma bonds found in the following compound?

 $H_{3}C \xrightarrow{} C \xrightarrow{} C \xrightarrow{} C \xrightarrow{} C \xrightarrow{} C \xrightarrow{} H$ (B) 10 (C) 11 (D) 15

44. Which one of the following compounds represents the major monochlorination isomer formed in the following reaction?

- 45. The major reason that phenol is a better Brønsted acid than cyclohexanol is
 - (A) it is a better proton donor.

(A) 8

- (B) the cyclohexyl group is an electron donating group by induction, which destabilizes the anion formed in the reaction
- (C) phenol is able to stabilize the anion formed in the reaction by resonance
- (D) the phenyl group is an electron withdrawing group by induction, which stabilizes the anion formed in the reaction.
- 46. Which of the functional groups on the following molecule are susceptible to nucleophilic attack?

- (A) "a" and "b"
- (C) "b" and "c"

(B) "a" and "c"

(D) "b" only

47. The best synthesis of the following compound, 2-methylpropanoic acid, will be...

48. Which of the following is an intermediate for the basic hydrolysis of methyl ethanoate?

49. Which of the following reagents would be the best reactants for the following reaction?

50. What is the major product expected from the following reaction?

56. From the following data :

 $Zn^{2+}(aq) \mid Zn, E^{\circ} = -0.76 V$; $Fe^{3+}(aq), Fe^{2+}(aq) \mid Pt, E^{\circ} = +0.77 V$ it can be deduced that

I. the standard E.M.F. for the cell $Zn | Zn^{2+}(aq) |$ $Fe^{3+}(aq)$, $Fe^{2+}(aq) |$ Pt is 0.01 V.

II. zinc is a more powerful reductant than Fe²⁺ ions.

III. Fe³⁺ can oxidize zinc under standard conditions.

- (A) I and II are correct (B) II and III are correct
- (C) I is the only correct response (D) III is the only correct response
- 57. For which of the following is ΔH° positive?

I. $O^{+}_{(g)} + e^{\cdot} \rightarrow O_{(g)}$		II. $O_{(g)} + e^{\cdot} \rightarrow O^{\cdot}_{(g)}$		III. $O^{\text{-}}(g) + e^{\text{-}} \rightarrow O^{2^{\text{+}}}(g)$		
(A)	I and II are correct		(B)	II and III are correct		
(C) I is the only correct r		esponse	(D)	III is the only correct respons		

58. The amount of carbon dioxide present at equilibrium in the reaction

 $CaCO_{3(s)} \rightarrow CaO_{(s)} + CO_{2(g)} \quad \Delta H^{o}_{298} = +178 \text{ kJ/mole can be increased by}$

- I. raising the temperature
- II. raising the pressure
- III. adding some more solid calcium oxide
- (A) I and II are correct (B) II and III are correct
- (C) I is the only correct response (D) III is the only correct response

59. The Faraday constant is

(A)	96500 coulomb	(B)	95600 coulomb
(C)	96500 ohm	(D)	$6.023 imes 10^{23}$

60. The Bragg's equation for X-ray diffraction by a crystal is

(A) $n\lambda = 2$	$2d \sin\theta$ (B)	$n\lambda = 2d \sec\theta$	(C)	$n\lambda = 2d \theta$	(D)	$nv = 2d \sin\theta$
--------------------	---------------------	----------------------------	-----	------------------------	-----	----------------------

- 61. The product of three positive reals is 1 and their sum is greater than sum of their reciprocals. Exactly one of them is greater than
 - (A) 0 (B) 1 (C) -1 (D) -2

62. If a, b, c are in G.P., then a + b, 2b, b + c are in

- (A) A.P. (B) G.P
- (C) H.P (D) Both A.P and G.P

63.	If the fourth root	s of unity are z1, z2, z3,	, z4, then z1 ²	2 + z_{2}^{2} + z_{3}^{2} + z_{4}^{2} is	s equal to	
	(A) 1		(B)	0		
	(C) i		(D)	none of these		
64.	If z and ω are (ω) = $\frac{\pi}{2}$, then $\bar{z} \omega$	two non zero comple is equal to	ex number	s such that $ z\omega $	$ =1$, and $\arg(2)$	z)-arg
	(A) 1	(B) -1	(C)	i	(D) -i	
65.	The value of (1+i	$)^{3} + (1+i)^{6}$ is				
	(A) i	(B) 2(-1+5i)	(C)	1-5i	(D) 1+5i	
66.	If $(x-1)^4 - 16 = 0$,	then the sum of non-	real comple	ex values of x is		
	(A) 2	(B) 0	(C)	4	(D) 6	
67.	The value of \log_3	5.log ₂₅ 27 is				
	(A) 3	(B) 3/2	(C)	1⁄2	(D) 1	
68.	The curve repres	ented by $\operatorname{Re}(z^2) = 4$ is				
	(A) a parabola		(B)	an ellipse		
	(C) a circle		(D)	a rectangular h	ıyperbola	
69.	two class players	ament where the par s fell ill, having playe number of participan	ed 3 games	s each. If the to		
	(A) 22		(B)	15		
	(C) 17		(D)	none of the abo	ve	
70.	number of balls.	s have to be put in Total number of way ast 2 balls, is equal to	ys of puttir			
	(A) ⁹ C ₅	(B) ¹⁰ C ₅	(C)	$^{6}\mathrm{C}_{5}$	$(D) \ ^{10}C_6$	
71.	For $2 \le r \le n$, $\binom{n}{r}$	$+2\binom{n}{r-1}+\binom{n}{r-2}=$				

(A) $\binom{n+1}{r-1}$ (B) $2\binom{n+1}{r+1}$ (C) $2\binom{n+2}{r}$ (D) $\binom{n+2}{r}$

73. Of three independent events the chance that only the first occurs is a, that only the second occurs is b, and only the third occurs is c. Then the probability of occurrence of these three events are (where x is a root of the equation), $(a+x)(b+x)(c+x) = x^2$, is

(A)	a b c	(B)	Ь	a	С
	$\overline{a+x}$, $\overline{b+x}$, $\overline{c+x}$	(D)	a + x	b+x	c + x
(C)	c b a	(D)	С		ab
	$\overline{a+x}, \overline{b+x}, \overline{c+x}$	(D)	a + x	b+x	c + x

74. Six faces of a die are marked with the numbers 1, -1, 0, -2, 2 and 3. The die is thrown thrice. The probability that the sum of the numbers thrown is six, is

(4)	1	(P) 1	5	(D) 1
(A)	$\frac{1}{72}$	(B) $\frac{1}{12}$	(C) $\frac{5}{108}$	(D) $\frac{1}{36}$

75. If ABC is a triangle and $\tan \frac{A}{2}$, $\tan \frac{B}{2}$, $\tan \frac{C}{2}$ are in H.P, then the minimum value of $\cot \frac{B}{2}$ is equal to

(A)
$$-\sqrt{3}$$
 (B) $\sqrt{3}$ (C) 2 (D) -2

76. The value of y so that the line through (3,y) and (2,7) is parallel to the line through (-1,4) and (0,6) is
(A) 5 (B) -5 (C) 9 (D) -9

77. Area of triangle formed by the lines x + y = 3 and angle bisector of the pair of straight lines x² + y² + 2 y = 1 is
(A) 2 sq. units
(B) 4 sq. units
(C) 6 sq. units
(D) 8 sq. units

78. Lines 3x+4y+6=0, $\sqrt{2}x+\sqrt{3}y+2\sqrt{2}=0$ and 4x+7y+8=0

(A) Concurrent (B) Parallel

(C) Sides of a triangle (D) None of these

79. Let
$$f(x) = 4$$
 and $f_{x}(x) = 4$, then $\lim_{x \to 2} \frac{xf(2) - 2f(x)}{x - 2}$ equals to
(A) 2 (B) -2 (C) -4 (D) 3

80.
$$\lim_{x \to \infty} \left(\frac{x^2 + 5x + 3}{x^2 + x + 3} \right)^x$$
 is equal to
(A) e^4 (B) e^2 (C) e^3 (D) e^4

81.
$$\lim_{x\to 0} \frac{\tan x - \sin x}{x^3} \text{ is equal to}$$
(A) 0 (B) 1 (C) 1/2 (D) -1/2
82. Let $f:(0,+\infty) \to R$ and $F(x) = \int_0^x f(t)dt$. If $F(x^2) = x^2(1+x)$, then $f(4)$ equals
(A) 5/4 (B) 7 (C) 4 (D) 2
83. The function $f(x) = \frac{x}{2} + \frac{2}{x}$ has a local minimum at
(A) $x=-2$ (B) $x=0$ (C) $x=1$ (D) $x=2$
84. If 2a+3b+6c=0, then atleast one root of the equation $ax^2+bx+c=0$ lies
in the interval
(A) $(0, 1)$ (B) $(1, 2)$ (C) $(2, 3)$ (D) $(1, 3)$
85. At what point on the curve $x^3 - 8a^2y = 0$, the slope of the normal is -2/3?
(A) $(2a,-a)$ (B) (a, a) (C) $(2a, a)$ (D) $(-2a,-a)$
86. The real number, which most exceeds its cube, is
(A) $1/2$ (B) $\frac{1}{\sqrt{3}}$ (C) $\frac{1}{\sqrt{2}}$ (D) $1/4$
87. $\int xe^{x^2}dx$ is equal to
(A) $-\frac{e^{x^2}}{2} + C$ (B) $\frac{e^{x^2}}{2} + C$ (C) $\frac{e^x}{2} + C$ (D) $-\frac{e^x}{2} + C$
88. If $y = f(x)$ and $y \cos x + x \cos y = \pi$, then the value of $f'(0)$ is
(A) π (B) $-\pi$ (C) 0 (D) 2π
89. Let $f(0) = \sin \theta + \sin 3 \theta$ then $f(0)$ is
(A) ≥ 0 only when $\theta \ge 0$ (B) ≤ 0 for all real θ
(C) ≥ 0 for all real θ (D) ≤ 0 only when $\theta \le 0$

	90.	$\int_{0}^{10\pi} si $	nx dx is									
		(A)	20		(B)	8		(C)	10		(D)	18
	91.	Har	ish is a vor	acious	read	er. Th	e meanii	ng of thi	s senten	ce is		
			Harish ha					1	Harish		ots of l	books
		(C)	Harish re	ads or	nly on	e bool	k a day	(D)	Harish	is illite	rate	
	92.	The	verb in the	follow	ving s	enten	ice is					
			e tiger is a									
			the		(B)			(C)	is		(D)	wild
-	93.	The	man jumpe	ed		t	he fence					
							ne tenee	(C)	out		(D)	in
-	94.	Laco	identally c	11t			with a kn	ife				
			myself				elf		themse	lves	(D)	himself
-	95.	A su	dden illnes	s prev	vented	l the 1	minister		att	ending	the ca	binet meeting.
		(A)			(B)			(C)			(D)	
	96.	I hav	ven't seen l	nim —			a long ti	me ago.				
			since		(B)				after		(D)	from
	97.		principal ntaining th				leader	of the	boys —		r	esponsible for
		(A)	can		(B)	are		(C)	were		(D)	was
0	98.		a, of all the in the next				world, —		the j	potentia	al to be	e a frontrunner
		(A)	has		(<u>B</u>)	have		(C)	are hav	ing	(D)	was having
0	99.	I —		coffee	to tea							
		(A)	like		(B)	prefe	er	(C)	want		(D)	desire
	100.	Wha	t is the tim	ne ——		— у	our wate	h?				
		(A)	by		(B)	in		(C)	of		(D)	on
									-	12		