ENTRANCE EXAMINATION FOR ADMISSION, MAY 2012.

M.Sc. (APPLIED GEOLOGY)

COURSE CODE: 367

Register Number :	2	
		Signature of the Invigilator (with date)

COURSE CODE: 367

Time: 2 Hours Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each of the question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	In a	monoclinic crystal						
	(A)	all the three crystallograp	ohic axes ar	e incli	ned to each othe	er		
	(B) all the three crystallographic axes are mutually perpendicular to each other							
	(C)	one of the crystallograph	ic axes is in	clined	l to other two m	utually perpendicula		
	(D)	there are three horizonta	l and one ve	rtical	crystallographic	caxes		
2.	Tetr	agonal system is character	rized by the	prese	nce of			
	(A)	4-fold axis of symmetry						
	(B)	6-fold axis of symmetry						
	(C)	3-fold axis of symmetry						
	(D)	at least two improper axe	es of symme	try				
3.	The	total number of crystal cla	sses are					
	(A)	32 (B) 7		(C)	264	(D) 30000		
4.	exar	minerals of amygdules umple those basalts bearing source rock can cause the f	nepheline o	commo	only contain zeo			
	(A)	Chalcocite		(B)	Calcite			
	(C)	Sodalite		(D)	Silica			
5.	rese	artz grains embedded in emble the characters of cun		ing. T	his texture is kn			
	(A)	Corona		(B)	Symplectitic			
	(C)	Graphic		(D)	Ophitic			
6.	The	recent earthquake in Chil	e is probabl	y due	to			
	(A)	continent-continent collis	sion between	n Sout	th America and	North America		
	(B)	Subduction of Nazca plat	e below Sou	th An	nerican plate			
	(C)	Oceanic upwelling off coa	ast of Chile					
	(D)	Eruption of volcano in Ch	hile					
7.	Cha	andrayan-1 mission of India	a was a mis	sion to				
	(A)	launch a remote-sensing	satellite in	earth'	's orbit			
	(B)	send an orbiter in Moon's	s orbit					
	(C)	detect life on Moon						
	(D)	send a living being on M	oon					
367			2					

8.	Subduction is likely to happen in which of the following cases
	(A) a oceanic plate moving towards a continental plate
	(B) a continental plate moving towards another continental plate
	(C) a continental plate moving past another continental plate
	(D) oceanic plate moving away from another oceanic plate
9.	Most of the earthquakes originate at
	(A) plate margins (B) plate interiors
	(C) volcanic centers (D) ocean-continent junctions
10.	Climate change is a bigger threat to coastal countries like Bangladesh because
	(A) More temperature would increase in lower latitudes
	(B) More carbon dioxide is emitted by coastal countries
	(C) Sea level rise due to melting of continental glaciers would drown the land in coastal countries
	(D) Fishes would die due to increase in temperature
11.	A radioactive isotope with half life of 10 hours would decay to one fourth of its original amount in
	(A) 40 hours (B) 20 hours (C) 2.5 hours (D) 5 hours
12.	A radioactive isotope with atomic number 19 and mass 40 decays by beta decay. The atomic number and mass of the daughter isotope would be
	(A) 20, 40 (B) 18, 40 (C) 20, 41 (D) 18, 41
13.	Which of the following is NOT an example of thermodynamic state function?
	(A) Enthalpy (B) Entropy
	(C) Gibbs free energy (D) Work done
14.	Plate tectonic like processes are not observed during recent time on any planet other than earth because
	(A) no other planet has lithosphere similar to the Earth
	(B) no other planet's lithosphere is broken in fragments
	(C) no other planet has internal heat energy left to drive such processes
	(D) no other planet has water

15.	Ear	thquakes with focus deeper tha	n 650 km are	e not observed be	cause					
	(A)	no brittle material is present	deeper than	that depth						
	(B)	seismic waves travelling from deeper parts do not reach on surface								
	(C)	liquid mantle does not allow s-waves to propagate								
	(D)	instruments are not capable t	o record eart	hquakes from de	eper parts					
16.		three most abundant silicate n	ninerals in th	ne earth's contine	ntal crust are:					
	(A)	Quartz, olivine, pyroxene								
	(B)	Quartz, feldspar, pyroxene								
	(C)	Quartz, feldspar, mica								
	(D)	Feldspar, pyroxene, mica								
17.	Whi	ch one of the following mineral	s occurs as a	phenocryst in ba	salt?					
	(A)	Quartz	(B)	Biotite						
	(C)	Microcline	(D)	Olivine						
18.	Rock	ks exhibiting hypidiomorphic te	exture were f	ormed as:						
	(A)	Metamorphic rocks	(B)	Plutonic rocks						
	(C)	Continental volcanic rocks	(D)	Submarine volc	anic rocks					
	Stu	dy the Figure below and answer	r the followir	ng three questions	3:					
			enter the contract							
		A		F7						
			1							
		¥								
		1		A						
				frank						
10.75										
19.		v many four fold axis of symme								
	(A)	4 (B) 6	(C)	3	(D) 2					
20.		mirror planes of symmetry a	re perpendic	cular to the ——	fold axis of					
	(A)	2 (B) 3	(C)	4	(D) 6					
367			4							

21.	This	s crystal consists of forms.		
	(A)	Cube and tetrahedron		
	(B)	Cube and octahedron		
	(C)	Dodecahedron and tetrahedron		
	(D)	Hexagon and octahedron		
22.		erals that belong to sheet silicates h	ave g	ood cleavage parallel to —
	(A)	(100) (B) (010)	(C)	(001) (D) (110)
23.	Whi	ch one of the following is an open form	1?	
	(A)	Dome	(B)	Tetrahedron
	(C)	Octahedron	(D)	Dodecahedron
24.	Phe	nocrysts of quartz are found in		
	(A)	Andesite (B) Basalt	(C)	Rhyolite (D) Dacite
25.		an igneous rock — cannot ditions.	occur	along with quartz under equilibrium
	(A)	Hypersthene	(B)	Nepheline
	(C)	Hornblende	(D)	Magnetite
26.	Syer	nites are essentially made up of		
	(A)	Plagioclase feldspars		
	(B)	Alkali feldspars		
	(C)	Plagioclase feldspars and augite		
	(D)	Diopside and quartz		
27.	The	discontinuous series in the Bowen's re	eactio	n series consists of minerals:
	(A)	Olivine, pyroxene, anorthite, albite		
	(B)	Olivine, amphibole, anorthite, albite		
	(C)	Olivine, pyroxene, albite, quartz		
	(D)	Olivine pyroxene amphibole biotite		

Study the diopside-anorthite phase diagram for 1 atmospheric pressure given below and answer the following three questions:

- 28. A melt of composition X is cooled slowly. At what temperature crystallization of first phase will take place?
 - (A) 1800°C
- (B) 1660°C
- (C) 1460°C
- (D) 1400°C
- 29. What will be the composition of the first phase to crystallize from this melt?
 - (A) Anorthite

- (B) Diopside
- (C) 50% dioside + 50% anorthite
- (D) 70% anorthite + 30% diopside
- 30. What is the composition of the melt when it reaches the eutectic?
 - (A) Di 36% and An 64%

(B) Di 64% and An 36%

(C) Di 30% and An 70%

- (D) Di 70% and An 30%
- 31. A fault in which hanging wall moves down relative to footwall is
 - (A) Reverse fault

(B) Thrust Fault

(C) Normal fault

(D) Transform Fault

32.	The angle between strike line and lineation measured on a vertical plane is									
	(A)	Plunge	(B)	Dip	(C)	Pitch	(D)	Rake		
33.	Fau	lt is an example	of							
	(A)	Brittle Deforma	ation		(B)	Ductile Defe	ormation			
	(C)	Brittle-Ductile	deform	nation	(D)	Malleability	7			
34.	Whi	ch of the followir	ng is th	ne fold with	n parallel a	rrangement	of limbs?			
	(A)	Inverted Fold			(B)	Isoclinal Fo	ld			
	(C)	Reclined Fold			(D)	Symmetrica	ıl Fold			
35.	If th	e rake of net slip	of a f	ault is 90°,	the fault r	nay be				
	(A)	Strike slip faul	t		(B)	Dip slip fau	lt			
	(C)	Diagonal slip fa	ault		(D)	Tear fault				
36.	An o	outcrop in which	older i	rocks are s	urrounded	by younger r	ocks is kn	own as		
	(A)	Overlap	(B)	Offlap	(C)	Outlier	(D)	Inlier		
37.		dip direction or section of the in						to the line o		
	(A)	parallel			(B)	perpendicul	ar			
	(C)	45°			(D)	oblique				
38.	Pitcl	n of a linear stru	cture l	lying on a p	olane is def	fined as the a	angle betw	een the		
	(A)	Linear structur	e and	the strike	line of the	plane				
	(B) Horizontal projection of the linear structure and the strike line of the bed									
	(C)	Linear structur	e and	its horizon	tal projecti	ion				
	(D)	Linear structur	e and	its vertical	projection					
39.	Clea	vage is a								
	(A)	Primary planar	struc	ture						
	(B)	Primary linear	struct	ure						
	(C)	Secondary plan	ar str	ucture						
	(D)	Secondary lines	ar stru	cture						

40.	In n	netamorphosed calc-silicate rocks, one of the following sequence of minerals
		ars in the mineral assemblage with increasing metamorphic grade
	(A)	Tremolite — Diopside — Talc — Forsterite
	(B)	Talc — Forsterite — Diopside — Tremolite
	(C)	Talc — Tremolite — Diopside — Forsterite
	(D)	Forsterite — Tremolite — Talc — Diopside
41.	Sapp	hirine+Quartz assemblage indicates — metamorphic condition.
	(A)	high pressure (B) ultra-high pressure
	(C)	ultra-high temperature (D) low pressure
42.	In ca	se of dynamic metamorphism, the principal agent of metamorphism is
	(A)	Temperature
	(B)	Fluid
	(C)	Deviatoric stress
	(D)	Both temperature and deviatoric stress
43.	Met	amorphic grade refers to
	(A)	intensity of metamorphism
	(B)	collection of mineral assemblages from rocks of various bulk composition that crystallized at same P, T condition
	(C)	particular mineral observed at a specific P, T condition
	(D)	specific P, T condition of metamorphism
44.	Whi	ch of the following rocks is completely unfoliated?
	(A)	Slate (B) Hornfels (C) Schist (D) Phyllite
45.	The	conversion of eclogite to amphibolite facies is an example of
	(A)	Prograde metamorphism (B) Retrograde metamorphism
	(C)	Autometamorphism (D) Burial metamorphism
46.		at is an irregular suture-like boundary developed in limestone, formed by sure-controlled solution followed by immediate local redeposition called?
	(A)	Stylolite (B) Ammoniatic suture
	(C)	Secondary fracture (D) None of the above

47.	time depe	e of non-deposition, where horizontal	lly pa	ta from older strata and represents a rallel strata of sedimentary rock are be either vertical or at an angle to the
	(A)	Angular Unconformity Surface	(B)	Paraconformity Surface
	(C)	Nonconformity surface	(D)	None of the above
48.		ch of the following minerals would be nical weathering?	e mos	t likely to form a clay mineral during
	(A)	Iron oxide (B) Mica	(C)	Calcite (D) Quartz
49.	A cl	astic rock is:		
	(A)	a rock formed from the cementation	of trai	nsported grains
	(B)	a rock formed from evaporation of se	a wat	er
	(C)	transformed by heat into limestone		
	(D)	transformed by pressure into limesto	one	
50.	Wha	at are the two most abundant element.	s in th	ne Earth's crust?
	(A)	Iron and magnesium	(B)	Oxygen and silicon
	(C)	Nitrogen and oxygen	(D)	Silicon and calcium
51.		at is probably the single most immentary rocks?	portar	nt, original, depositional feature in
	(A)	Sizes of the sand grains	(B)	Degree of lithification
	(C)	Bedding or stratification	(D)	Compaction of the mud and clay
52.		ch of following sedimentary rocks ir ments?	ndicate	e long-distance transportation of the
	(A)	Quartz sandstone		
	(B)	Breccia		
	(C)	Arkose (sandstone with lots of feldsp	ar pai	rticles)
	(D)	None of above		
53.	Whi	ch of the following types of sediments	are m	ost abundant?
	(A)	Coarse elastics	(B)	Fine elastics
	(C)	Chemical	(D)	Biochemical
	100000			

54.	Whi	ch of the followin	g type	es of currents	can trar	nsport sand grain	ns?	
	(A)	Rivers			(B)	Wind		
	(C)	Ocean waves			(D)	All of these		
55.	Whi	ch of the followin	ig lists	s is written in	order o	f decreasing part	ticle siz	ze?
	(A)	Sandstone, silts	stone,	conglomerate				
	(B)	Sandstone, con	glome	rate, siltstone				
	(C)	Conglomerate,	sands	tone, siltstone				
	(D)	Siltstone, sands	stone,	conglomerate				
56.	Wha	at is the difference	e betv	veen a breccia	and a c	conglomerate?		
	(A)	Breccias are co	arse g	rained and cor	nglomer	ates are fine gra	ined	
	(B)	Conglomerates	are co	arse grained	and bre	ccias are fine gra	ained	
	(C)	Breccias have r	ounde	d fragments a	and cong	glomerates have	angula	ar fragment
	(D)	Breccias have a	ingula	r fragments a	nd cong	lomerates have	rounde	d fragment
57.	A sa	andstone with ab	undan	t rock fragme	nts and	clay minerals is	a(n).	
	(A)	arkose	(B)	litharenite	(C)	quartz arenite	(D)	shale
58.	A lo	cal water table p	ositio	ned above the	regiona	l water table is	said to	be:
	(A)	stranded	(B)	perched	(C)	displaced	(D)	depressed
59.	The	ability of an Ear	th ma	terial to trans	smit wa	ter is a measure	of its:	
	(A)	porosity			(B)	aquifer charact	teristic	S
	(C)	chemical cemer	nt		(D)	permeability		
60.	The	percentage of a	rocks	total volume t	hat is t	aken up by pore	space i	is called the
	(A)	permeability	(B)	recharge	(C)	aquifer	(D)	porosity
61.	Dui	nes tend to form:						
	(A)	parallel to the	prevai	lling winds				
	(B)	perpendicular	to the	prevailing wi	nds			
	(C)	either or both	of the	above at times	S			
	(D)	they have no re	elation	to wind direc	ction			

62.		gently sloping, : deep ocean is ter		vly-submerged	surfac	e extending from	the sl	noreline towar	C
	(A)	continental sh	elf		(B)	submarine cany	on		
	(C)	continental slo	pe		(D)	ocean basin			
00	mi-	C 4 l			les of				
63.		core of the earth		nposea primari		1 1 1 1			
	(A)	iron and sulfu			(B)	iron and nickel			
	(C)	nickel and cob	ait		(D)	silicon and oxyg	en		
64.	The	Ordovician peri	od is k	nown as the ag	e of				
	(A)	crinoids	(B)	graptolites	(C)	brachiopoda	(D)	corals	
65.	The	drainage patter	n whic	h signifies an a	area la	cking structural	contro	lis	
	(A)	radial	(B)	rectangular	(C)	dendritic	(D)	trellis	
66.	The	most ancient ar	ncestor	of man seems	to hav	e appeared durin	g ·		
	(A)	Paleocene	(B)	Eocene	(C)	Pliocene	(D)	Pleistocene	
67.	Med	hanical wear by	rivers	, wind etc are c	alled a	as			
	(A)	deflation	(B)	saltation	(C)	corrosion	(D)	solifluction	
68.	Foss	sil Ammonites in	ndicate	age	e.,				
		Cretaceous				Carboniferous	(D)	Cambrian	
69.	Mos	st fossils are of c	reatur	es that lived in					
	(A)	rivers	(B)	the sea	(C)	fresh water	(D)	the land	
70.	Dole	ostone is formed	by add	dition of ———		to the limestone			
	(A)	calcium	(B)	iron	(C)	sodium	(D)	magnesium	
71.	Whi	ich of the follow	ing is r	ot a lithostrati	graph	ic unit?			
	(A)	Group	(B)	Formation	(C)	Series	(D)	Member	
72.	One	of the following	g is not	a requirement	for co	ral reef growth.			
	(A)	warm water							
	(B)	abundant sun	light						
	(C)	shallow water							
	(D)	abundant amo	ount of	suspended sed	iments	3			

73.	Whi	ch group provide:	s the	fast moving inv	ertebr	ate?		
	(A)	Cephalopoda			(B)	Echinodermata		
	(C)	Gastropoda			(D)	Brachiopoda		
74.	The	bottom dwellers	living	between low ti	ide and	d high tide area a	re ter	med as
	(A)	vagile	(B)	sessile	(C)	nektonie	(D)	littoral
75.	The	age of Cuddapah	Supe	r group is appr	oxima	tely		
	(A)	1000 Ma	(B)	1200 Ma	(C)	1600 Ma	(D)	2000 Ma
76.	The	fossil contents of	elem	entary canal of	anima	als are known as		
	(A)	burrows	(B)	mould	(C)	trails	(D)	coprolites
77.	Her	cynian or Varisca	n oro	geny took place	durin	g		
	(A)	Silurian			(B)	Devonian		
	(C)	Permo-Carbonii	ferous		(D)	Jurassic		
78.	Petr	rified wood is an e	examp	ole of				
	(A)	encrustation			(B)	substitution		
	(C)	altercation			(D)	desiccation		
79.	Gold	d deposits are NC	T ass	ociated with on	ne of th	ne following.		
	(A)	Quartz lode			(B)	Banded iron for	matio	n
	(C)	Conglomerate			(D)	Shale		
80.	Ura	nium deposits ha	ve NO	OT formed by o	ne of th	he following proce	esses.	
	(A)	Detrital sedime	ntary		(B)	Circulation of gr	round	water
	(C)	Hydrothermal			(D)	Magmatic		
81.	Indi	a is a leading pro	ducer	of one of the fo	ollowir	ng metals.		
	(A)	Gold	(B)	Aluminium	(C)	Copper	(D)	Uranium
82.	One	of the following	sulph	ide minerals ca	n be tı	ransluscent or tra	nspar	ent.
	(A)	Pyrite	(B)	Chalcopyrite	(C)	Sphalerite	(D)	Galena
83.	One	of the following	oxide	minerals can b	e trans	sluscent or transp	arent	
	(A)	Chromite	(B)	Pyrolusite	(C)	Wolframite	(D)	Cassiterite

84.		tify the odd type of ore deposit ronment of ore formation.	among	g the following, by considering the
	(A)	Banded iron formation	(B)	Ferromanganese nodules
	(C)	Lateritic bauxite	(D)	Phosphatic nodules
85.		he previous question, the odd type ronment.	of ore	deposit has formed in the following
	(A)	Shallow marine	(B)	Deep sea
	(C)	Lake	(D)	Terrestrial
86.	Ore	deposits of one of the following metal	s is for	med by magmatic process.
	(A)	Aluminium (B) Iron	(C)	Lead (D) Zinc
87.	One	of the following locations does not ha	ive a co	opper mines.
	(A)	Rakha	(B)	Malanjkhand
	(C)	Kolihan	(D)	Byrapur
88.	The	correct answer to previous question i	s a loc	ation where there is
	(A)	Lead-zinc mines	(B)	Bauxite mines
	(C)	Chromite mines	(D)	Iron ore mines
89.	One	of the following defines the cut-off gr	rade of	an ore.
	(A)	Minimum metal content of an ore		
	(B)	Average metal content of an ore		
	(C)	Minimum thickness of an ore body		
	(D)	Average thickness of an ore body		
90.	In a	lateritic bauxite deposit, the upperm	ost lit	ho-unit is
	(A)	bauxite	(B)	laterite
	(C)	lithomarge	(D)	partially weathered bedrock
91.	One	e of the following defines the hydrothe	ermal c	ore forming process.
	(A)	Metals are transported and precipi	tated f	rom carbonic fluid
	(B)	Metals are transported and precipi	tated f	rom hot carbonic fluid
	(C)	Metals are transported and precipi	tated f	rom aqueous fluid
	(D)	Metals are transported and precipi	tated f	rom hot aqueous fluid

92.	One of the following mineral deposits is not associated with granite pegmatites.			
	(A)	chaleopyrite	(B)	cassiterite
	(C)	muscovite	(D)	beryl
93.	One of the following represents the chemical composition of pyrrhotite.			
	(A)	Fe _{1-x} S	(B)	$\mathrm{FeS}_{1\cdot x}$
	(C)	$Fe_{1-x}S_2$	(D)	Fe_2S_{1-x}
94.	One of the following represents the chemical composition of magnetite.			
	(A)	$Fe^{2+}Fe^{3+}{}_{2}O_{4}$	(B)	$Fe^{3+}Fe^{2+}{}_{2}O_{4}$
	(C)	$Fe^{2+}Fe^{3+}O_3$	(D)	$Fe^{3+}{}_2O_3$
95.	The brand names Leica, Olympus, Nikon, Zeiss refer to manufacturers of			
	(A)	Geological maps	(B)	Polarizing microscopes
	(C)	Spectrometers	(D)	Geological field kit
96,	One of the following refers to Survey of India toposheet in 1:50000 scale.			
	(A)	57	(B)	57J
	(C)	57J/12	(D)	57J/12/SW
97.	The pocket lens used in geological field work has a magnification of			
	(A)	5x (B) 10x	(C)	50x (D) 100x
98.	Shield and craton refer to some parts of			
	(A)	earth	(B)	earth crust
	(C)	continental crust	(D)	oceanic crust
99.	One of the following is an example of mobile belt.			
	(A)	Vindhyan basin	(B)	Deccan trap
	(C)	Himalaya	(D)	None of the above
100.	One of the following minerals does not form placer deposit.			
	(A)	magnetite (B) ilmenite	(C)	diamond (D) sphalerite