ENTRANCE EXAMINATION FOR ADMISSION, MAY 2012.

M.Sc. (ASTRO PHYSICS)

COURSE CODE: 313

Register	r Number :	
		Signature of the Invigilator (with date)

COURSE CODE: 313

Time: 2 Hours Max: 400 Marks

Instructions to Candidates:

- Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- Read each of the question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET <u>using HB pencil</u>.
- Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1. A heavy ball falls freely, starting from rest. Between the third and fourth second of time it travels a distance of

(A) 4.9 m

(B) 9.8 m

(C) 29.4 m

(D) 34.3 m

Which of the following five coordinate versus time graphs represents the motion of an object moving with a constant non zero speed?

(A) x

(B) **

(C) *

The block shown moves with constant velocity on a horizontal surface. Two of the
forces on it are shown. A frictional force exerted by the surface is the only other
horizontal force on the block. The frictional force is

- (A) 0
- (B) slightly less than 2 N, leftward
- (C) 2 N, rightward
- (D) 2 N, leftward
- 4. A 1-N pendulum bob is held at an angle θ from the vertical by a 2-N horizontal force F as shown. The tension in the string supporting the pendulum bob (in newtons) is

(A) √5

(B) $2/\cos\theta$

(C)

(D) $\cos\theta$

Two blocks with masses m and M are pushed along a horizontal frictionless surface by a horizontal applied force F as shown. The magnitude of the force of either of these blocks on the other is

- (A) $\frac{mF}{m+M}$
- (B) $\frac{mF}{M}$ (C) $\frac{mF}{m-M}$ (D) $\frac{MF}{m+M}$
- A block of mass m is initially moving to the right on a horizontal frictionless surface 6. at a speed v. It then compresses a spring of spring constant k. At the instant when the kinetic energy of the block is equal to the potential energy of the spring, the spring is compressed a distance of

 - (A) $\frac{mv^2}{4k}$ (B) $\frac{1}{4}\sqrt{\frac{mv}{k}}$ (C) $v\sqrt{\frac{2m}{k}}$

- Evaluate the limit : $\lim_{n\to\infty} 6^n + 5^{n^{1/n}}$
 - (A) 6

- (B) 5
- (C) Infinity
- (D) 5/6
- Let f(x+y)=f(x)f(y) for all x and y. If f(5)=2 and f'(0)=3, then, the value of f'(5) is equal to
 - (A) 5
- (B) 8
- (C) 6

- (D) 0
- Let $t = e^x$ and $y = t^2 1$. Then, the value of $\frac{d^2y}{dx^2}$ is equal to
 - (A) 0
- (C) e4
- (D) log(4)
- The minimum value of f(x) = |3+x| + |2+x| + |5-x| where $x \in (-\infty, +\infty)$ is 10.
 - (A) 7
- (B) 10
- (C) 0

(D) -3

11.	Eval	uate the integral : $I = \int \frac{dx}{\sin x + \cos x}$		
		$\frac{1}{\sqrt{2}}\log\left \tan\left(\frac{\pi}{4}+\frac{x}{8}\right)\right +C$	(B)	$\sqrt{2}\log\left \tan\left(\frac{\pi}{8}+\frac{x}{2}\right)\right +C$
	(C)	$\frac{1}{\sqrt{2}}\log\left \tan\left(\frac{\pi}{8} + \frac{x}{2}\right)\right + C$	(D)	$\frac{1}{\sqrt{2}}\log \left \tan\left(\frac{\pi}{8} - \frac{x}{2}\right)\right + C$

12.	Evaluate the definite integral : $I = \int_{\pi/4}^{3\pi/4} \frac{dx}{1 + \cos x}$						
	(A) 0	(B) $-\pi/2$	(C) 2	(D) #/9			

If the vertex of a triangle is (1, 1) and the midpoints of two sides through this vertex are (-1, 2) and (3, 2) then, the centroid of the triangle is

(A)
$$\left(-1, \frac{7}{3}\right)$$
 (B) $\left(-\frac{1}{3}, \frac{7}{3}\right)$ (C) $\left(1, \frac{7}{3}\right)$ (D) $\left(\frac{1}{3}, \frac{7}{3}\right)$

A triangle is formed by the pair of straight lines $8x^2 - 6xy + y^2 = 0$ and the straight line 2x + 3y = c. The area of the triangle so formed is equal to 7. Then, the value of c is equal to

(A)
$$14\sqrt{2}$$
 (B) 14 (C) 28 (D) $28/\sqrt{2}$

In an ellipse, the distance between the focil is 6 and the minor axis is 8. Then, its eccentricity is

(A)
$$1/\sqrt{5}$$
 (B) $3/5$ (C) $1/2$ (D) $4/5$

Linearly polarised light can be converted to circularly polarised light with the 16. introduction of a

(C) Quarter wave plate (D) Polariser

17. In Michelson interferometer, as you decrease the separation between the two mirrors

- (A) Fringes appears expanding
- Fringes appear collapsing
- (C) No change in fringe pattern

(D) Sometimes it collapses and sometimes it expands

- Fraunhoffer diffraction can be observed for 18.
 - Source and screen are at finite distance
 - (B) Source and screen are at infinity
 - (C) Source is at finite and screen at infinity
 - Source is at infinity and screen at finite distance
- The potential energy between two atoms in a molecule is given by $U(x) = \frac{a}{x^{12}} \frac{b}{x^6}$ 19. where a and b are positive constants and x is the distance between two atoms in a molecule. The molecule will be in stable equilibrium if

- (B) $x = \left(\frac{a}{2b}\right)^{1/6}$ (C) $x = \left(\frac{2a}{b}\right)^{1/6}$ (D) $x = \left(\frac{11a}{5b}\right)^{1/12}$
- 20. Sommerfeld explained the hydrogen fine structure by applying the
 - Heisenberg's principle

- (B) Zeeman's effect
- Special theory of relativity
- (D) Compton Effect
- 21. An atom containing one single valence electron, the external magnetic field is greater than the internal fields due to the spin and orbital motion of the electron. We observe
 - (A) Zeeman effect

Paschen-Back effect

(C) Stark effect

- (D) Maxwell principle.
- 22. A small object of mass m starts from rest at the position shown and slides along the frictionless loop-the-loop track of radius R. What is the smallest value of y such that the object will slide without losing contact with the track?

- (A) R/4
- (B) R
- (C) R/2
- (D) 2R

- 23. How many electrons can f-sub-shell occupy?
 - (A) 12
- (B) 14
- (C) 6

(D) 8

- 24. Two stationary tuning forks (350 and 352 Hz) are struck simultaneously. The resulting sound is observed to
 - (A) beat with a frequency of 351 beats / Sec
 - (B) have a frequency of 702 Hz
 - (C) be Doppler shifted by 2 Hz
 - (D) beat with a frequency of 2 beats / Sec
- 25. The flow of an incompressible liquid in a pipe of varying diameter is shown in the figure. The speed of the liquid is v_1 in region where the area of cross section is A_1 . Then, the ratio of the speeds v_2/v_1 is equal to

- (A) $\sqrt{A_1/A_2}$
- (B) A_2/A_1
- (C) A_1/A_2
- (D) A_1v_1/A_2v_2
- 26. The density of water is 1 g.cm⁻³. The density of oil in the left column of the U-tube shown in the figure will be equal to

- (A) 0.2 g.cm⁻³
- (B) 1.3 g.cm⁻³
- (C) 0.8 g.cm⁻³
- (D) 1.8 g.cm⁻³
- 27. A circular coil of 160 turns has a radius of 1.90 cm. Calculate the current that results in a magnetic dipole moment of 2.30 Am².
 - (A) 10.7 mA
- (B) 2.7A
- (C) 12.7A
- (D) 19.23 nA

- A solenoid has length of 1.23 m and inner diameter 3.55 cm and it carries a current of 28. 5.57 A. It consists of five close packed layers, each with 850 turns along its length. What is the magnetic flux density at its center?
 - (A) 24.2 × 10⁻⁴ T
- (B) 242 uT
- (C) 242 nT
- (D) 24.2 mT
- A particle with positive charge q is a distance d from a long straight wire that carries 29. a current i, the particle is travelling with speed v perpendicular to the wire. What is the magnitude of force on the particle if it is moving toward the wire?

 - (A) $\frac{\mu_o i}{2\pi} \left(\frac{q v}{d} \right)$ (B) $\frac{\mu_o i}{2\pi} \left(\frac{q v}{2d} \right)$ (C) $\frac{\mu_o}{4\pi} \left(\frac{q v}{d} \right)$ (D) $\frac{\mu_o i}{4\pi} \left(\frac{q v}{d^2} \right)$
- 30. Two charged particles are arranged as shown in figure. In which region could a third particle, with charge +1 C, be placed so that the net electrostatic force on it is zero?

(A) Region I only

- (B) Region III only
- Between regions I and III only
- (D) Between regions I and II only
- Two point charge $q_1 = 1$ mC and $q_2 = -2$ mC are located respectively at (3, 2, -1) and 31. (-1, -1, 4). What is the electric force on a 10 nC charged located at (0, 3, 1)?
 - (A) $F = (-6.507i 3.817j + 7.506k) \times 10^{-3} N$
 - (B) $F = (-6.507i 3.817j + 7.506k) \times 10^{-6} N$
 - (C) $F = (-6.507i + 3.817j + 7.506k) \times 10^{-3} N$
 - (D) F = 0 N
- 32. Which of the following relations is always true?
 - (A) $\nabla \cdot E = \frac{\rho}{\epsilon_0}$

 $\nabla \cdot B = 0$ (B)

- (C) $\nabla \times B = \mu_o J + \mu_o \in_o \frac{\partial E}{\partial t}$
- (D) ∇ · J = 0

34.	Wh	ich of the follo	wing statements is	true?			
	(A)	The electric	field due to an elec	tric dipole	varies like r^{-1}		
	(B)	The electric	potential due to an	electric di	pole varies lik	$e r^{-3}$	
	(C)	In a linear applied elect	dielectric, the ele tric field.	ctric polar	rization inver	sely proportional to	o th
	(D)	Non-polar m	nolecules have perm	anent elec	tric dipole mo	ments.	
35.	The	relative electr	ric permittivity of s	ea water is	$\epsilon_r = 80$. Its p	permittivity is	
	(A)	7.071×10^{-10}	F/m	(B)	81		
	(C)	79		(D)	5.162×10^{-10}	F/m	
36.	Whe	en a steady po	tential difference is	applied ac	ross the ends	of a conducting wire	е
	(A)	All electrons	move with a consta	ant velocity	7,		
	(B)	All electrons	move with a consta	nt accelera	ation.		
	(C)	There will be	e an average consta	nt velocity	for all electro	ns.	
	(D)	There will be	a non-zero constan	it accelerat	tion for each e	lectron.	
37.	giver		apacitor connected t s it does with air				
	(A)	1	(B) 0	(C)	2	(D) 3	
38.	A rec	tangular bloc	k of iron has dimen	sions (1.2 ×	(1.2 × 15) cm.	If the resistivity of	iron
	is ρ	$=9.68\times10^{-8}$	Ω.m, calculate the	resistance	e of the iron	bar. [Assume that	the
	volta	ge will be app	lied across the squa	re face of t	the iron bar.]		
	(A)	10 m Ω	(Β) 0.1 μΩ	(C)	100 μΩ	(D) 6.5 μΩ	
313				8			

The electric field $E = (3x^2 + y)i + xj$ kV/m exists in a certain region of space. Calculate

the work done in moving a $-2~\mu C$ charge from (0, 5, 0) to (2, -1, 0) along the path

(C) 0.012 J

(D) 0.0012 J

(B) 1.2 J

33.

y = 5 - 3x.

(A) 0.12 J

- A uniform magnetic field |B| = 1.2 mT is directed vertically upward in a chamber. 39. A proton with kinetic energy 5.3 MeV enters the chamber, moving horizontally from south to north. Calculate the initial acceleration of the of the proton. (Mass of proton $= 1.67 \times 10^{-27} \text{kg.}$
 - (A) $|a| = 3.7 \times 10^{12} \text{ ms}^{-2}$

(B) $|a| = 6.1 \times 10^{-15} \text{ ms}^{-2}$

(C) $|a| = 3.2 \times 10^7 \text{ ms}^{-2}$

- (D) $|a| = 6.1 \times 10^7 \text{ ms}^{-2}$
- A steady current i flows in a circular loop of radius R. The magnetic field at the center of the loop is

- (B) $\frac{\mu_o i}{2R}$ (C) $\frac{\mu_o i}{4\pi R}$ (D) $\frac{\mu_o i}{2\pi R}$
- In a thermodynamic process, the gas has the equations of state given by $V = V_{\circ}[1 + \alpha T - T_{\circ}], \quad \left(\frac{\partial V}{\partial P}\right)_{m} = 0$ and C_{p} is a constant. The change in entropy of the gas in the system is
 - (A) $\Delta S_o = C_p \log T \alpha V_o p$

(B) Zero

(C) $\Delta S = C_p - \alpha V_p p$

- (D) $\Delta S = C_p \alpha V_o p \log T$
- In the normal Zeeman effect in the hydrogen atom problem, the application of a 42. uniform magnetic field causes the Zeeman splitting of energy levels because
 - (A) The spherical symmetry is intact
 - (B) It increases the energy of the system
 - The spherical symmetry is broken
 - It decreases the energy of the system
- 43. Zone plate is an physical object used to illustrate
 - Fraunhofer diffraction
- Fresnel diffraction

(C) Interference

- (D) Polarization
- The maximum energy of deuteron coming out of a cyclotron accelerator is 20 MeV. 44. The maximum energy of proton that can be obtained from this accelerator is
 - (A) 40 MeV
- 30 MeV (B)
- (C) 20 MeV
- (D) 10 MeV

- A particle of mass m and charge q enters a homogeneous and stationary electric field \vec{E} with a velocity v_0 perpendicular to the direction of the field. The particles path will be a
 - (A) Circle
- (B) Ellipse
- (C) Parabola
- (D) Straight line

46. The energy stored by each capacitor of Figure are

(A) 256 μJ, 4704 μJ

(B) 256 μJ, 470 μJ

(C) 256 µJ, 704 µJ

- (D) 250 μJ, 4704 μJ
- The current I_L and the voltage V_c of Figure are

- 6A, 2V (A)
- (B) 0.5A, 6V
- (C) 2A, 6V
- (D) 0.5A, 3V
- 48. The capacitance per unit length of a coaxial cable of inner and outer diameters a and b is
 - (A) $\frac{4\pi \in ab}{b-a}$

- (B) $\frac{2\pi \in ab}{b-a}$ (C) $\frac{4\pi \in \log(a/b)}{\log(b/a)}$ (D) $\frac{2\pi \in \log(b/a)}{\log(b/a)}$

49.	Let ϕ_1 and ϕ_2 be the angles made wi	th norma	l by magnetic fields in regions 1 and
	respectively. At the interface between	two mag	gnetic media of permeability μ_1 and μ_2
	which of the following is true?		
	(A) $\frac{\tan\phi_1}{\tan\phi_2} = \frac{\mu_2}{\mu_1}$	(B)	$\frac{\tan\phi_1}{\tan\phi_2} = \frac{\mu_1}{\mu_2}$
	(C) $\frac{\phi_1}{\phi_2} = \tan^{-1} \left(\frac{\mu_1}{\mu_2} \right)$	(D)	$\frac{\phi_1}{\phi_2} = \sin^{-1}\left(\frac{\mu_1}{\mu_2}\right)$
50.	Let σ_i be the conductivity and per	mittivity	of a conducting medium. When an a
	voltage of frequency w is applied, the		
	(A) $\delta = \tan^{-1} \frac{\sigma \in}{w}$ (B) $\delta = \tan^{-1} \frac{1}{w}$	$\frac{\sigma}{v \in}$ (C)	$\delta = \tan^{-1} \frac{w \in}{\sigma}$ (D) $\tan \delta = \frac{w}{\sigma \in}$
51.	The electric field of a plane wa	ve trave	eling in z direction is given by
	$E = 3\cos(wt - 0.5z)\hat{x} - 4\sin(wt - 0.5z)\hat{y}$		
	(A) Elliptically polarized	(B)	Circularly polarized
	(C) Linearly polarized	(D)	Left circularly polarized
52.	A plano-convex lens of refractive index optically flat surface such that the con $(\lambda = 589.3 \text{ nm})$ and a traveling micro observed. The radius of the tenth dark	vex surfa	ce is down. Using sodium vapor lamp terference pattern (Newton's rings) is
	(A) 1.57 mm	(B)	4.184 m
	(C) 24.66 × 10 ⁻⁶ m	(D)	4.97 mm
53.	To achieve an output of 5 V with an in required?	put of 10	0 mV, what is the voltage gain that is
	(A) 20 (B) 30	(C)	40 (D) 50
4.	In which region, the transistor works a	s an amp	lifier
	(A) In active region	(B)	In saturation region
	(C) In cut-off region	(D)	None

- A resistor R is held at a constant temperature T. A current of I amperes is passed through the resistor for a time t. The change in entropy of the resistor and of the universe are,

 - (A) Zero and $\frac{I^2Rt}{T}$ respectively (B) $\frac{I^2Rt}{T}$ and $\frac{I^2Rt}{T}$ respectively
 - Zero and Zero respectively
- (D) $\frac{I^2Rt}{T}$ and Zero respectively
- One mole of ideal gas is contained in a vessel of volume V. The pressure of this vessel varies as $p = p_0 e^{-\beta V}$. The maximum attainable temperature of this system is
 - (A) $T_{\text{max}} = \frac{pV}{R}$ (B) $T_{\text{max}} = \frac{p}{e\,\beta R}$ (C) $T_{\text{max}} = \frac{p_{\circ}\dot{V}}{R}$ (D) $T_{\text{max}} = \frac{p_{\circ}}{e\,\beta R}$

- Covalent solids are not good conductors because 57.
 - Covalent bonds are directional
 - There are no free electrons as these solids have only closed shells
 - There are no free electrons as all valence electrons are shared
 - (D) None
- The result of superposition of three waves $y_1 = 7\sin(wt + \pi/3)$, $y_2 = 12\cos(wt + \pi/4)$ 58. and $y_3 = 20\sin(wt + \pi/5)$ is given by
 - $Y = 28.6 \cos(wt + 0.372\pi)$
- (B) $Y = \sqrt{28.6} \sin \left[wt + \tan^{-1}1.17\right]$
- (C) $Y = 26.32 \cos(\omega t + 0.372 \pi)$
- (D) $Y = 28.6 \sin(wt + 0.372\pi)$
- A power series P(x) is given by $P(x) = 1 + 2x + 4x^2 + 8x^3 + ...$ For what range of x will 59. this power series converge?

- (A) -1 < x < 1 (B) -2 < x < 1 (C) 0 < x < 1 (D) $|x| < \frac{1}{2}$
- 60. In Stern-Gerlach experiment, the type of magnetic field applied is a
 - homogeneous magnetic field
- (B) time varying magnetic field

(C) magnetic dipole field

(D) inhomogeneous magnetic field

- A second order phase transition is one in which
 - specific heat Vs temperature plot shows a discontinuity
 - a plot of entropy as a function of temperature shows a discontinuity (B)
 - a plot of volume as a function of temperature shows a discontinuity
 - compressibility Vs temperature plot shows a discontinuity. (D)
- A certain paramagnetic material, upon cooling, becomes antiferro magnetic. The 62. temperature at which this transition occurs is known as
 - Magnetic transition temperature
- (B) Curie temperature

Weiss temperature

- (D) Neel temperature
- Evaluate the integral $I = \int_{-\infty}^{1} \frac{dx}{x^2}$
- (B) I = -2
- (C) I = +2
- (D) I = 0

64. The general solution to the differential equation

$$\frac{d^3y}{dx^3} - 3\frac{dy}{dx} - 2y = 0 \text{ is }$$

- (A) $v(x) = Ae^x + Bxe^{-x} + Cxe^x$
- (B) $y(x) = Ae^{2x} + (Bx + C)e^{-x}$

(C) $v(x) = Ae^{-x} + Bxe^{x} + C$

- (D) $y(x) = Ae^{-2x} + (Bx + C)e^{-x}$
- At the point x = 0, which is correct for the function 65.

$$f(x) \begin{cases} x^2 \cos\left(\frac{1}{2}\right), & x \neq 0 \\ 0, & x = 0 \end{cases}$$

- (A) f(x) is not continuous but f'(x) is continuous
- f(x) is differentiable but f'(x) is not continuous (B)
- f(x) is not differentiable and f'(x) is not continuous
- (D) f(x) is differentiable and f'(x) is continuous
- The potential energy of a charge Q uniformly distributed through-out a sphere of 66. radius R is

 - (A) $\frac{3}{5} \frac{Q^2}{4\pi\epsilon R}$ (B) $\frac{3}{5} \frac{Q^2}{4\pi\epsilon R^2}$ (C) $\frac{5}{3} \frac{Q}{4\pi\epsilon R^2}$ (D) $\frac{Q}{4\pi\epsilon R^2}$

- Natural light falls at the Brewster angle on the surface of a substance whose refractive index is n. The reflection coefficient of light is

 - (A) $\frac{1}{2} \left(\frac{n-1}{n+1} \right)^2$ (B) $\frac{1}{2} \left(\frac{n^2+1}{n^2-1} \right)^2$ (C) $\frac{1}{2} \left(\frac{n+1}{n-1} \right)^2$ (D) $\frac{1}{2} \left(\frac{n^2-1}{n^2+1} \right)^2$
- For the dispersion relation $v \sim \frac{1}{\sqrt{\lambda}}$, the group velocity u and its phase velocity v is $(\lambda, k, and w)$ are the wavelength, wavenumber and angular frequency of the wave) are related by
 - (A) $u = \frac{3}{2}v$ (B) $u = \frac{2}{3}v$ (C) $u = \frac{1}{2}v$ (D) u = 2v

- A particle moves in the field of force \vec{F} whose components are given by 69. $F_x = 2yz(1-6xyz)$, $F_y = 2xz(1-6xyz)$ and $F_z = 2xy(1-6xyz)$. Let H be total energy of the particle and V(x,y,z) be the potential function (if exists). Then,
 - (A) V(x,y,z) can be defined and H will not be conserved
 - (B) V(x,y,z) can be defined and H will be conserved
 - (C) V(x,y,z) cannot be defined and H will not be conserved
 - V(x,y,z) cannot be defined and H will be conserved
- The group and phase velocity of the deBroglie's wave describing a free electron with classical velocity V is
 - (A) $\frac{c^2}{V}$ and V respectively
- (B) V and V respectively
- (C) V and 2 V respectively
- (D) V and $\frac{c^2}{V}$ respectively
- At what value of kinetic energy is the deBroglie wavelength of an electron equal to its Compton wavelength?
 - (A) $2\pi^2 mc^2$

- (B) mc^2 (C) $(\sqrt{2}-1)mc^2$ (D) $(\sqrt{2}+1)mc^2$
- Thermal expansion of materials arises from 72.
 - (A) asymmetry of potential energy curve
 - (B) strong bonds
 - weak bonds (C)
 - thermal vibrations (D)

73.	An	octahedron has				
	(A)	8 corners and 12 edges	(B)	6 corners and 8 edges		
	(C)	6 corners and 6 faces	(D)	8 faces and 12 edges		
74.	The	unit of diffusion coefficient D is				
	(A)	$m.s^{-2}$ (B) m^2s^{-1}	(C)	$(ms)^{-2}$ (D) $m^{-2}s^{-1}$		
75.	Hig	h elastic modulus in materials arise	s from			
	(A)	weak bonds with shallow potentia	l well			
	(B)	weak bonds with sharp curvature	at the n	ninimum potential energy		
	(C)	high strength of bonds and shallow	v potent	ial well		
	(D)	high strength of bonds and sharp	curvatu	re at the minimum potential energy		
76.	 Let E(3d) represent the energy of 3d -subshell, etc. We know that E(3d) > E(4s). electronic configuration of Cr (atomic number = 24) is given by, 					
	(A)	$E(5d) > E(4f) > E(6s)$ and $^{24}Cr = 1s^{2}$	$2s^22p^63$	$s^2 3p^6 4s^1 3d^5$		
	(B)	$\mathrm{E}(5\mathrm{d}) > \mathrm{E}(4\mathrm{f}) > \mathrm{E}(6\mathrm{s})$ and $^{24}\mathrm{Cr} = 1\mathrm{s}$	² 2s ² 2p ⁶ 3	$8s^23p^64s^23d^4$		
	(C)	$\mathrm{E}(5\mathrm{d}) > \mathrm{E}(4\mathrm{f}) > \mathrm{E}(6\mathrm{s})$ and $^{24}\mathrm{Cr} = 1\mathrm{s}$	² 2s ² 2p ⁶ 3	$8s^23p^64s^13d^4$		
	(D)	$E(4f) > E(5d) > E(6s)$ and $^{24}Cr = 1s^22s^22p^63s^23p^64s^13d^5$				
77.	Wha	at is the SI unit of magnetic charge?				
	(A)	Ampere-meter square	(B)	Coulomb		
	(C)	Ampere	(D)	Ampere-meter		
78.	The	dielectric constant of sea water is 80). Its ele	ectric permittivity is		
	(A)	$6.9948 \times 10^{-10} \text{ F/m}$	(B)	79		
	(C)	81	(D)	7.0833 × 10 ⁻¹⁰ F/m		
79.	Whi	ch one of the following is incorrect?				
	(A)	The conductivities of conductors frequency	and in	sulators vary with temperature and		
	(B)	Nonpolar molecules have no perma	nent di	poles.		
	(C)	In a linear dielectric, $\left \vec{P} \right \propto \left \vec{E} \right $				
	(D)	A conductor is an equipotential conductor	body a	and $ec{E}$ is always tangential to the		
80.	In ba	ase SI units, tesla is expressed as				
		NA-1m-1 (B) NA-1m-3	(C)	$K_{\text{cm}}^{-2} = 2\Delta^{-1}$ (D) $K_{\text{cs}}^{-2} \Delta^{-1}$		

The van der Waals equation of state for one mole of a gas is given by

$$\left[p + \frac{a}{V^2}\right](V - b) = RT$$

Then, for n-moles of gas, it is given by

(A) $\left[p + \frac{a}{V^2}\right](V - b) = nRT$

- (B) $\left[p + \frac{an^2}{V^2}\right] (V nb) = nRT$
- (C) $\left[p + \frac{an}{V^2}\right] (V nb) = nRT$
- (D) $\left[p + \frac{a}{n^2 V^2}\right] (V nb) = nRT$
- A naturally occuring mica sheet can act as a 82.
 - (A) polarizer

light frequency filter

(C) light intensity filter

- (D) light wave retarder
- 83. The occurance of multiple colors in peacock's feathers is due to
 - diffraction of light
 - interference of light in thin films on its surface (B)
 - polarization of light due to thin films (C)
 - the presence of photonic crystal structures on its surface
- The resolving powers of prism, Fabry-Perot etalon and diffraction grating are in the 84. order
 - prism < grating < Fabry-Perot etalon (A)
 - (B) prism <Fabry-Perot etalon < grating
 - prism > grating> Fabry-Perot etalon (C)
 - (D) grating < prism < Fabry-Perot etalon
- A CRO screen has 10 divisions on the horizontal scale. If a voltage signal $V = 5\sin(314 + 45^{\circ})$ is examined with a time-base setting of 5 ms/division, then, the number of cycles of signal displayed on the screen will be
 - (A) 0.5 cycles
- (B) 5 cycles
- (C) 10 cycles
- (D) 2.5 cycles

- 86. Evaluate $\int_{0}^{3} \sqrt{x^2 4} dx$
 - (A) $\frac{3}{2}\sqrt{5}$
- (B) +1.429 (C) $\cosh^{-1}\frac{3}{2}$
- (D) -1.429

87.
$$x\left(\frac{dy}{dx}\right)^2 - y\frac{dy}{dx} + 1 = 0 \text{ is a}$$

- (A) First degree, second order nonlinear differential equation
- (B) First order, second degree nonlinear differential equation
- Second order, first degree nonlinear differential equation
- (D) First order, second degree linear differential equation
- 88. The complex numbers z_1, z_2 and origin form an equilateral triangle. Then,
 - (A) $z_1^2 + z_2^2 + z_1 z_2 = 0$

(B) $\frac{z_2}{z_1} - \frac{z_1}{z_2} = 2\cos\left(\frac{\pi}{3}\right)$

(C) $\frac{z_2}{z_1} - \frac{z_1}{z_2} = 2\cos\left(\frac{\pi}{6}\right)$

(D) $z_1^2 + z_2^2 - z_1 z_2 = 0$

1.45 1.70

Calculate the linear correlation coefficient for the data points 89. 60

10 20 30 40 50 0.22 0.40 0.61 0.85 1.20

- (A) 0.99633
- (B) 0.91919
- (C) 0.99268
- (D) 0.82900
- Consider a right angled triangle whose hypotenuse is h and base is x. For what value 90. of x, the area of the triangle will be a maximum?
 - (A) $x = \sqrt{3}h/2$
- (B) $x = h/\sqrt{2}$
- (C) $x = h^2/4$ (D) $x = h^2/\sqrt{2}$
- The differential equation $\left| \frac{dy}{dx} \right| + |y| + c = 0$, c > 0
 - Has only one trivial solution
- (B) Does not have a unique solution

(C) Has no solution

- Has a unique solution (D)
- The differential equation -udx + xdu = 0 is 92.
 - (A) Exact
 - (B) Not exact •
 - (C) Not having any solution
 - (D) An inhomogeneous differential equation
- Let u,v be vector fields and f,g,ϕ be scalars. Then, which of the following is false? 93.
 - (A) $\nabla \cdot (u \times v) = v \cdot (\nabla \times u) + u \cdot (\nabla \times v)$
- (B) $\nabla \cdot (f \nabla g) = f \nabla^2 g + \nabla f \cdot \nabla g$
- (C) $u \times (\nabla \times u) = \frac{1}{2} \nabla u^2 (u \cdot \nabla)u$
- (D) $\nabla \cdot (\nabla \times u) \neq \nabla \times \nabla \phi$
- Let $i = \sqrt{-1}$. Then, one root of $(3+4i)^{1/3}$ is 94.
 - (A) 1.629 0.5202i

(B) -0.3641 - 1.671i

(C) 1.265 – 1.151i

(D) 0.3641 – 1.67i

- 95. The solution of the differential equation $y'' y' 2y = 4x^2$ subject to the initial conditions y(0) = 0 and y'(0) = 1 is given by
 - (A) $y(x) = Ae^{2x} + Be^{-x}$, where A = 2/3 and B = 7/3
 - (B) $y(x) = -2x^2 + 2x 3 + \frac{2}{3}e^{2x} + \frac{7}{3}e^{-x}$
 - (C) $y(x) = Ae^{2x} + Be^{-x}$, where A = 7/3 and B = 2/3
 - (D) $y(x) = Ae^{2x} + Be^{-x} + Ax^2 + Bx$, where A = 7/3 and B = 2/3
- 96. The SI units for Stefan-Boltzmann constant is
 - (A) J.s.m-2.K-4
- (B) Wm²K⁻⁴
- (C) Wm-2K4
- (D) Wm-2K-4

- 97. Heat conduction is governed by
 - (A) Fick's law

(B) Stefan-Boltzmann law

(C) Fourier law

- (D) Beer law
- 98. In 3D space-time coordinates, Newton's second law is
 - (A) A set of three algebraic equations
 - (B) A set of three second order ordinary differential equations
 - (C) A single algebraic equation
 - (D) A single second order ordinary differential equation
- 99. Gravitational force is
 - (A) A short range force and weaker than nuclear force
 - (B) A short range but stronger than electrostatic force
 - (C) A long range and weaker than electrostatic force
 - (D) A long range and stronger than nuclear force
- 100. Choose the correct statement.
 - (A) Solar eclipse is defined as: When the earth is revolving in its orbit, it comes between the sun and the moon.
 - (B) In the year 2012, there will be no lunar eclipse
 - (C) Solar eclipse is defined as: The moon blocks the light of the sun and a shadow of the moon is cast over the earth's surface
 - (D) Lunar eclipse is defined as: The moon blocks the light of the sun and a shadow of the moon is cast over the earth's surface