ENTRANCE EXAMINATION FOR ADMISSION, MAY 2013.

M.Sc. (ASTRO PHYSICS)

COURSE CODE: 313

	Register Number:		
•			
			Signature of the Invigilator (with date)
	•		

COURSE CODE: 313

Time: 2 Hours

Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each of the question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you -1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	Wha	t is the dimensional formula of specifi	c heat	?		
	(A)	[M L ² T ²]	(B)	[M ⁰ L ² T ⁻² K ⁻¹]		
	(C)	[Mº LT-2]	(D)	[M LT 2]		
2.	If L l	nas the dimensions of length; V that o	f poter	ntial and ${\tt II}_0$ is the permittivity of free		
	spac	te then quantity $\varepsilon_0 LV$ have the dimension	ns of:			
	(A)	Current	(B)	Resistance		
•	(C)	Charge	(D)	Voltage		
3.		er chases a horse 30 m ahead of it and the distance between them is	gains :	3 m in 5 s after the chase started. Afte		
	(A)	18 m	(B)	14 m		
	(C)	24 m	(D)	6 m		
4.	The	angle between $\hat{i} + \hat{j} + \hat{k}$ and $2\hat{i} + 2\hat{j} + 2\hat{j} + 2\hat{k}$	$2\hat{k}$ is			
	(A)	90°	(B)	60°		
	(C)	30°	(D)	0°		
5.	A pa	rticle moves in a plane with uniform a	acceler	ation having direction different than		
	that o	of instantaneous velocity. What is the nat	ure of	trajectory.		
	(A)	straight line	(B)	parabola		
	(C)	circle	(D)	ellipse		
6.	A particle of mass m is projected with a velocity V making an angle $_{45}^{\circ}$ with the					
	horizontal. The magnitude of the angular momentum of the particle is at its maximum					
	heigh	t h is				
	(A)	zero	(B)	$rac{mv^3}{\sqrt{2}g}$		
	(C)	$m^2\sqrt{2gh^3}$	(D)	$rac{mv^3}{4\sqrt{2}g}$		
7.		ns of oil are carried in a truck. If con urface of the oil in the drum will	nstant	acceleration is applied on the truck		
	(A)	Remain unaffected	(B)	Rise towards backward direction		
	(C)	Rise towards forward direction	(D)	Nothing is certain		

8.	When a carpet is beaten by a stick, the dust particles drop down according to					
	(A)	Newton's 1st law of motion	(B)	Newton's 2 nd law of motion		
	(C)	Newton's 3 rd law of motion	(D)	None of these		
9.	Whi	ch one of the following forces is non-co	onserva	ative?		
	(A)	Electrostatic force	(B)	Frictional force		
	(C)	Elastic force	(D)	Viscous force		
10.	leng	niform chain of length l and mass M is the is having vertically down over the education at the context l		on a smooth table and one third of its work done to pull the hanging part		
	(A)	Mgl	(B)	Mgl/3		
	(C)	Mgl/9	(D)	Mgl/18		
11.	An i	deal gas molecule at room temperatur	re poss	esses		
	(A)	Potential energy	(B)	Kinetic energy		
	(C)	Electrical energy	(D)	No energy		
12.	angu of tw (A)	in circular ring of mass M and radius dar velocity. Four point objects each of the L diameters, the angular velocity of the $\frac{M}{M+m}\omega$ $\frac{M+4m}{M}\omega$	mass m the ring (B)	are attached gently to the opposite ends		
13.	Whe	en ice at poles melts, duration of day				
	• • •	Increases				
	• •	Decreases				
	, .	Remains same				
	(D)	May increase or decrease depending u	ipon ra	te of melting		
14.	Whe	en a steady torque or couple acts on a	body, t	he body		
	(A)	continues in a state of rest or of stee	idy moi	tion		
	(B)	gets linear acceleration				
	(C)	continues to rotate at steady rate				
	(D)	gets an angular acceleration				

15.	What remains constant when earth revolves round the sun?								
	(A)	Linear K.E.	(B)	Angular K.E.					
	(C)	Linear momentum	(D)	Angular momentum					
16.	Whi	ch of the following interactions is th	he weakes	at?					
	(A)	Gravitational	(B)	Electrostatic					
	(C)	Nuclear	(D)	None of these					
17.	Inte	Intensity of gravitational field inside the hollow spherical shell is							
٠	(A)	variable	(B)	zero					
	(C)	minimum	(D)	maximum					
18.	To a	n astronaut in the spaceship, the s	ky appear	s pitch dark. This is due to					
	(A)	(A) absence of atmosphere in neighborhood							
	(B)	light from sky is absorbed by med	lium surro	ounding him					
•	(C)	the fact that at height, the sky ra	diations a	re only infrared and ultraviolet					
	(D)	the fact that human eye becomes	blind fron	n blue colour					
19.	Whe	re the intensity of gravitational fie	ld of the e	earth is maximum					
	(A)	centre of earth	(B)	equator					
	(C)	poles	(D)	same everywhere					
20.	If a spoon is dropped by an astronaut in an artificial satellite								
	(A)	(A) The spoon will fly away due to centrifugal force							
	(B)	B) The spoon will fall on earth due to gravitational attraction							
	(C)	The spoon will move with same or	rbital velo	city as that of the satellite					
	(D)	None of these							
21.	Brownian motion has played a convincing role in establishing								
	(A)	kinetic theory of gases							
v	(B)	mechanical equivalence of heat							
٠. ٠	(C)	elastic nature of molecular collision	18						
	(D)	none of the above							
22.	Who	en the temperature increases, the a	angle of co	ntact of liquid will					
	(A)	increase	(B)	decrease					
	(C)	remain unchanged	(D)	first decrease and then decrease.					

23.	A boo	ly floats in a l	iquid co	ntained i	n a beak	er. Tl	ne whole sys	tem falls		
	Freely	under gravity	. The up	thrust on	the body	due t	o the liquid is			
-	(A) z	ero								
	(B) e	qual to the we	ight of th	ne liquid d	lisplaced		•			
	(C) e	equal to the we	ight of tl	ne body in	air				•	
	(D) e	equal to the we	ight of tl	ne immers	ed portio	n of	the body.			
24.	An ar	rtificial satelli	te is orb	iting the	earth at	an a	ltitude 400 k	m. A bon	ıb	
	is rele	ased from the	satellite.	The bom	b will .					
	(A)	reach earth i	n 10 min	ute		(B)	reach earth	in 30 mi	nute	
	(C)	orbit the eart	h along	with the	satellite	(D)	None of the	se		
25.		ce of 200 n m s 25 cm find t			30° with	the	spokes of the	e wheel. I	f the rad	lius o
	(A)	25 Nm				(B)	32.1 Nm		•	
	(C)	40 Nm				(D)	none of thes	ве		
26.		ss of 1 kg is a				and l	nas a time p	eriod T oı	n the surf	face of
	(A)	zero	(B)	T		(C)	2T	(D)	infinite	
27.	A pa	urticle under	goes S.	H.M hav	ing tim	e pe	eriod T. Th	e time	taken in	$\frac{3}{8}$ th
	oscill	ation is								
	(A)	$\frac{3}{8}T$	(B)	$\frac{5}{8}T$		(C)	$\frac{5}{12}T$	(D)-	$\frac{7}{12}T$	
28.	that	intensity of p speed of soun essure in N/m ²	d is 330							
	(A)	3 x 10 ⁻⁴				(B)	3 x 10 ⁻⁵			
	(C)	3 x 10 ⁻³	•			(D)	3 x 10 ⁻²			•
29.		etched string velength is	fixed at	both end	s has n r	odes	then the len	gth of the	string in	terms
	(A)	$n\frac{\lambda}{2}$		· .		(B)	$(n+1)\frac{\lambda}{2}$			
	(C)	$(n-1)\frac{\lambda}{2}$				(D)	$\left(n+\frac{1}{2}\right)\frac{\lambda}{2}.$	•		

30.	The	wavelength of light coming from a	star :	shifts towards the violet end of the		
	spectrum. This shows that star is					
	(A)	receding from the earth				
	(B)	approaching the earth				
	(C)	neither approaching nor receding from	m the	earth		
	(D)	sometimes approaching and sometim	es rec	eding from the earth.		
31.	Ultr	asonics are used for stirring liquid solu	ıtions	in order to produce		
	(A)	soundless stirring	(B)	perfectly homogeneous solution		
	(C)	chemical reactions in them	(D)	none of the above.		
32.	For	production of beats the two sources mu	ıst ha	ve		
	(A)	different frequencies and same ampl	itude			
	(B)	different frequencies				
	(C)	different frequencies same amplitude	e and	same phase		
	(D)	different frequencies and same phase	э.			
33.	Deci	ibel is				
	(A)	a musical instrument	(B)	a musical note		
	(C)	a measure of sound level	(D)	the wavelength of noise.		
34.	Com	pressed air coming out of punctured fo	otbal	l becomes cooler because of		
	(A)	adiabatic	(B)	joule Thomson effect		
	(C)	isothermal expansion	(D)	energy dissipation		
35.	Cool	king food in pressure cooker saves time	and	fuel because		
	(A)	under increased pressure, water can than 100°C	be m	ade to boil at as Temperature higher		
	(B)	heat losses are reduced to a minimum	n			
	(C)	condensation of steam is prevented				
	(D)	under increased pressure, water much lower than the 100°C.	can	be made boil at a temperature		
36.	To k	eep correct time, watches are fitted wi	th a b	palance wheel made of		
•	(A)	Platinum	(B)	Tungsten		
	(C)	Invar	(D)	Stainless steel.		
37.	The	ideal gas equation PV = RT is true for				
	(A)	Isothermal process only				
	(B)	Adiabatic process only	•			
	(C)	Both isothermal and adiabatic proces	ses on	nly		
٠	(D)	All processes.		•		

	•	$\frac{R}{G} = 0.67$					
38.	For a	a gas C_V this gas is made up o	f molec	cules which are			
	(A)	Polyatomic					
	(B)	Monatomic					
	(C)	Diatomic					
	(D)	Mixture of diatomic and polyatomic	molecu	ıles.			
39.	The	internal energy of a perfect gas does r	ot cha	nge during			
	(A)	adiabatic process	(B)	isothermal process			
	(C) .	isobaric process	(D)	isochoric process			
40 .	The	slope of adiabatic $P-V$ diagram as co	mpare	d to the slope of isothermal P – V			
	diag	ram is					
	(A)	greater	(B)	smaller			
	(C)	same	(D)	cannot be estimated			
41.	The	gas is expanded adiabatically and its	temper	cature falls to T1. It is then expanded			
	isot	hermally and temperature now is T2.	Then				
	(A)	T1 >T2	(B)	T1 =T2			
	(C)	T1 <t2< td=""><td>(D)</td><td>T1 is nearly equal toT2</td></t2<>	(D)	T1 is nearly equal toT2			
42 .	Whi	ch of the following is the best conducted	or of he	eat?			
	(A)	Water	(B)	Alcohol			
	(C)	Wood	(D)	Mercury			
43.	A pe	rfectly black body is one whose emissi	ive pow	ver is			
	(A)	zero	(B)	unity			
	(C)	maximum	(D)	minimum			
44.	The	running of fan makes us comfortable	during	summer, because it			
	(A)	decreases the temperature of air					
	(B)	(B) increases the thermal conductivity of air					
	(C)	increases the rate of evaporation of p	erspir	ation			
	(D)	cuts off the thermal radiation reachi	ng us.				
4 5.	With	sound waves one cannot observe the	pheno	menon of			
	(A)	Refraction	(B)	Diffraction			
	(C)	Interference	(D)	Polarization			

46.	Ultı	asonic waves are produced by utilizing							
	(A)	Coulomb's law	(B)	Peltier effect					
	(C)	Piezoelectriceffect	(D)	Doppler'sprinciple					
47.		absolute temperature of a perfectly bla ill become how many times	ck boo	ly is doubled. The heat radiated from					
	(A)	4 times	(B)	8 times					
	(C)	16 times	(D)	32 times					
48.	The	The coefficients of thermal conductivity of a metal depends on							
	(A) Temperature difference between the two sides								
	(B)	Thickness of the metal plate							
	(C)	Area of the plate		• •					
	(D)	None of the above							
49.		culate the self-potential energy of a coow sphere of radius R	harge	q distributed over the surface of a					
	(A)	$rac{q^2}{8arepsilon_o R}$	(B)	$rac{q^2}{4arepsilon_o R}$					
	(C)	$rac{q^2}{4\pi arepsilon_o R}$	(D)	$rac{q^2}{8\piarepsilon_o R}$					
50 .	An a	ammeter has resistance Ro and range I	, what	t resistance should be connected in					
	para	allel to it to increase the range to nI							
	(A)	Ro /n	(B)	Ro /(n-1)					
٠.	(C)	Ro/(n+1)	(D)	None of these					
51.	An electron is shot into a liquid placed in a uniform magnetic field, in a plane perpendicular to magnetic field, then								
	(A)	the trajectory of electron is circular		•					
	(B)	trajectory is an inward winding spiral							
	(C)	the kinetic energy of electron remain s	ame						
	(D)	its revolution frequency decreases							
52.	A st	raight wire of diameter 0.5 mm carryin	g a cu	arrent of 1 ampere is replaced by					
	ano	ther wire of 1 mm diameter carrying th	e sam	e current. The strength of the					
	mag	metic field far away is	,	•					
	(A)	twice the earlier value	(B)	one half of the earlier value					
	(C)	one quarter of the earlier value	(D)	same as the earlier value					

53.	betv	meniscus of a liquid contained in on ween the pole-pieces of an electromag l. On switching the field the liquid rise ferromagnetic	netic	with the meniscus in line with the
	(C)	diamagnetic	(D)	nonmagnetic
54.	Uni	t of pole strength is		
	(A)	Am	(B)	Am-1
	(C)	Am-2	(D)	Am2
55.	Ago	nic lines are		
	(A)	zero declination	(B)	equal declination
	(C)	zero dip	(D)	equal dip
56.	A vi	bration magnetometer is placed at the	south	pole, then the time period will be
	(A)	zero	(B)	infinity
	(C)	same as at equator	(D)	same as at any other place on earth
57 .	A co	mpass needle when placed at a geoma	gnetic	pole stays along
	(A)	South-North direction only	(B)	East-West direction only
	(C)	Any direction	(D)	None of the above
58.	A m	agnetic field is measured by		
	(A)	Avometer	(B)	Pyrometer
	(C)	Fluxmeter	(D)	Thermopile.
59.	The	material of a permanent magnet has		
	(A)	High retentivity and low coercivity	•	
	(B)	Low retentivity and high coercivity		
	(C)	High retentivity and high coercivity		
	(D)	Low retentivity and low coercivity		
6 0.	Ear	th's magnetic field always has a horizo	ontal c	component except at
	(A)	equator	(B)	magnetic pole
	(C)	latitude of 60°	(D)	none of these
61.	A ta	ngent galvanometer is most sensitive	when 1	the deflection is around
	(A)	0°	(B)	30°
	(C)	45°	(D)	90°

62.	In a e.m.	D.C motor, the current flowing throughf. is	the	armature is minimum when induced
	(A)	zero	(B)	maximum
	(C)	one half of maximum	(D)	none of these
63.	conc	errent $I_0 = 1.9$ A flows in a long solen lucting state. Find the current I flow noid is increased by $\eta = 5\%$.		_
	(A)	1 A	(B)	2 A
	(C)	3 A	(D)	4 A
64.	Two	alternating voltage generators produc	e emfs	of the same amplitude E ₀ but with a
	pha	se difference of $\pi/3$. The resultant e.m.f.i	S	
	(A)	$E_0 \sin(\omega t + \pi/3)$	(B)	$E_0 \sin(\omega t + \pi/6)$
	(C)	$\sqrt{3}$ E ₀ sin(ω t+ π /6)	(D)	$\sqrt{3} \mathrm{E_0} \mathrm{sin}(\omega \mathrm{t} + \pi/2)$
65.	he w	an stands on a vertical tower of heigh vill be able to see on the surface of eart) km.		
•	(A)	4 km	(B)	8 km
	(C)	12 km	(D)	16 km
66.	The	area of moon's image produced by a co	nvex l	ens is proportional to focal length as
	(A)	$\sqrt{\mathbf{f}}$	(B)	f
	(C)	f ²	(D)	•
67.		ch of the following quantities increase the magnitudes.	se whe	en wavelength is increased? consider
	(A)	the focal length of a converging lens	(B)	the focal length of both lenses
	(C)	the power of a converging lens	(D)	the power of a diverging lens.
68.		Young's double slit experiment, if the asity of maximum intensity of minima wi		s of slit are in the ratio 4:9,ratio of
	(A)	25:1 (B) 9:4	(C)	3:2 (D) 81:16
69.		oscillating electric and magnetic field	l vecto	ors of an electromagnetic waves are
	(A)	mutually perpendicular directions an	d are	in phase
	· (B)	mutually perpendicular directions an	d diffe	er in phase by 90
	(C)	the same direction but differ in phase	by 90	
,	(D)	the same direction and are in		

70.		le of dip at this place is	18 43	times the vertical component. In
	(A)	0	(B)	60
٠	(C)	30	(D)	None of these.
71.	Elec	tromagnetic waves are produced by		
	(A)	an accelerating charge	(B)	a static charge
	(C)	charge less particle	(D)	a moving charge.
72.	Whi	ch of the following can be expressed in	ı Coulo	mb?
	(A)	$\oint \vec{B} \cdot d\vec{l}$	(B)	$\oint \vec{E} \cdot d\vec{l}$ $\oint \frac{\vec{B}}{\mu_0} \cdot d\vec{s}$
	(C)	$\oint \vec{B} \cdot d\vec{l}$ $\oint \varepsilon_0 \vec{E} \cdot d\vec{s}$	(D)	$\oint \frac{\vec{B}}{\mu_0} \bullet d\vec{s}$
73 .		wavelength of microwave is		
	(A)	smaller than the wavelength of viole	t light	
	(B)	smaller than the wavelength of yello	w light	
	(C)	larger than the wavelength of the re-	d light	
	(D)	larger than the wavelength of radio	waves	
74 .	Mic	rowaves are electromagnetic waves wi	th freq	uency
	(A)	micro hertz	(B)	mega hertz
	(C)	giga hertz	(D)	hertz
75.	An a	accelerated electron would produce		
	(A)	alpha rays	· (B)	beta rays
	(C)	gamma rays	(D)	E.M.rays
76.	and	and μ_0 are the electric permittivity μ are the corresponding quantities i lium is		
•		$\varepsilon_0\mu$.•	$\overline{\varepsilon}$
	(A)	<i>εμ</i> ₀	(B)	$\sqrt{arepsilon_0}$
	(C)	$\sqrt{rac{arepsilon_0 \mu_0}{arepsilon \mu}}$	(D)	$\sqrt{rac{arepsilon \mu}{arepsilon_0 \mu_0}}$
77.	Infr	ared spectrum lies between		
	(A)	radio wave and microwave region	(B)	microwave and visible region
٠	(C)	visible and ultra violet region	(D)	ultra-violet and X-ray

78.		increasing order of the specific charged (iv)alpha-particle (α) is	ge on (i)	electron (e) (ii) proton (p) (iii) neutron
		e, p, n, α	(B)	n, p, e, α
	(C)	n, p, α, e		n, α, p, e
79.		cause of fractional atomic weights o		
	(A)	•	(B)	isotopes
	(C)	isotones	(D)	isodipheres
80.	In T		sitive io	ns with same specific charge lie on
	(A)	straight line	(B)	parabola
	(C)	hyperbola	(D)	square
81.	The	wavelength of series limit of Lymen	series is	••••••••••••••••••••••••••••••••••••••
	(A)	00	(B)	•
	(C)	$\frac{1}{R}$	` '	$\frac{1}{4R}$
82.		sider the spectral line resulting fre given below .The shorter wavelength		sition n=2 to n=1 in the atoms and
	(A)	hydrogen atom		
	(B)	deuterium		
	(C)	singly ionized helium		
	(D)	doubly ionized helium	- *	
83.	neut	-		es approximately. The intensity of locity of 30 km per sec is reduced to
	(A)	23400 km	(B)	11700 km
	(C)	46800 km	(D)	None
84.	Whi	ch of the following radiations has th	e least w	avelength?
	(A)	B-rays	(B)	α-rays
	(C).	x-rays	(D)	γ-rays
85.	Mag	netic field does not cause deflection	in	
	(A)	γ-decays	(B)	β^- -decays
	(C)	B⁺-decays	(D)	α- decays
86.		hermionic emission the thermionic nent as	curren	t varies with temperature T of the
	(A)	T. T .	(B)	T ²
		1		1
	(C)	T	(D)	T^2

87.	The amplification in triode valve is due to the presence of									
	(A)	anode			(B)	cathode		*.	÷ .	
	(C)	grid	•		(D)	filament:				
88.	The energy of the n -th state of the hydrogen atom is									
	(A)	$E_n = 13.2 n^2$			(B)	$E_n = 13.6/3$	n^2			
-	(C)	$E_n = 13.6n$			(D)	$E_n = 13.2 n$	2		·	
89.	The hydrogen in the normal state is bombarded with electrons having kinetic energy 11.6 eV. The minimum kinetic energy of the electrons after bombardment									
	(A)	1.5 eV			(B)	1.4 eV	٠			
_	(C)	11.6 eV		4.	(D)	none of the	ese			
90.	The relation between the frequency of the characteristic X-radiation and atomic number of the elements is known as Moseley's law. The correct mathematical relation is									
	(A)	$v = k^2(Z-b)^2$	(B)	υ=k(Z-b)	(C)	$v^2 = k(Z - b)$	(D)	none of these)	
91.	The spacing of the (100) planes in calcite is 3.036 Å. The angle at which the first ord diffraction maxima will be found for X-rays of wave length 1.537 Å is								order	
	(A)	14.33	(B)	14.66	(C)	28.66	(D)	none of these	•	
92.	Two photons approach each other with velocity c . What is their relative velocity									
	(A)	2c		•						
	(B)	c/2					-			
	(C)	c/(1+c)								
	(D)	c	•						·	
93.	A star of radius r and mass m contracts to a radius r' while its temperature remains unchanged. The expression for the energy radiated by the star, assuming the uniform density in each case is									
	(A)	$mc^{2} [1-(r'/r)^{3}]$			(B)	mc ² [1-(r/r ²) ⁸]			
	(C)	$mc^{2} [1+(r'/r)^{3}]$			(D)	mc ² [1+(r/r	·') ⁸]		. •	
94.		lump of clay, mass of the con			10, collide	head on at	4c/5	and stick tog	ether.	
	(A)	m ₀ /3	(B)	2m ₀ /3	(C)	10m ₀ /3		(D) none of th	nese	
		•								

95.	How many photons of λ (in meter) must fall per sec on a blackened plate to produce a force of 1 dyne?								
	(A)	λ/h	•	(B)	$(\lambda \times 10^{-5})/h$				
	(C)	$(h \times 10^5)/\lambda$		(D)	none of these				
96.	If the uncertainty in the location of a particle is equal to its de Brogile wavelength, the uncertainty in its velocity is								
	(A)	Velocity	-	(B)	Momentum				
	(C)	Energy		(D)	Time				
97.	The kinetic energy of an electron (rest mass m_0), having de Broglie wavelength equal to Compton wavelength is								
	(A)	m ₀ c/2		(B)	$m_0 c^2 [2^{1/2} - 1]$				
	(C)	$m_0 c [2^{1/2} -1]$		(D)	none of these				
98.	The ratio of the magnetic moment to the angular momentum of electron								
	(A)	e/m		(B)	e/2m				
	(C)	m/2e		(D)	none of these				
99.	If mirror M2 in a Michelson's interferometer is moved through 0.233 mm, a shift of 792 fringes occurs. What is the wavelength of the light producing this fringe pattern?								
-	(A)	390 nm		(B)	620 nm				
	(C)	588 nm	•	(D)	470 nm				
100.	A slit of width a is illuminated by white light. For what value of a will the first minimum for red light of wavelength 650 nm appear at $\theta = 30^{\circ}$?								
	(A)	2.5 μm		(B)	1.3 µm				
	(C)	2.6 μm	·	(D)	1 μm				