ENTRANCE EXAMINATION FOR ADMISSION, MAY 2012.

M.Sc. (BIOTECHNOLOGY)

COURSE CODE: 303

Register	Number :		
			Signature of the Invigilator (with date)
	4	<u> </u>	

COURSE CODE: 303

Time: 2 Hours Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each of the question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	An a	aromatic amino acid is				
	(A)	Lysine	(B)	Tyrosine		
	(C)	Taurine	(D)	Arginine		
2.	The	true statement about solutions of am	ino aci	ds at physiological pH is		
	(A)	All amino acids contain both positive	e and i	negative charges		
	(B)	All amino acids contain positively ch	arged	side chains		
	(C)	Some amino acids contain only posit	ive ch	arge		
	(D)	All amino acids contain negatively c	harged	d side chains		
3.	Sulp	bhur containing amino acid is				
	(A)	Methionine	(B)	Leucine		
	(C)	Valine	(D)	Asparagine		
4.		triction endonucleases which recogni wn as	ze and	d cut same recognition sequences are		
	(A)	isoschizomers	(B)	isoaccepting endonucleases		
	(C)	isozymes	(D)	abzymes		
5.	the			e the pathway of chemical reactions in ioactive, the radioactive element used		
	(A)	sodium	(B)	chlorine		
	(C)	nitrogen	(D)	potassium		
		2				
6.		et gain of water tends to occur		entrance in the second second		
	(A) in a hypoosmotic solution from an isosmotic solution					
	(B)	in an isosmotic solution from a hype				
	(C)	in a hyperosmotic solution from a h	ypoosn	notic solution		
	(D)	in a hypoosmotic solution from a hy	perosn	notic solution		
7.	Ma	my surface proteins are anchored by				
	(A)	polar amino acids	(B)	hydrogen bonding amino acids		
	(C)	nonpolar fatty acids	(D)	nonpolar amino acids		
8.	A, 1	B, and O blood groups are marked by	surface			
	(A)	glycoproteins	(B)	glycolipids		
	(C)	glycocarbohydrates	(D)	glycerol		

9.	The	number of sub classes of Ig G is		
	(A)	2	(B)	3
	(C)	4	(D)	8
10.	PTF	H		
	(A)	Reduces the renal clearance or excre	etion o	of calcium
	(B)	Increases renal phosphate clearance	9	
	(C)	Increases the renal clearance of calc	ium	
	(D)	Decreases the renal phosphate clear	rance	
11.	δ-С	ells of islet of langerhans of pancreas	produc	ce
	(A)	Pancreatic polypeptide	(B)	Pancreatic lipase
	(C)	Somatostatin	(D)	Insulin
12.		nicroscope in which an image is form		passing an electron beam through a
	(A)	transmission electron microscope	(B)	scanning electron microscope
	(C)	phase-contrast microscope	(D)	fluorescent microscopy
13.	Trai	nsmission electron microscopy is best	for his	gh magnification viewing of
	(A)	internal structure of fixed cells.		
	(B)	internal structure of live, motile cell	ls.	
	(C)	surface structure of fixed cells.		
	(D)	surface membranes of live, motile co	ells.	
14.	Whi	ch of the following is NOT equivalent	to 10	micrometers?
	(A)	0.0001 cm	(B)	0.01 mm
	(C)	10,000 nm	(D)	100,000 Angstroms
15.	To n	nake a vaccine against chicken choler	a that	would not kill the chicken, Pasteur
	(A)	treated the sample with heat to kill	the m	icroorganisms.
	(B)	attenuated the strain by repeatedly	passa	ging it in culture.
	(C)	used a related but different microor	ganisn	n from animals.
	(D)	used very small, non-lethal amounts	s of ma	aterial.
16.	The	first observation that bacteria-like or	ganisr	ns could be found in normal air was by
	(A)	Anton Leeuwenhoek	(B)	Louis Pasteur
	(C)	Robert Koch	(D)	Joseph Meister

17.	Bact	teria accomplish chemotaxis by					
	(A)	Steering toward better growth con-	ditions				
	(B)	Making long, uninterrupted runs v	vhen co	nditions are good			
	(C)	Frequently stopping and tumbling to better sense good conditions					
	(D)	Stopping movement when condition	ns are g	rood			
18.	Whe	en the two ecosystems overlap each o	other, th	ne area is called			
	(A)	Habitat	(B)	Niche			
	(C)	Ecotone	(D)	Ecotype			
19.	Whi	ch of following two hormones are ess	sential f	for induced breeding of fishes?			
	(A)	TSH and ACTH	(B)	Oestrogen and progesterone			
	(C)	FSH and LH	(D)	Vassopressin and oxytocin			
20.		TH induces rise in	(7)				
	(A)	Cyclic AMP	(B)	Cyclic GMP			
	(C)	Calcium	(D)	Magnesium			
21.	Trai	nsgenic animals are for improvemen	t of the	quality of			
	(A)	Milk	(B)	Meat			
	(C)	Eggs	(D)	All of the above			
22.	Hor	mones					
	(A)	Act as coenzyme	(B)	Act as enzyme			
	(C)	Influence synthesis of enzymes	(D)	Belong to B-complex group			
23.		movement of sodium ions from are concentration is called	area (of higher concentration to an area of			
	(A)	active transport	(B)	osmosis			
	(C)	diffusion	(D)	phagocytosis			
24.	Dur	ing cytokinesis in plants:					
	(A)	a bundle of actin microfilaments ca	alled the	e contractile ring, pinch the cell in half			
	(B)	small vesicles, directed by the phra	agmopla	ast, move to the spindle			
	(C)	a cleavage furrow encircles the cell	1				
	(D)	cytoplasmic division is called cleav	age				

	(A)	cytoplasmic protein kinases are activated						
	(B)	the growth factor receptor is dephosphorylated						
	(C)	(C) growth factors bind to receptors in the cytoplasm						
	(D) leads to the production of translation factors							
26.	Sist	er chromatids:						
	(A)	are created when DNA is replicated						
	(B)	are separated during mitosis						
	(C)	are attached at the centromere prior	r to div	vision				
	(D)	all of the above						
27.	DNA	A damaged by sunlight:						
	(A)	has undergone depurination	(B)	has lost its phosphate groups				
	(C)	has formed pyrimidine dimers	(D)	has lost its hydrogen bonds				
28.	is us			infections at the mucous membrane. It he following statements regarding IgA				
	(A)	Complement fixation tests for IgA antibody is present	A anti	body will be positive if specific IgA				
	(B)	IgA is not found in saliva, therefore no value	an Ig	A diagnostic test on saliva would have				
	(C)	IgA can be destroyed by bacterial pr	otease	s				
	(D)	IgA is absent in colostrum						
29.	An i	mmunoglobulin molecule always cont	ains					
	(A)	1 κ and 3 λ type of chains	(B)	2 κ and 2 λ type of chains				
	(C)	$3~\kappa$ and $1~\lambda$ type of chains	(D)	$2~\kappa$ and $2~\lambda$ chains				
30.	A flo	ower which can be divided into two eq	ual ha	lves by only one plane is				
	(A)	Zygomorphic	(B)	Actinomorphic				
	(C)	Regular	(D)	Perfect				
31.	Whi	ch one of the following bacterium is u	sed for	r production of transgenic plants?				
	(A)	Escherichia coli	(B)	Bacillus thuringiensis				
	(C)	Staphylococcus aureus	(D)	Agrobacterium tumefaciens				

25. During the Ras pathway:

32.	Spir	ndle fibre is made up of					
	(A)	Humulin	(B)	Intermediate filament			
	(C)	Flagellin	(D)	Tubulin			
33.	Co-1	repressors					
	(A)	trigger the shutdown of	f gene translation				
	(B)	trigger the shutdown of	f gene transcription	1			
	(C)	trigger the shutdown of	f cell replication				
	(D)	trigger the shutdown of	f the immune syste	m			
34.	The		nave evolved from	bacteria engulfed by a long-ago cell is			
	(A)	the exobacterial theory	(B)	the amoebic theory			
	(C)	the Big Gulp theory	(D)	the endosymbiont theory			
35.	Both	h mitochondrial DNA and	d chloroplast DNA	are overwhelmingly inherited			
	(A)	from the maternal side	(B)	from the paternal side			
	(C)	from both parents	(D)	from symbiotic bacteria			
36.	Who	o first described microorg	anisms such as bac	eteria?			
	(A)	Louis Pasteur	(B)	Robert Koch			
	(C)	Fannie Hesse	(D)	Anton von Leeuwenhoek			
37.	Credit for the first vaccine for the prevention of human disease is generally given to:						
	(A)	(A) Edward Jenner for the prevention of small pox.					
	(B) Louis Pasteur for the prevention of rabies.						
	(C)						
	(D)	Robert Koch for the pre	evention of tubercul	losis.			
38.	Нур	erglycemic effect of gluco	ocorticoids is due to				
	(A)	Inactivation of protein	phosphatase				
	(B)	(B) Inactivation of fructose 1,6-biphosphatase					
	(C)	(C) Stimulation of synthesis of pyruvate carboxylase					
	(D)	Stimulation of synthesis	is of eltroxykinase				
39.		ch immunoglobulin is thital secretions?	ne primary antibod	ly in saliva, tears, and intestinal and			
	(A)	IgG	(B)	IgM			
	(C)	IgE	(D)	IgA			

	(A)	Not a regular enzyme but has the action of an enzyme					
	(B)	Catalyzes self splicing of pre-tRNA segment					
	(C)	Self-splicing of RNA is also found in mRNA	rRNA	, mRNA, chloroplast tRNA, rRNA and			
	(D)	All the above					
41.	Acco	ording to fluid mosaic model the corre	ct sequ	nence of plasma membrane is			
	(A)	Lipid - protein - protein - lipid	(B)	Protein - protein - lipid - lipid			
	(C)	${\bf Protein - lipid - lipid - protein}$	(D)	All of these			
42.	The	number of chromosomes can be incre	ased in	n plants by applying			
	(A)	Thermo treatment mechanism	(B)	Hormone treatment			
	(C)	Colchisine treatment	(D)	Hybrid vigor			
43.	The	unique property of the DNA polymer	ase I is	s			
	(A)	High Processivity	(B)	5' to 3' exonuclease activity			
	(C)	3' to 5' exonuclease activity	(D)	High rate of synthesis			
44.	An important difference between eukaryotic and prokaryotic replication is						
	(A)						
	(B)	(B) more DNA polymerases are found in eukaryotes					
	(C)	multiple origins of replication in eu	karyot	es			
	(D)	RNA primers are not required in eu	karyot	tes			
45.	Whi	ch system for stably introducing for	oreign A into	genes into eukaryotic cells does not the host chromosomes?			
	(A)	Retroviral Vectors	(B)	Transgenic Mice			
	(C)	Gene gun	(D)	Yeast artificial Chromosome			
46.	Approximately how many moles of ATP will be generated as a result of oxidation of one mole of FADH ₂ ?						
	(A)	2	(B)	3			
	(C)	4.5	(D)	6			
47.	Whi	ich of the following is not coded by M	HC ger	nes?			
	(A)	Components of complement pathwa	ny				
	(B)	Immunoglobulin					
	(C)	Glycoproteins					
	(D)	Antigen presenting proteins					
		7		303			

40. Ribozyme is

48.	Whi	ch is least likely to occur for rem	oval of cand	cer cells?
	(A)	T-cell based cytotoxicity	(B)	Complement fixation
	(C)	Autophagy	(D)	Phagocytosis
49.	Reg	ulation of trp operon by binding	of tryptopha	an to trp repressor is termed
	(A)	Repression	(B)	Induction
	(C)	Anti termination	(D)	Attenuation
50.	Oxy	genase activity of RUBISCO gen	erates	
	(A)	Two molecules of PGA (3C)		
	(B)	Two molecules of Phosphoglyco	olate (2C)	
	(C)	One molecule each of PGA and	phosphogly	rcolate
	(D)	Two molecules each of PGA and	d phosphog	lycolate
51.	Whi	ch is true for β-oxidation of fatty	acids?	
	(A)	Formation of malonyl CoA		
	(B)	Formation of acetoacetyl ACP		
	(C)	Transport of acyl CoA into mite	ochondria	
	(D)	Use of NADPH ₂		
52.	Enz	ymes do not interfere with		
	(A)	free energy of reaction		
	(B)	rate of reaction		
	(C)	activation energy of transition	state	
	(D)	reaction equilibrium		
53.	Cov	alent bond formation between tw	o atoms tal	kes place by
	(A)	transfer of electron from one at	tom to other	
	(B)	one side sharing of electrons		
	(C)	electron sharing by both intera	cting atoms	3
	(D)	affinities between two atoms		
54.	The	main difference between cellulos	se and stard	ch molecule is
	(A)	the type of linkage between glu	icose subun	its
	(B)	that only cellulose contains rib	ose building	g blocks

(C)

(D)

that only starch is made from glucose building blocks the type of monosaccharide used to form these polymers

55.	Two function	ons of rough endoplasm	nic reticulum a	re to	
		cify and transport drugs			
	(B) modif	fy and activate hormone	es		
	(C) synth	nesize and transport enz	zymes		
	(D) join w	with and hydrolyze food	vacuoles		
56.	All of the fo	ollowing are correct abo	out the X and	Y chromosomes except?	
2		e are 78 active genes on			
		ales have one X and one			
	(C) In ear	rly meiosis, identical ch	romosomes ca	n repair mutations	
				hange genetic information	
57.	In many co	ountries, DDT is banned	l as an insecti	cide because	
	(A) it can	n be broken down by ins	ects.		
	(B) it is n	not readily biodegradabl	le.		
	(C) it is le	ess effective in killing is	nsect pests.		
	(D) it is p	poisonous to plants.			
58.	In the proc	cess of Kreb's cycle			
	(A) ADP	is converted into ATP	`		
	(B) Pyruv	vic acid is converted int	o ATP		
	(C) Acety	ol CoA is converted into	CO2 and water	r	
	(D) Gluco	ose is converted into CO)2		
59.	With regar	d to HLA class 1 antige	n which is on	e of the below is FALSE	
	(A) they	are expressed on all nuc	cleated cells		
	(B) they a	are made up of a heavy	chain and a li	ght chain	
	(C) they	are essential for viral a	ntigen recogni	tion by cytotoxic cells	
	(D) the ge	enes for HLA class 1 mo	olecules are lo	cated on chromosome 6 and	15
60.	In the hy hybridoma		the maker e	nzyme responsible for sel	ection of
	(A) Thym	nidine kinase	(B)	HGPRT	
	(C) HPG1	RT	(D)	Dihydrofolate reductase	
61.	Erucic acid	l is present in	- TO		
		ard oil	(B)	Sunflower oil	
	(C) Til oil		(D)	Palm oil	
	,		(2)		

62.	Exp	ansion of BLAST						
	(A)	Basic Logical Algorithm Search	Tool					
	(B)	Basic Logical Alignment Search	Tool					
	(C)	Basic Longitudinal Alignment So	earch Tool					
	(D)	Biological Logical Alignment Sea	arch Tool					
63.		mple for DNA viruses are						
	(A)	Caulimo viruses	(B)	BMV				
	(C)	TMV	(D)	Retrovirus				
64.	Rev	erse transcriptase catalyses the fo	rmation of	f				
	(A)	DNA on an DNA template	(B)	DNA on an RNA template				
	(C)	RNA on an DNA template	(D)	RNA on an RNA template				
65.	Root	toria enorae:						
00.	i.	Bacteria spores: i. are resistant to antibiotics						
	ii.	allow the bacteria to multiple in	adverse o	ondition				
	iii. are usually formed by Gram-negative bacteria iv. can be identified with Gram stains.							
	iv. can be identified with Gram stains. v. are killed by temperature of 120° for 20 minutes.							
	(A)	i & v are only true	(B)	i & iii are only true				
	(C)	only v is true		All the above are true				
	(0)	only v is true	(D)	All the above are true				
66.	Z-D	NA is charactrised by						
	(A)	Left handed helix						
	(B)	Right handed helix						
	(C)	Bending of nitrogen bases to hel	ix axis at	an angle other that perpendicula				
	(D)	Both (A) and (B)						
67.	Nicl	kel and chromium compounds can	cause can	cer of				
	(A)	Skin	(B)	Lungs				
	(C)	Heart	(D)	Liver				
00	3371.	-1 -6+1 - 6-11ii						
68.		ich of the following is not formed d						
		Pyruvic acid	(B)	Ethyl alcohol				
	(C)	CO_2	(D)	Acetyl Co A				
69.	Тур	e of chemical bond between glucos	se and fruc	etose in sucrose				
	(A)	α1,4-glycosidic bond	(B)	β1,4-glycosidic bond				
	(C)	al 2-glycosidic hond	(D)	R1 2-glycosidic bond				

70.	Approximately what percer and translated?	ntage of the DNA in t	he human genome in both transcribed
	(A) 70%	(B)	50%
	(C) 20%	(D)	3%
71.	The state of the s	des are cytosines (C	nd to the amino acid is adenosine (A),). What can you tell about the DNA
	(A) the first position is A given	, but you can't tell a	bout the others from the information
	(B) you can't tell anything	g about the codon fro	m the information given
	(C) the codon is TGG		
	(D) the codon is ACC		
72.	What is the main target of	natural selection?	
	(A) The population	(B)	The species
	(C) Individual phenotype	(D)	Individual genotype
73.	Below are listed a few cell	organelles.	
	1. Nucleus 2. Ly	sosomes 3. E	ndoplamic Reticulam
	4. Perixisomes 5. M	itochondria 6. C	hloroplast
	Organelles not enclosed by	two phospholipids m	embranes are:
	(A) 2, 3, 6	(B)	1, 3, 4
	(C) 2, 3, 4	(D)	2, 4, 6
74.		al for fatty acids syn	l pathway for oxidation of glucose. It thesis. This pathway predominates in ae is
	(A) adipose tissue	(B)	lactating mammary gland
	(C) adrenal cortex	(D)	skeletal muscle
75.	The lowest levels of activity	y of superoxide dismu	itase and catalase is found in
	(A) Aerobes	(B)	Facultative anaerobes
	(C) Micro-aerobes	(D)	Obligate anaerobes
76.	Gibberellins are known as to the secretion of:	to break dormancy is	n cereal seeds. This dominantly is due
	(A) protease	(B)	lipase
	(C) alpha amylase	(D)	cellulase

77.	Bact	terial Rho protein is a		
	(A)	Helicase	(B)	Kinase
	(C)	Phosphatase	(D)	None of the above
78.	'Zin	c fingers' are important in cellular re	cognitio	on because they are
	(A)	at the catalytic site of many kinase	s	
	(B)	characteristic of palindrome struct	ures of	unique-sequence DNA
	(C)	a structural motif in many DNA-bi	nding p	roteins
	(D)	structures with high redox potentia	al ·	
79.	The	enzyme that changes Ribulose to xy	lulose is	s a
	(A)	Isomerase	(B)	Transferase
	(C)	Epimerase	(D)	Anomerase
80.		min A is stored in the liver in the for	V 80 1000	
	(A)	Free retinol	(B)	Retinyl acetate
	(C)	Retinyl stereate	(D)	Retinyl palmitate
81.		nutation deleting an upstream activected to be	vating	sequence for a single gene would be
	(A)	polar	(B)	cis-dominant
	(C)	trans-dominant	(D)	silent
82.		vertebrate genes, transcription regulativated by which CpG modification?	latory 1	regions that contain CpG islands are
	(A)	Myristylation	(B)	Phosphorylation
	(C)	Acetylation	(D)	Methylation
83.	2-an	nino, 6-Oxy purine is		
	(A)	Hypoxanthine	(B)	Xanthine
	(C)	Guanine	(D)	Adenine
84.	The	rate limiting step of fatty acid synth	esis is o	catalyzed by
	(A)	Acetyl CoA carboxylase	(B)	ATP citrate lyase
	(C)	Malic enzyme	(D)	Pyruvate dehydrogenase
85.		a hybridization experiment a plant es control the trait for observed phen		phenotypic ratio of 15:1. How many ratio?
	(A)	one	(B)	two
	(C)	three	(D)	nolygene

86.	Parl	kinson's disease is associated with					
	(A)	an underproduction of γ-aminobuty	rate				
	(B)	an underproduction of dopamine					
	(C)	an overproduction of histamine					
	(D)	an overproduction of γ-aminobutyra	ate (GA	ABA)			
87.	A restriction endonuclease that recognizes the base pair sequence GANTC (where I can be any nucleotide) will cleave random DNA on average every						
	(A)	256 bp	(B)	625 bp			
	(C)	1024 bp	(D)	4096 bp			
88.	Whi	ich one of the following is not a cytoki	ne?				
	(A)	Arachidonic acid	(B)	Interleukins			
	(C)	Interferon	(D)	Tumour necrosis factor			
89.	Identify the following point mutation in mRNA UAU to UAU AAC CUA and UU CUA to UUG CUG AUA						
	(A)	transition and frame shift respective	ely				
	(B) frame shift and transition respectively						
	(C)	하다 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그					
	(D)	frame shift and transitive respective	ely				
90.	Whi	ich of the following is not a trait of an	anabo	lism in the metabolism process?			
	(A)						
	(B) Nutrients and molecules form complex molecules						
	(C)	(C) Uses simple sugars as building blocks for more complex molecules					
	(D)	(D) Uses amino acids as building blocks for more complex molecules					
91.	A shiny, sticky colony of Streptococcus pneumoniae is likely to be						
	(A)	nonencapsulated and nonpathogenic	С				
	(B)	nonencapsulated and pathogenic					
	(C)	encapsulated and pathogenic					
	(D)	encapsulated and non-pathogenic					
92.	Reve	ersal UV effect is called					
	(A)	tautomeric shift	(B)	thymine dimer			
	(C)	photo oxidation	(D)	photo reactivation			
		70 S					

93.	Liposomes are used in						
	(A)	Drug delivery	(B)	Tissue engineering			
	(C)	Vaccine production	(D)	rDNA			
94.	NSAIDS are used as						
	(A)	Antibiotics	(B)	Anti-inflammatory agents			
	(C)	Laxatives	(D)	Hormones			
95.	CCA end of a tRNA molecule is called as						
	(A)	Anticodon loop	(B)	Acceptor end			
	(C)	DHU loop	(D)	Extra arm			
96.	TATA box is present at						
	(A)		(B)	-10			
	(C)	-75	(D)	None of the above			
97.	The catabolic end product of purines in humans is						
	(A)	Ammonia	(B)	Uric acid			
	(C)	Urea	(D)	Allantoin			
98.	The percentage of triglycerides is more in						
	(A)	VLDL	(B)	HDL			
	(C)	Chylomicrons	(D)	LDL			
99.	Which of the following is not part of the lac operon of E. coli?						
	(A)						
	(B)	(B) Genes for the repressor, a regulatory protein					
	(C) Gene for RNA polymerase						
	(D)	A promoter, the RNA polymers	ase binding	site			
100.	.00. What is the difference between apoptosis and necrosis?						
	(A) Apoptosis is a controlled program of cellular destruction; necrosis is cell death due to damage						
	(B) Apoptosis is a property of all differentiated cells; necrosis only occurs to undifferentiated cells						
	(C) Apoptosis is cell death due to damage that occurs during embryogenesis necrosis is cell death due to damage that occurs during adulthood.						
	(D) Apoptosis is the death of a differentiated cell; necrosis is the death of						