ENTRANCE EXAMINATION FOR ADMISSION, MAY 2013.

M.Sc. (BIOTECHNOLOGY)

COURSE CODE: 303

Signature of the Invigilator (with date)	Register Number :			
Signature of the Invigilator (with date)			•	
				Signature of the Invigilator (with date)
		•		

COURSE CODE: 303

Time: 2 Hours

Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET <u>using HB pencil</u>.
- 4. Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.		ch of the following methods for study lification of the genome?	ing loss	of gene function does not involve any					
	(A)	gene knockout by homologous recor	nbinatio	on.					
	(B)	RNA interference by injection of do	uble str	anded DNA					
	(C)	expression of an integrated antisen	se trans	gene					
	(D)	all the above		1					
2.	Rest	riction fragment length polymorphis	m (RFL	P) is					
	(A)	the technique used to fingerprint of	f inherit	ance					
	(B)	the difference in the restriction may	ps betwe	een two individuals of one species					
	(C)	the difference in the restriction may	ps betwo	een two individuals of two species					
	(D)	the difference in the restriction may	ps betwe	een the two alleles in a diploid cell					
3.	A re	porter gene							
	(A)	acts as repressor							
	(B)	allows gene expression to be readily	y measu	red					
	(C)	enhances mRNA stability	•						
	(D)	interacts with RNA polymerase	•						
4.		nsduction has been used extensively wing process is useful for gene mapp		me mapping of bacteria. which of the					
	(A)	bacterial lysis	(B)	generalized transduction					
	(C)	specialized transduction	(D)	site specific recombination					
5.		Two double stranded DNA samples that are identical with respect to the number of base pairs, but differ significantly in their GC content, can be separated by							
	(A)	dialysis	(B)	agarose gel electrophoresis					
	(C)	density gradient centrifugation	(D)	oligo-dT column chromatography					
6.	Pyro	osequencing derives its name from th	e fact tl	nat					
	(A)	the bases are detected by pyrolysis							
	(B)	it detects pyrophosphate released d	luring b	ase incorporation					
	(C)	it generates pyrograms as output		•					
	(D)	it uses enzyme apyrase to detect th	e bases						
7.	Aro	ma in rice is due to	•						
	(A)	2-acetyl-1-pyrroline	(B)	Acetyl choline					
	(C)	4-benzyl pyrroline	(D)	2-ethyl pyrroline					
			•						

8.	ror	glycoproteins, most commonly used p	robe is							
	(A)	antibody	(B)	antigens						
	(C)	interferons	(D)	lectin						
9.	Phag	Phage M13 vectors are widely used for								
	(A)	obtaining fragments of cloned DNA	suitabl	e for DNA sequencing						
	(B)	obtaining single stranded copies of	cloned I	ONA suitable for DNA sequencing						
	(C)	obtaining double stranded copies of	cloned	DNA suitable for electrophoresis						
	(D)	obtaining double stranded copies of	cloned	DNA suitable for DNA sequencing						
10.	Vect	ors designed to replicate in cells of tw	vo diffe	rent species are called						
	(A)	phasmids	(B)	phagemids						
	(C)	transfer vectors	(D)	shuttle vectors						
11.	The injection of DNA into developing inflorescence using a hypodermic syringe is called									
	(A)	microinjection								
•	(B)	microfection								
٠	(C)	micromanipulator mediated DNA d	elivery							
÷	(D)	macroinjection								
12.	Prot	ein binding regions of DNA are ident	ified by	one of the following techniques						
	(A) .	Finger printing	(B)	Foot printing						
	(C)	Southern blotting	(D)	Western blotting						
13.		ajor advantage of monoclonal antiboo oclonal antibodies	lies con	pared to polyclonal antibodies is that						
	(A)	have higher-affinity binding to anti	gens							
	(B)	have identical binding sites that red	ognize	a specific epitope						
	(C)									
	(D)	are more easily coupled with probes	s such a	s fluorescent dyes						
14.	In w	which of the following organism mRN	A has ir	itrons?						
	(A)	Nostoc	(B)	Rhizobium						
	(C)	Chlamydomonas	(D)	Mycoplasma						
15.	Colc from		the nu	mber of chromosomes. It is obtained						
	(A)	${\bf rhizome} \ {\bf of} \ {\it Cochicum} \ automnale$	(B)	corms of C. autumnale						
	(C)	bulbs of C. autumnale	(D)	root tubers of C. autmnale						

16.	Jacob and Monad contribution related to										
	(A)	transposons	(B)	DNA sequencing							
	(C)	regulation of gene expression	(D)	all the above							
17.	OKT	Γ3 antibody is used in									
	(A)	cancer therapy	(B)	immune suppressant							
	(C)	Immunotoxin	(D)	mouth diseases							
18.	'Zine	'Zinc fingers' are important in cellular recognition because they are									
	(A) at the catalytic site of many kinases										
	(B) characteristic of palindrome structures of unique-sequence DNA										
	(C)	a structural motif in many DNA-bin	ding pr	roteins							
	(D)	structures with high redox potential]	<u>.</u>							
19.	Whi	Which one of the following genera fix nitrogen nonsymbiotically?									
	(A)	Rhizobium	(B)	Nitrosomonas							
	(C)	Nitrobacter	(D)	Azotobacter							
20.	Methionine and ———— are having single codon										
	(A)	threonine	(B)	tryptophan							
	(C)	tyrosine	(D)	arginine							
21.	Alpha D-Glucose and Beta D-Glucose may be referred to as										
	(A)	isomers	(B)	epimers							
	(C)	anomers	(D)	aldoses							
22.	The main rate limiting enzyme in heme synthesis is										
	(A)	uroporphyrinogen I synthase	(B)	delta ALA synthetase							
	(C)	uroporphyrinogen decarboxylase	(D)	heme synthase							
23.	Whi	ich drug is referred as "Wonder Drug"	•								
	(A)	streptomycin	(B)	penicillin							
	(C)	, insulin	(D)	chloramphenicol							
24.	Par	kinson's disease is associated with									
	(A)	an underproduction of γ -aminobut	yrate								
	(B)	an underproduction of dopamine									
	(C)	an overproduction of histamine									
	(D)	an overproduction of γ -aminobuty	rate								

	(A)	combines with a repressor and pre	vents it f	from binding to the promoter
	(B)	combines with a repressor and pre	vents it f	from binding to the operator.
	(C)	binds to the promoter and prevents	s the rep	ressor from binding to the operator
	(D)	binds to the operator and prevents	the repr	essor from binding at this site
26.	Crea	ation of Dolly is a phenomenon of		
	(A)	monopotency	(B)	multipotency
	(C)	pleuropotency	(D)	all of these
27.		ntify the following point mutation i A to UUG CUG AUA	n mRNA	UAU to UAU AAC CUA and UUG
	(A)	transition and frame shift respecti	vely	
	(B)	frame shift and transition respecti	vely	
	(C)	transversion frame shift respective	ely	
	(D)	frame shift and transition respecti	vely	
28.	Inte	egral membrane proteins are helped	to locate	across the lipid bilayer by
	(A)	formation of disulfide bonds		
	(B)	using an α helix made up of amin	o acids w	rith hydrophilic side chains
	(C)	•		
	(D)	•		
29.		natic gene therapy attempts to corn	rect a ge	ne defect by introducing the normal
	(A)	the fertilized egg		
	(B)	the sperm		
	(C)	cultured embryonic stem (ES) cells	S	
	(D)	cells in the patient's body other th	an eggs (or sperm
30.		e enzyme following Michelis-Menter estrate concentration is plotted again		s show a characteristic graph when ty, the nature of the graph will be
	(A)	sigmoidal	(B)	parabolic
	(C)	hyperbolic	(D)	straight line
31.		nat is the major protein responsible man plasma?	e for 75	-80% of the osmotic pressure of the
	(A)	alpha Globulin	(B)	beta Globulin
	(C)	albumin	(D)	fibrinogen
		P	5	303

The inducer:

25.

32.	Whi	ch anti cancerous drug is	obtained from C	ath	aranthus roseus
	(A)	vincristine	(1	B)	resveratrol
	(C)	serpentine	(1	D)	colchicine
33.	coup	-	•	_	ging to the large family of G-protein cell of human retina. Activation of
	(A)	phosphorylation of its e	xtracellluar tyro	sine	e residue
	(B)	binding of external ligar	nd to its extra ce	lluĺ	ar loops
	(C)	photoisomerisation of it	s prosthetic grou	ıp	
	(D)	binding of calcium ions	to its trans mem	bra	ne aspartic groups
34.	The	mushroom poison amani	tin is an inhibito	r of	the synthesis of
	(A)	mRNA	()	B)-	glycoprotein
	(C)	DNA	(]	D)	protein
35.	He l	La cells were obtained fro	m		
	(A)	Henrietta Lowe	(1	B)	Henrietta Lacks
	(C)	Henry Lowe	()	D)	Henry Lacks
36.		of the following cell type th of telomeres at the end			zyme telomerase which protects the
	(A)	haemopoetic	()	B)	tumor
	(C)	germinal	(]	D)	somatic
37.	Wha	at is the function of initia	tion factor IF-3?	-	•
	(A)	if bound to the 40S su subunit	bunit, it facilita	tes	the association of the 40S and 60S
	(B)	if bound to the 30S su subunit	bunit ,it prever	nts	the association of the 30S and 50S
	(C)	if bound to the 30S suinteract with the Shine			ne 16S rRNA of the 30S subunit to of the mRNA
	(D)	it directs the initiator the to mRNA	RNA to enter the	pa	rtial P-site on the 30S subunit bound
38.		rt (200 to 500 base pair nan genome and whose lo	-		that has a single occurrence in the uence are known
	(A)	sequence tagged sites (S	STS) (B)	expressed sequence tags (EST)
	(C)	motif	·	D)	none of the above

39.		s vitamin is the major lipid-solu proteins	ble anti-oxi	dant in cell membranes and plasma
	(A)	vitamin K	(B)	vitamin A
	(C)	vitamin D	(D)	vitamin E
40.	Amı	phibian metamorphosis is control	led by	
	(A)	thyroid hormone	(B)	ecdysone
	(C)	parathyroid hormone	(D)	oxytocin
41.	Whi	ch of the following drives directio	nal transpo	rt through nuclear pore complexes?
-	(A)	ABC transporter	(B)	GTPase
	(C)	ATPase	(D)	Ran GTPase
4 2.	Posi	tional cloning refers to		
	(A)	isolating a gene by PCR using p	rimers fron	another species
	(B)	cloning a portion of a gene using	g a PCR	
	(C)	using a selection procedure to cl	lone a cDNA	1
	(D)	mapping a gene to a chromosor genomic copy of the gene from t	_	and then identifying and cloning the
43.	The for	mitochondria serve as a marker	for cytochi	rome oxidase and the lysosome serve
•	(A)	catalase	(B)	acid phosphatase
	(C)	galactosidase	(D)	succinic dehydrogenase
44.	Lyse	osomes are abundant in-		
	(A)	WBC and osteoblasts	(B)	RBC and Spleen
	(C)	liver and Spleen	(D)	WBC and Spleen
4 5.	Whi true	. ·	about Tran	smission Electron Microscopy is not
	(A)	the specimen must be stained w	ith osmium	or other heavy metal.
	(B)	the specimens are placed in a h	igh vacuum	for viewing.
	(C)	the specimens must be sliced ve	ery thin, 20-	100 nm in thickness.
	(D)	the beam is focused by electrom	agnetic len	ses.
46.	Calo	cium absorption is inferred by		
	(A)	fatty acids	(B)	amino acids
	(C)	vitamin D	(D)	vitamin B12

: <u>-</u>	(A)	initing of oxyhemoglobin dissocia	tion c	urve to the right
	(D)	shifting of oxyhemoglobin dissocia		
	(C)	ability of hemoglobin to combine w		
	(D)	exchange of chloride with carbona		
48.	The	mechanism of synthesis of DNA and	d RNA	A are similar to all the following ways
	(A)	they involve release of pyrophosph	ate fr	om each nucleotide added
	(B)	they require activated nucleotide		
	(C)	the direction of synthesis is	-	
	(D)	they require a primer		
49.	Albii	nism is due to deficiency of the enzym	ıe:	
	(A)	phenylalanine hydroxylase		
	(B)	tyrosinase		
	(C)	p-Hydroxyphenylpyruvic acid oxid	ase	
	(D)	tyrosine dehydrogenase		
50.	Mole	cular weight of heterogenous nuclear	RNA	(hnRNA) is
	(A)	More than 10 ⁷		10 ⁵ to 10 ⁶
	(C)	10 ⁴ to 10 ⁵		Less than 10 ⁴
51.	The '	Γ Ψ C arm in the tRNA molecule poss	esses	the sequence
	(A)	T, pseudouridine and C	(B)	
	(C)	T, dihydrouridine and C	(D)	,
52.	A syn	nthetic nucleotide analogue, used in tions is	n the	chemotherapy of cancer and viral
	(A)	arabinosyl cytosine	(B)	4-hydroxypyrazolopyrimidine
	(C)	6-mercaptopurine	(D)	6-thioguanine
53.	The r	nost likely lethal mutation is		
	(A)	substitution of adenine for cytosine		
	(B)	insertion of one nucleotide		
	(C)	deletion of three nucleotides		
	(D)	substitution of cytosine for guanine		
303		8		

54 .	Regu	lation of hae	m synthe	sis occurs by			•		
	(A)	covalent m	odificatio	'n	(B)	rep	ression - de	erepression	
	(C)	induction	•		(D)	allo	osteric regu	lation	
55 .				renal tubular de racterized with	fect in	the	reabsorpti	on of phosphate (Vit	
	(\mathbf{A})	Normal ser	um Phosj	phate					
	(B)	High serum	ı phosph <i>a</i>	ite					
	(C)	A low blood	phospho	rous with elevat	ed alk	aline	Phosphate		
	(D)	A high bloo	d phosph	orous with decre	eased a	alkali	ne phospha	tase	
56.	The	immunoglobi	ılin whicl	n provides high	est an	tiviral	l activity is		
	(A)	Ig D	(B)	Ig E	(C)	Ig A		(D) Ig G	
57.	Hum	an growth he	ormone h	as					
	(A)	one polype	ptide cha	in and one intra	-chain	disul	phide bond		
	(B)	one polype	ptide cha	in and two intra	-chair	disul	lphide bond	•	
	(C)	two polype	ptide cha	ins joined by one	e disul	lphide	bond		
	(D)	two polype	ptide cha	ins joined by tw	o disu	lphide	e bond		
58.	Açro	megaly resul	ts in all t	he following exc	ept			·	
	(A) overgrowth of the bones of face, hands and feet								
	(B)	increased s	tature				*		
	(C) .	enlargeme	nts of vis	cera					
	(D)	impaired g	lucose tol	lerance			·		
59.	The blood sugar raising action of the hormone of suprarenal cortex is due to								
	(A)	glyconeoge	nesis	•					
	(B)	glycogenol	ysis						
	(C) glucagon like activity								
	. (D)	due to inhi	bition of	glomerular filt	ration	of glu	icose	·	
60.	Supp	oressor muta	tions occi	ır in					
	(A)	structural	genes		(B)	pror	noter region	ns	
	(C)	silencer el	ements		(D)	anti	codons of tl	RNA	
61.		ls for gene t ess, in a gene		_ _	were	first	carried ou	t, with considerable	
	(A)	cystic fibro	sis		(B)	tha	alassemia		
	(C)	adenosine	deamina	se deficiency	(D)	Ιe	sch-Nyhan	syndrome	

62 .	If D	NA of a cancer c	ell is i	ntroduced in	ito a noi	m	al cell, the recip	ient o	cell
	(A)	destroys the l	DNA		. (E	3,)	loses its abilit	y to c	livide
	(C)	dies			(I))	changes into	a can	cer cell
63.	Amp	olification of dih	ydrofo	late reductas	se gene	in	a cancer cell ma	kes t	he cell
	(A)	susceptible to	folic a	acid deficiend	cy				
	(B)	less malignar	nt						
	(C)	resistant to a	\mathbf{metho}	pterin thera	рy				
	(D)	responsive to	ameth	nopterin ther	ару				
64.	Orci	nol method is er	nploye	ed in the qua	ntitatio	n (\mathbf{of}^{-}		
	(A)	nucleic acid	(B)	DNA	(0	3)	RNA	(D)	proteins
65.	Whi	ch one of the foll	lowing	statements	is not c	ha	racteristic of all	steri	c enzymes?
	(A)	they frequent	ly cata	alyze a comn	nitted st	tep	early in a metal	bolic :	pathway
	(B)	they are often	comp	osed of subu	nits			-	
	(C)	they follow M	ichael	is-Menten k	inetics				
	(D)	they frequent	ly sho	w co-operati	vity for	su	bstrate binding		
66.	'Clea	uring factor' is							
	(A)	lipoprotein lip	pase		(E	3)	crotonase	•	
	(C)	7-dehydro cho	olester	ol	· (I))	$oldsymbol{eta}$ -sitosterol		•
67.	Rapo	port-Luebering	cycle	is located in				٠.	
	(A)	liver	(B)	muscles	(0	C)	brain	(D)	erythrocytes
68.	In I	ineweaver-Burl	k plot	, the y-interc	ept rep	res	sents		
	(A)	V_{max}	(B)	K_m	(0	C)	$-K_m$	(D)	1/K _m
69.	Gene	etically engineer	red ma	ale sterile cro	p plant	s r	nay be produced	by in	serting
	(A)	lectin gene			(F	3)	chitinase gene		
	(C)	barnase gene			(I))	BT toxin gene	•	4
70.	Cho	ose the correct s	tatem	ent(s) about	thermo	sta	ible DNA polyme	erase	used in PCR
	P. Tli pol has no 3' \rightarrow 5' exonuclease activity								
	Q. Pfu pol has $3' \rightarrow 5'$ exonuclease activity								
		R. Taq pol has	3′→5′	exonuclease	activit	y	* * .		
		S. Taq pol has	no pro	oof reading a	bility				•
	(A)	P, Q and R			. (I	3)	Q, R and S		
	(C)	P, R and S			(I))	P, Q and S		

71.	Whic	h of the following would not be possil	ole to a	ddress using a Northern blot?
	(A)	mRNA size	٠	
	(B)	location of restriction sites in a parti	cular g	ene
	(C)	spatial expression of a particular gen	ne	
	(D)	temporal expression of a particular g	gene	
72.	enzy	• • • • • • • • • • • • • • • • • • •	•	e two lacZ enzymes, only the mutant ly. This observation show that
	(A)	cis- dominant	(B)	cis recessive
	(C)	trans- dominant	(D)	trans- recessive
73.	Chro	mosome walking is best described as		
	(A) .	sequencing a genome at a time to en the project	nsure t	hat no gaps are present at the end of
	(B)	identifying clones whose inserts ov cover a given segment of DNA	erlap	to generate a library of clones that
	(C)	generating a map along a chromosor	ne in a	step-by-step manner
	(D)	aligning DNA sequences by compute	r to ge	nerate contigs
74.		ixture containing two proteins hav meric properties can be separated by	ing si	milar molecular mass but different
	(A)	SDS PAGE analysis	(B)	native PAGE analysis
	(C)	isoelectric focusing	(D)	both (B) and (C)
75.		ch one of the following antibiotics atta sferase activity?	aches t	o 50S ribosome and inhibits peptidyl-
•	(A)	penicillin	(B)	trimethoprim
	(C)	amphotericin	(D)	chloramphenicol
76.	The t	technique used to identify specific DN	JA sequ	uence in bacterial colonies is
	(A)	in situ hybridization	(B)	colony hybridization
	(C)	dot blot technique	(D)	western blotting
77.	RFL	P involves		
	(A)	used to identify a specific DNA	(B)	used to identify a specific RNA
	(C)	used to identify a specific protein	(D)	used to identify both DNA and RNA

78.	Whi	ch of the following are vectors for anim	nals	
	(A)	CMV vectors and Gemini vectors		
	(B)	lambda phage and M13 phage vector	's	
	(C)	SV 40 vectors and Bovine papillomay	zirus v	ectors
	(D)	all of the above		
79.	Whi	ch of the following chemical enhances	vir ger	ne expression
	(A)	acetosyringone	(B)	cyanidin
	(C)	dextran	(D)	glutennin
80.	RNA	A is very much susceptible to hydrolysi	is in al	kali because
	(A)	it contains Uracil residues in its stru	ıcture	
	(B)	its 2' OH groove participate in is backbone	ntramo	olecular cleavage of phosphodiester
	(C)	cleavage occurs in the glycosilic bond	ls of pu	ırine bases
	(D)	cleavage occurs in the glycosilic bond	ls of py	vrimidine bases
81.		ch of the following fluorescent pro plification of Real Time PCR?	bes is	s used to monitor the progress of
	(A)	SYBR Green	(B)	FITC
	(C)	cyan Blue	(D)	rhodamine
82.		gs that either stabilize or depolyment motherapy. Which of the following is continuous they interfere with mitosis		
	(B)	they prevent chromatin condensation	o :	
	(C)	they prevent movement of tumor cell		other tissues
	(D)	they interfere with endocytosis		
83.	The	rate limiting step of fatty acid synthe	sis is c	atalyzed by
	(A)	acetyl CoA carboxylase	(B)	ATP citrate lyase
	(C)	malic enzyme	(D)	pyruvate dehydrogenase
84.	'Del	ay of senescence' due to cytokinin is al	so kno	own as
.	(A)	Melcher's effect	(B)	Richmond lang effect
	(C)	Braun & Wood effect	(D)	Skoog effect
85.		iochemical indication of vitamin B ₁₂ d nary excretion of	eficien	cy can be obtained by measuring the
	(A)	pyruvic acid	(B)	malic acid
	(C)	methyl malonic acid	(D)	urocanic acid
303		12		

00.	runy activated pyruvate carboxylase depends upon the presence of						
	(A)	malate and Niacin					
	(B)	acetyl CoA and biotin		•			
	(C)	acetyl CoA and thiamine pyrophosi	phate				
	(D)	oxaloacetate and biotin					
87.	Stain which is not useful in identifying fungus						
	(A)	giemsa	(B)	haematoxylin and eosin			
	(C)	gomori methanamine silver	(D)	PAS (periodic acid-Schiff)			
88.	Cot units are						
	(A)	rate of renaturation per sec	(B)	rate of denaturation per sec			
	(C)	rate of denaturation	(D)	rate of renaturation			
89.	A researcher performs a cross between 2 mice, both having black fur. Black for dominant over white for. 75% of the offspring have black coats and 25% have whitecoats. The researcher can assume that the parents genotypes were most likely:						
	(A)	$BB \times BB$	(B)	$BB \times Bb$			
	(C)	$BB \times bb$	(D)	$Bb \times Bb$			
90.	When bacteria produce mammalian proteins, cDNA is used rather than genomic DNA. Which of the following is the best explanation?						
	(A)	(A) it is not possible to clone the entire coding region of the gene.					
	(B)	(B) it is easier to clone cDNA than genomic DNA of comparable size.					
	(C)	(C) most eukaryotic gene promoters do not function in bacteria.					
	(D) most eukaryotic genes have introns that cannot be removed in bacteria						
91.	Which cyclin protein involves at late G1 phase of cell cycle						
	(A)	D	(B)	E			
	(C)	A	(D)	C			
92.	In mammalian cells, rRNA is produced mainly in						
	(A)	nucleus	(B)	ribosomes			
	(C)	nucleolous	(D)	cytoplasm			
93.	Caffeine promotes lipolysis by increasing cyclic AMP levels through its effect on the activity of the enzyme						
	(A)	adenylate cyclase	(B)	protein kinase			
	(C)	phosphodiestrase	(D)	calmodulin phosphorylase			

94.	Rice	bacteriai blight resistant gene				
	(A)	Xa21	(B)	hrp		
	(C)	Phz	(D)	Phl		
95.	Consider the following DNA sequence 5'-ATGGGCATAGACGATATGGTAG-3' if due to frame shift mutation there is insertion of G between 3rd and 4th position. Consider a reverse mutation occur in same mutated sequence. Which reverse mutation will have minimum effect in protein change					
	(A)) insertion of nucleotide between 5th and 6th position				
	(B)	deletion of nucleotide between 5th and 6th position				
	(C)	insertion of three nucleotide between 5th and 6th position				
	(D)	O) deletion of nucleotide between 11th and 12th position				
96.	The isoelectric point of alanine is 6.0. If alanine is dissolved in a buffer of pH 3.0 and subjected to electrophoresis					
	(A)	it will migrate to either anode or cath	ode			
	(B)	it will migrate to the cathode				
	(C)	some will migrate to the anode and some to cathode				
	(D)	it will migrate to the anode				
97.	Mucous which covers the epithelial lining of stomach and protects it from protease activity is secreted by					
	(A)	goblet cells	(B)	parietal cells		
	(C)	microvilli	(D)	acinar cells		
98.	The largest protein in the body is					
	(A)	desmin	(B)	nebulin		
	(C)	titin	(D)	calcineurin		
99.	Which of the following types of DNA replication or repair systems is dysfunctional in individuals with Xeroderma pigmentosum					
	(A)	base excision repair	(B)	mismatch repair		
	(C)	nucleotide excision repair`	(D)	DNA helicase		
100.	On a Ramachandran plot the entries for haemoglobin would be clustered around					
	(A)	All four corners	(B)	The left-handed alpha helix		
	(C)	The right handed alpha helix	(D)	The extended chain conformation		