ENTRANCE EXAMINATION FOR ADMISSION, MAY 2012.

M.Sc. (Chemical Sciences)

COURSE CODE: 369

Register Number	:		
		Signature of the Invigo	lator
		(with date)	

COURSE CODE: 369

Time: 2 Hours

Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	The	correct order of i	adii i	S				
	(A)	N <be<b< td=""><td></td><td></td><td>(B)</td><td>$F^- < O^{2-} < N^{3-}$</td><td></td><td></td></be<b<>			(B)	$F^- < O^{2-} < N^{3-}$		
	(C)	Na < Li < K			(D)	$\mathrm{Fe}^{3+} < \mathrm{Fe}^{2+} < \mathrm{Fe}$	e ⁴⁺	
2.		Ionization energ d E are related a		an element A	(g) is I a	and the electron	affinity of A+(g) is	s E.
	(A)	IE = 1	(B)	IE = -1	(C)	I = E	(D) $I = -E$	
3.		ch of the followi	ng m	etals when t	reated v	with cold dilute	nitric acid genera	ates
	(A)	Mn	(B)	Al	(C)	Fe	(D) Cu	
4.	The	first ionization e	nergy	of hydrogen	is			
	(A)	485 kj	(B)	$520 \mathrm{\ kj}$	(C)	1312 kj	(D) 1680 kj	
5.		solution of sodi	um n	netal in liqui	d ammo	onia is strongly	reducing due to	the
	(A)	Sodium atoms			(B)	Solvated electro	ons	
	(C)	Salvation			(D)	Solvated proton	s	
6.	Whi	ch of the followin	g met	als is used in	the pho	toelectric cell?		
	(A)	Si	(B)	Mg	(C)	Li	(D) Cs	
7.	A m	etal is burnt in a	ir and	the ash on m	noistenin	ng smells of amm	onia, the metal is	
	(A)	Na	(B)	Fe	(C)	Mg	(D) Al	
8.	Whi	ch of the followin	g oxio	les possesses	highest	melting point?		
	(A)	MgO	(B)	BeO	(C)	CaO	(D) SrO	
9.	In tl	he electrolysis of	alumi	na, crvolite is	added t	0		
	(A)	Lower the solub						
	(B)	Increase the ele	ctrica	l conductivity	7			
	(C)	Remove impuri	ties fr	om alumina				
	(D)	Minimize anodi	c effe	ct				
10.	On t	the addition of m	ineral	acid to an aq	ueous so	olution of borax, t	the compound form	ned
	(A)	Orthoboric acid			(B)	Pyroboric acid		
	(C)	Metaboric acid			(D)	Boron hydride		
369					2			

11.	Nur	mber of M-M bo	onds in [Re ₂ Cl ₈] ² – is						
	(A)	2	(B)	4	(C)	6		(D)	1	
12.		ich one is the co								
	(A)			ectroscopic pro	100				3	
	(B)			ctroscopic pro						
	(C)		lains the	spectroscopic	prope	rties of the	metal co	mpl	exes	
	(D)	None								
13.	The	order of d orbi	tal split	ting in the <i>Oh</i>	metal	complexes	is			
	(A)	eg,t_2g	(B)	dxz, dyz, dz^2	(C)	t_2g,eg		(D)	t_1u , e_ξ	$g, t_2 g$
14.	Kine	etic stability is	related	to labile and i	nert					
	(A)	No			(B)	Related t	o geomet	ry		
	(C)	Yes			(D)	Thermod	ynamic			
15.	Cu ((I) complexes a	re							
	(A)	Diamagnetic			(B)	Ferromag	gnetic			
	(C)	Not exist			(D)	None				
16.	Rela	ativistic effect p	resent i	n						
	(A)	Lanthanides			(B)	H				
	(C)	Kr			(D)	p-block	elements	3		
17.	FeC	p2 is an examp	le for							
	(A)	Inert complex			(B)	Stable co	mplex			
	(C)	Standard com	plex		(D)	Sandwich	complex			
18.	Spir	only formula	ean be u	sed to calculat	е					
	(A)	Heat of reacti	on for m	etal complexe	S					
	(B)	Formation con	nstant fo	or metal compl	exes					
	(C)	Spectral prop	erties of	transition me	tal con	nplexes				
	(D)	Magnetic mor	nent of t	ransition met	al com	plexes				
19.	Che	late effect is fav	vored be	cause						
	(A)	Addition reac	tion		(B)	Substitut	ion react	ion		
	(C)	AS = +ve			(D)	AS = -ve				

20.	d-d	transition is		
	(A)	Not favorable	(B)	Favorable
	(C)	Spin allowed	(D)	None
21.	In P	Cl ₂ F ₃ the chlorine atoms occupy the		
	(A)	Equatorial position of Trigonal bipyra	mid	
	(B)	Axial position of Trigonal bipyramid		
	(C)	Equatorial position of square pyramic	1	
	(D)	Axial, equatorial position of square py	ram	id
22.	Aluı	minium is used in thermite process owi	ng to	its high
	(A)	Metallic nature	(B)	Oxygen affinity
	(C)	Ductile nature	(D)	Thermal resistance
23.		llous fluoride (TIF) is highly soluble ause the former has	in wa	ater compared to its Iodide analogue
	(A)	Lower hydration energy	(B)	Lower lattice energy
	(C)	Higher lattice energy	(D)	Higher hydration energy
24.	The	Lewis acidity of BMe ₃ , BH ₃ , BF ₃ , BBr ₃ ,	BI ₃	are in the order of
	(A)	$BMe_3>\!BH_3>\!BF_3\!\!>\!BBr_3\!\!>\!BI_3$	(B)	$BMe_3>BF_3>BBr_3>BI_3>BH_3$
	(C)	$BH_3 > BI_3 > BF_3 > BBr_3 > BMe_3$	(D)	$BI_3>BBr_3>BF_3>BH_3>BMe_3$
25.	Sily	l chloride on reduction with metallic so	dium	yields
	(A)	SiH_2Cl_2	(B)	SiH₃Na
	(C)	Si_2H_6	(D)	SiH ₄
26.	Rub	y, a sparkling red gemstone is made fro	om co	rundum (Al ₂ O ₃) by replacing Al ³⁺ with
	(A)	Ir^{3+} (B) Cr^{3+}	(C)	V^{3+} (D) Fe^{3+}
27.		stability of MBr4 among carbon fami son for the observed trend is due to —		
	(A)	Increasing oxidizing nature	(B)	Increasing reducing nature
	(C)	Decreasing oxidizing nature	(D)	Decreasing reducing nature
28.	Wij	s reagent used in determination of Iodi	ne nı	umber of fats and oil is
	(A)	I ₂ /acetic acid	(B)	ICI/acetic acid
	(C)	Br2/n-propanol	(D)	Alkaline KMnO4

- 29. Super acid is stronger than 100%
 - (A) HNO₃

(B) H₂SO₄

(C) HF

- (D) H₃PO₄
- 30. The coordination number of fluoride ion in SrF2 and CsF crystal lattices are _____ and ____ respectively
 - (A) 8, 8
- (B) 4,6
- (C) 6,6

- (D) 4,8
- 31. Triphenylmethanol on reaction with HCl produces triphenylmethyl chloride. The reaction is an example for
 - (A) S_N1
- (B) S_N2
- (C) S_N2'
- (D) S_Ni
- 32. Which one of the following halides does not undergo substitution reaction with NaCN?
 - (A) Benzyl chloride

(B) 3-Chlorocyclohexene

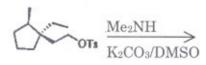
(C) Vinyl chloride

- (D) Ethyl bromide
- 33. Reaction of benzoic acid with 2-methyl-propene in presence of sulfuric acid produces
 - (A) 3-tButylbenzoic acid

(B) 3,5-di-tbutylbenzoic acid

(C) Butyl phenyl ketone

- (D) 'Butyl benzoate
- 34. The relative solvolysis rates of the bridge head bromides I, II, III is in the following order



(A) I>II>III

(B) I>III>II

(C) III>I>II

- (D) II>I>III
- 35. Predict the product formed in the following reaction

(A) NMe2

(B) NMe₂

(C) NMe2

(D)

- 36. Predict the product formed in the following transformation trans-2-Phenylcyclohexyl tosylate + t BuO $^ \rightarrow$
 - (A) trans-2-Phenylcyclohexyl t-butyl ether
 - (B) 3-Phenylcyclohexene
 - (C) 1-Phenylcyclohexene
 - (D) cis-2-Phenylcyclohexyl t-butyl ether
- 37. Which one of the following hexachlorocyclohexane is the least reactive in dehydrohalogenation reaction?

- 38. Major product formed in the reaction of 4-pentene-1-ol with dilute sulfuric acid is
 - (A) 2-Methyl-tetrahydrofuran
- (B) Tetrahydropyran

(C) 1,3-Pentadiene

- (D) 1-Pentanol
- 39. One of the following pair of substrates undergo substitution reaction under both S_N1 and S_N2 mechanism
 - (A) Benzyl bromide and n-butyl bromide
 - (B) Benzyl bromide and t-butyl bromide
 - (C) Allyl bromide and benzyl bromide
 - (D) Allyl bromide and t-butyl bromide
- 40. Identify the major product formed in the following reaction

(A) 1,3-Diiodobenzene

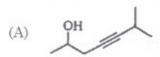
- (B) 1,3 Dimethoxy-2-iodo benzene
- (C) 1,3-Diiodo-4,6-dimethoxy benzene
- (D) Resorcinol

41.	Rea	ction of benzan	nide with	n Lawesson's	reagen	t yields		
	(A)	Benzothiazole	е		(B)	Thiobenzamide)	
	(C)	Benzyl thioca	rbamate	9	(D)	Thiophenol		
42.	How	many 13C sign	nals wou	ld be observe	d for 1,3	-dimethylbenzn	e?	
	(A)		(B)		(C)		(D) 5	
43.	An i	ntense band ap	opears a	t 1715 cm ⁻¹ ir	ndicates	the presence of		
	(A)	Alcohol				2° amine		
	(C)	Ketone			(D)	Nitro group		
44.	Anil	ine shows ——		— shift, whi	le meas	uring the UV spe	ectra at low	er pH.
		Blue shift		50 SS		Red shift		
	(C)	Green shift			(D)	Yellow shift		
45.	Arra	ange the follow	ing anio	ns in the incr	easing o	order of stability		
		0		0,0		Q		
	I.	Ph∕S\CH ₂	II.	Ph S	III.	Ph-S		
	(A)	I>II>III			(B)	II>III>I		
	(C)	III>I>II			(D)	II>II>I		
46.	Prin	nary alcohol ca	n be con	verted to ald	ehyde se	electively using		
	(A)	Sulfuric acid	/ Potassi	ium dirchron	nate			
	(B)	Potassium hy	droxide	/ Potassium	permang	ganate		
	3.	Osmium tetro		_				
	(D)	Oxalyl chloric	de/dimet	hyl sulphoxid	de/trieth	ylamine		
47.	Arra	ange the follow	ing subs	trate in the i	ncreasin	g order of acidit	у	
		li T	HOOH		СООН	,,,	Соон	
	I	MeO		II.	J	III. NC		
	(A)	III <ii<i< td=""><td></td><td></td><td>(B)</td><td>II<iii<i< td=""><td></td><td></td></iii<i<></td></ii<i<>			(B)	II <iii<i< td=""><td></td><td></td></iii<i<>		
	(C)	I <ii<iii< td=""><td></td><td></td><td>(D)</td><td> < </td><td></td><td></td></ii<iii<>			(D)	<		
48.	Iden	ntify the strong	est base	from the list	of follow	ving molecules		
	(A)	Et ₂ N			(B)			

(C)

Me₂N

(D)


- 49. One of the following sulfur reagent can exist as chiral compound
 - (A) PhSCH₃

(B) PhSO₂OH

(C) PhSOCH₃

(D) PhSO₂CH₃

 Identify the appropriate structure, which corresponds to the name 2-methyl-4heptyn-2-ol

(B) **OH**

(C) OH

(D) **OH**

- 51. Which one of the following species possesses the tetrahedral bond angle?
 - (A) H₃C⁺

(B) NH₄

(C) H₂N⁻

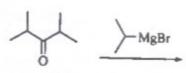
(D) BF₃

52. Identify the product formed in the following reaction

(A) HOOC OH O

(B) H₂N OH O

(C) HO COOH


- (D) H₂N
- 53. 4-Chloronitrobenzene gives the following ¹H-NMR signals
 - (A) 2 doublets

(B) 1 doublet and 1 singlet

(C) 1 triplet

(D) 4 singlets

54. Predict the product formed in the following reaction

(A) OH

(B)

(C) OH

(D)

- 55. Reaction of alkyl lithium with carbon dioxide gives
 - (A) Carboxylic acid

(B) Aldehyde

(C) Ketone

- (D) Ester
- 56. Identify the product formed in the following transformation

(A) 2000

(B) OH OEt

(C) OH

- (D) OH
- 57. Reaction of one mole of benzyl benzoate with lithium aluminum hydride gives
 - (A) 1 Mole of benzyl alcohol + 1 mole of benzaldehyde
 - (B) 1 Mole of benzyl alcohol + 1 mole of benzoic acid
 - (C) 2 Moles of benzaldehydes
 - (D) 2 Moles of benzyl alcohols
- 58. Reaction of 1,6-dibromohexane with ethyl acetoacetate in presence of excess sodium ethoxide followed by hydrolysis at higher temperature gives
 - (A) Cyclohexanecarboxylic acid
- (B) Cyclopentanecarboxylic acid
- (C) Cyclohexyl methyl ketone
- (D) Cyclopentyl methyl ketone
- 59. Which of the following compounds exchanges the largest number of hydrogens for deuterium when treated with KOD in D_2O ?
 - (A) 3-Methyl-1,2-cycloheptanedione
- (B) 2-Methyl-1,3-cycloheptanedione
- (C) 5-Methyl-1,3-cycloheptanedione
- (D) 6-Methyl-1,4-cycloheptanedione
- 60. An organic compound exhibited the following resonances in 1H NMR spectrum. A triplet at δ 125, a singlet at 2.0 and a quartet at 4.1 ppm. The compound is
 - (A) H₃CCH₂COOCH₃

(B) H₃CCOOCH₂CH₃

(C) H₃CCOCH₂OCH₃

- (D) H₃CCH₂COCH₃
- 61. The efficiency of Carnot's heat engine is the fraction of heat absorbed to converted by it
 - (A) Energy

(B) Work

(C) Pressure

(D) Chemical change

	(A)	-0.059 V (B) 0.05	59 V (C)	0.118 V	(D) -0.118 V
65.		rding to the theory of heter t supposed to consist of the			ng place on a surface
	(A)	Diffusion of gases to the s	urface		
	(B)	Adsorption of gases on the	surface		
	(C)	Reaction on the surface			
	(D)	Desorption and diffusion of	of products from	bulk to the surfac	be
66.		coordination numbers of ngement respectively are	hexagonal close	e packing and l	oody centered cubic
	(A)	12 and 12 (B) 8 as	nd 8 (C)	12 and 8	(D) 8 and 12
67.	The	selection rule for rotationa	l Raman spectra	is	
	(A)	$\Delta J = 0, \pm 1$ (B) ΔJ	$=0,\pm 2$ (C)	$\Delta J=\pm 1$	(D) $\Delta J = \pm 2$
68.	Calc	culate the initial concentrate	tion of the reacta r is 0.04 moles/li	nt in zero order r tre, (k ₀ = 0.28 (mo	eaction, in which the bles/litre)hour ⁻¹ .
	(A)	0.6 moles/litre	(B)	0.06 moles/litre	
	(C)	0.3 moles/litre	(D)	0.03 moles/litre	
69.		permitted energy values f following expression.			
	(A)	$E_{r} = [h^{2}/8\pi^{2}\mu]J(J+1)$ er	rgs (B)	$E_{\rm r} = \left[h^2 / 8 \pi^2 I \right] \epsilon$	J(J+1) ergs
	(C)	$E_r = [\mu^2 / 8\pi^2 I]J(J+1) er$	gs (D)	$E_r = \left[h^2 / 8 \pi I^2 \right]$	J(J+1) ergs
369			10		

(A) In $[Kc_1/Kc_2] = \Delta E/R[1/T_1 - 1/T_2]$ (B) In $[Kc_2/Kc_1] = \Delta E/RM [1/T_1 - 1/T_2]$ (C) In $[Kc_2/Kc_1] = \Delta E/R[1/T_1 - 1/T_2]$ (D) In $[Kc_2/Kc_1] = \Delta E/R[1/T_2 - 1/T_1]$

What is the emf of the cell ; Ag/AgNO_3(C_1)//sat.NH4 NO_3//AgNO_3 (C_2)/Ag C_1 = 0.01 N;

Consider a simple eutectic system, in which the following statement is wrong.

the two components are completely miscible in liquid state

62. The integrated form of Vant' Hoff isochore is

they do not form any compound

(D) they form a new compound

(C) this is useful in the study of alloys in metallurgy

 $C_2 = 0.001N$ and RT/nF [loge10] = 0.059 at 25°C.

63.

64.

(B)

70.	One mole of methane releases 94.8 kJ of energy on combustion, calculate the energy released by the combustion of 0.4 g of methane.							
	(A)	237 kJ			(B)	23.7 kJ		
	(C)	$2.37~\mathrm{kJ}$			(D)	$0.237~\mathrm{kJ}$		
71.	all	specific heat of independent, an mon frequency.	d that	each aton	n acts as	ssuming that the atoms in a solid are s simple harmonic oscillator with a		
	(A)	Einstein			(B)	Dulong		
	(C)	Mitchell			(D)	Oswald		
72.	an e	example of the fol	llowing			\longrightarrow CH ₂ =C=O \longrightarrow 1/2C ₂ H ₄ + CO is		
	(A)	Parallel reaction	n		(B)	Consecutive reaction		
	(C)	Reversible reac	tion		(D)	Fractional order reaction		
73.		quantum yield o 7°C is	f decon	position of	HI;2HI -	\longrightarrow H ₂ + I ₂ , using 253 nm photolysis		
	(A)	4	(B)	2	(C)	1 (D) 0.5		
74.		ording to Joule-T ssure. Above this						
	(A)	Inversion temp			(B)			
	(C)	Specific temper	ature		(D)	Constant temperature.		
75.	Find	d out the molecul	e that l	nas definite	dipole m	oment		
	(A)	CS_2			(B)	trans-PtCl ₄		
	(C)	HgCl_2			(D)	N_2O		
76.	Calc	ulate the molecu	lar wei vertica	ght of a gas l distance o	if the pr f 100 m a	essure of the gas falls to about half of at 27 °C.		
	(A)	1.76	(B)	17.6	(C)	3.52 (D) 35.2		
77.	In a	titration reaction e observed, what t (min) KMnO ₄ (n	is the o	reen H ₂ O ₂ vorder of deco 0 25	with KMn omposition 10 20	nO ₄ , the following experimental data on of hydrogen peroxide? 30 40 16 10		
	(A)	Zero order			(B)	First order		
	(C)	Second order			(D)	Third order		

78.		coagulating pow ording to activity.	er of anion on po	sitively c	harged sols	can be mad	le into a ser	ies
	(A)	$Cl^- > PO_4^{3-} 3 >$	$SO_4^{2-} \ge Fe(CN)_4^{4-}$	(B)	$PO_4^{3-} > Cl^-$	$> SO_4^{2-} > F$	$e(CN)_4^{4-}$	
	(C)	Fe (CN) 4-> SO	$_{4}^{2-} > PO_{4}^{3-} > Cl^{-}$	(D)	Fe (CN) 4->	$PO_4^{3-} > SO$	$_{4}^{2-} > C1^{-}$	
79.	The	phase diagram o	of sulfur can be re	presented	using			
	(A)	One component	t, one phase	(B)	One compo	nent, two p	hases	
	(C)	One component	t, three phases	(D)	One compo	nent, four p	phases	
80.			Zn (amalgam) (aı) / ZnSe	O ₄ (solution)	/Zn (amalg	(am) a ₂ can	be
		resented as		an:				
		$E = RT/nF [log_t]$	1 10 10 10 10 10 10 10 10 10 10 10 10 10	(B)	E = R/TnF	[log _e a ₁ /a ₂]		
	(C)	$E = RT/nF [log_{\theta}]$	-a ₁ /a ₂]	(D)	E = RT/nF	[log _e a ₁ a ₂]		
81.	In	the titration	of warm ox	kalic aci	id by po	tassium	permangana	ite:
	5 C	$_{2}O_{4}^{2-}$ + 2 MnO $_{4}^{-}$ +	- 16 H+ → 2 M	n ²⁺ +10 C	$O_2 + 8 H_2O$,	first few di	rops are slov	vly
	deco	olorized but after	definite time the	decolouri	zation is fast	t, this is du	e to	
	(A)	$C_2O_{4}^{2-}$	(B) MnO ₄	(C)	Н	(D)	Mn^{2+}	
82.	The	first order reflec	ction from (100) p	lanes of r	ock salt and	KCl occur	red at 5.9° a	ind
	5.3°	respectively, the	en the ratio of mol	lecular vol	lume is;			
	(A)	1.37	(B) 13.7	(C)	0.137	(D)	0.0137	
83.	The	Gibbs-Helmholt	z equation is repr	esented a	s			
	(A)	$\Delta G = \Delta H + T$ [$\delta(\Delta G)/\delta T]_v$	(B)	$\Delta \mathrm{G} = \Delta \mathrm{H} +$	Τ [δ (ΔG)/δ	$T]_p$	
	(C)	$\Delta G = \Delta H + T \left[\delta \right]$	$(\Delta G)/\delta H]_p$	(D)	$\Delta G = \Delta H +$	Т [δ (ΔΗ))	$(\delta T]_p$	
84.	The	reaction : H ₂ S +	$Br_2 \longrightarrow 2HBr$	+ S produ	ces			

(C)

(A) Sulfur solution

Sulfur sol

(D)

(B) Sulfur precipitate

Sulfur gel

85.	Calculate the parachor value for quinine. (parachors for $C = 4.8$, $H = 17.1$, $O = 20.1$, double bond = 23.1, and six members ring = 6.2).								
	(A)	21.91	(B)	219.1	(C)	2.191	(D)	0.2191	
86.	add (A)	en ammonium ition of little a	amount of nent	is in equilib f HCl will m	rium with	h ammonia a ystem	nd HCl in	a closed vesse	
	(B)	Two compor							
	(C)	Three comp							
	(D)	Three comp	onent sys	tem with con	mpound f	ormation			
87.	the	n adsorption curve between	n a and T	if the pressu is called;	re is kep	t constant ar	ıd temper	ature is varie	
	(A)	Adsorption	isotherm		(B)	Physisorptic	on		
	(C)	Chemisorpt	ion		(D)	Adsorption	isobar		
88.	In a	body centere	d cubic la	attice, the fra	action of	the total volu	іте оссир	ied the spher	
	(A)	0.68	(B)	0.068	(C)	0.0068	(D)	0.00068	
89.		rotational sp s with spacing					sists serie	s of equidista	
	(A)	16.3 A°	(B)	$1.63~\mathrm{A}^{\circ}$	(C)	$0.163~\mathrm{A}^{\mathrm{o}}$	(D)	$3.26~\mathrm{A}^{\circ}$	
90.	Hess law states that the enthalpy of sublimation (ΔH_{sub}) can be obtained from enthalpy of fusion (ΔH_f) and enthalpy of vapourization (ΔH_v) as given below (A) $(\Delta H_{sub}) = (\Delta H_f) - (\Delta H_v)$ (B) $(\Delta H_{sub}) = (\Delta H_f) (\Delta H_v)$								
	(0)	$(\Delta H_{\text{sub}}) = (\Delta H_{\text{sub}})$	Δ H _f) / (Δ)	(1v)	(D)	$(\Delta H_{\text{sub}}) = (\Delta H_{\text{sub}})$	$\Delta H_f) + (\Delta$	H ^v)	
91.		and Q are pos are of $(P + Q)$?	sitive inte	gers where	$\sqrt{(PQ)} = 0$	8, which of th	e followin	g cannot be tl	
	(A)		(B)	35	(C)	20	(D)	16	
92.		average of 10 rage is 81. If h					scores are	e dropped, the	
	(A)	80	(B)	78	(C)	76	(D)	60	
93.	The	value of ∫log	x dx						
	(A)	$x \log x - 1$	(B)	$x(\log x - 1)$	(C)	$\log x - x$	(D)	1/x+c	

- The value of combination, $\,^{n+1}\mathrm{C_r}-^{n}\mathrm{C_{(r-1)}}$
 - (A) $^{n+1}C_{r-1}$
- (B) ${}^{n}C_{r+1}$ (C) ${}^{n}C_{r}$
- (D) 1

- 95. $\int_{0}^{\pi/4} (\cos^2 x) dx =$

- (A) $\pi/8+1/4$ (B) $\pi/8-1/4$ (C) $-\pi/8-1/4$ (D) $-\pi/8+\frac{1}{4}$
- If $z = \log(x^2 + y^2)$, then $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y}$ is
 - (A) 1
- (B) $(x^2 + y^2)$ (C) 2

(D) $2(x^2 + y^2)$

- The eigenvalues of matrix $\begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix}$
 - (A) 1,1
- (B) 1,2
- (C) 1,4
- (D) 2,4

- If $AT = A^{-1}$, then the matrix A is
 - Normal matrix

Symmetric

Orthogonal

- (D) Hermitian matrix
- Maxima and Minima of the function, $f(x) = 2x^3 15x^2 + 36x + 10$ 99.
 - (A) 3, 2
- (B) 1, 3
- (C) 1, 4
- (D) 3, 4
- 100. Limit the following series as $x \to \pi/2$, $f(x) = x x^3/3! + x^5/5! x^7/7! + \cdots$
 - (A) π/3
- (B) π/2
- (C) 0

(D) 1