ENTRANCE EXAMINATION FOR ADMISSION, MAY 2013.

M.Sc. (CHEMICAL SCIENCES)

COURSE CODE: 369

Regi	ster Number :		
			Signature of the Invigilator (with date)
	·		<u></u>

COURSE CODE: 369

Time: 2 Hours

Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each of the question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.		ch one of the cial charge?	е юпоми	ng moiecules (contan	is the oxygen	atom w	ith the largest
	(A)	H ₂ C=O	(B)	СН ₃ -О-СН ₃	(C)	СН3-ОН	(D)	НОН
2.		en HCO is allo wn as?	owed to s	tand at room to	empera	ature, a white	solid is fo	ormed, which is
	(A)	dioxane	(B)	trioxane	(C)	hexane	(D)	acetaldehyde
3.	Und		nditions	is the radic		and the second s		nalogen radical. ping C-radical
	(A)	The transiti	on state i	s early and res	semble	s the product		
	(B)	The transiti	on state i	s late and rese	mbles	the reagents		
	(C)	The transiti	on state i	s late and rese	mbles	the product		
	(D)	The transiti	on state i	s early and res	semble	s the reagents		
4.	How	v many stereo	isomers e	exist for 2,3-dik	romob	utane?	•	
	(A)	only one ste	reoisome	r: the <i>meso</i> for	m	•		
	(B)	three stereo	isomers:	the <i>meso</i> form	and a	pair of enantio	mers	
	(C)	four stereois	somers: t	wo pairs of dia	stereoi	somers		
	(D)	two stereois	omers: th	ne <i>meso</i> form a	nd its e	enantiomer		•
5 .	Why	y do polar apr	otic solve	nts increase th	e rate:	s of S _N 2 reaction	ons?	
	(A)	Aprotic solve	ents alwa	ys have low po	olarity			•
	(B)	Aprotic solv reactive	ents solv	ate the nucleor	hile le	ss, and "naked	d" nucleo	philes are more
<u>ن</u> د	(C)	Aprotic solv reaction	ents rais	e the energy of	of the	products and	therefore	accelerate the
	(D)	Aprotic solv reaction	ents bet	ter solvate the	leavir	ng group and	therefore	accelerate the
6.			•	ogenation of 2 llowing statem			tane witl	n ethoxide and
	(A)	Saytzeff pro	duct is m	ajor product ir	both o	cases	•	•
	(B)	Hofmann pr	oduct is	major product	in both	cases		
	(C)	Ethoxide giv	ves more.	t-butoxide giv	e less l	Hofmann prod	uct	

(D) Ethoxide gives more, t-butoxide gives less Saytzeff product

7.	Wha	at is product formed in the treatmen	t of cycl	lopentene with bromine water?	
	(A)	cis-3-bromocyclopentanol	(B)	trans-3-bromocyclopentanol	
	(C)	trans-2-bromocyclopentanol	(D)	cis-2-bromocyclopentanol	
8.		know that terminal alkynes are stren that, what can you say about the	_	acids compared to alkenes and alkanes. y of their corresponding anions?	
	(A)	Basicity: acetylide < vinyl anion >	carbani	ion	
	(B)	Basicity: acetylide > vinyl anion >	carbani	ion	
	(C)	Basicity: acetylide < vinyl anion <	carbani	ion	
	(D)	Basicity: acetylide > vinyl anion <	carbani	ion	
9.		addition of a carbon nucleophile to ch statement about the alkoxide ion		onyl compound leads to an alkoxide ion. ot apply?	
	(A)	The alkoxide can be protonated by	dilute a	acid to the alcohol	
	(B)	The former carbonyl carbon has be	en rehy	ybridized from sp^2 to sp^3	
•	.(C)	The O-atom carries a negative cha	rge		
	(D)	The bond between the alkoxide and	d the m	netal cation is dominantly covalent	
10.		at is the oxidative transformation lation"?	that	can be accomplished by the "Swern	
	(A)	primary alcohol to carboxylic acid			
	(B)	primary alcohol to aldehyde			
	(C)	secondary alcohol to ketone	•		
	(D)	aldehyde to carboxylic acid			
11,	Wha	at is the "base peak" in a mass spect	rum?		
•	(A)	the peak with the lowest intensity			
•	(B)	the peak with the highest m/z val	ue		
	(C)	the peak that is due to the ionized	and no	on-fragmented molecule	
	(D)	the peak with the highest intensity	y -		
, .					

12.	kind			ne and 2-bromopropane. How many tlent hydrogen nuclei are there in each
	(A)	1-isomer: 2. 2-isomer: 3	(B)	1-isomer: 3. 2-isomer: 2
	(C)	1-isomer: 2. 2-isomer: 8	(D)	1-isomer: 8. 2-isomer: 8
13.		¹ H-NMR spectrum of compound X nsity ratio 3:1. Identify the compoun		methyl and methylene signals in the
	(A)	$(CH_3)_2C(CH_2Br)_2$	(B)	(CH ₃) ₃ C-CH ₂ Br
	(C)	$(CH_3)_2CBr$ - CH_2Br	(D)	$\mathrm{CH_{3}\text{-}C}(\mathrm{CH_{2}Br})_{3}$
14.		at is catalyst used in the bimolecu hyl ether?	lar del	nydration of ethyl alcohol to produce
	(A)	$Hg(SO_4)$ (B) H_2SO_4	(C)	NaHCO ₃ (D) NaOH
15.		at is the final product, X, of the series $X \mapsto W \xrightarrow{H_2O} X$	the fol	lowing sequence of two reactions?
	(A)	1,2-cyclohexanediol	(B)	1,2-dichlorocyclohexene
	(C)	epoxycyclohexane	(D)	2-chlorocyclohexanol
16.		ich of the following is most effect leophilic displacement from an allyli		stabilizing the transition state of a or tosylate?
	(A)	interaction of the nonbonding electrons of the leaving group	trons of	f the nucleophile with the nonbonding
	(B)	overlap of the p orbital of the react orbitals of the pi bond	ing car	bon, in the transition state, with the p
	(C)	a relief of the steric requirements of	of the al	lylic system
	(D)	none of the above		
17.	Wh	ich one of the following is not a requi	rement	for an aromatic compound?
	(A)	All the unhybridized p orbitals mu	st overl	ap in a continuous ring
	(B)	The electronic energy of the comp the pi electrons over the ring	ound n	nust be decreased by delocalization of
	(C)	The compound must be cyclic, with	conjug	ated pi bonds
	(D)	The total number of pi electrons m	ust be e	evenly divisible by 4

- 18. What unusual characteristic does a halogen substituent exhibit in electrophilic aromatic substitutions?
 - (A) It is deactivating but ortho/para directing
 - (B) It is activating but meta directing
 - (C) It is activating but exclusively ortho directing
 - (D) It is deactivating and directs to all positions equally
- 19. What is product B of the following 2-step reaction?

Step 1: ethylbenzene + CH₃-CO-Cl, AlCl₃, then H₂O → Product A

Step 2: Product A, Zn(Hg), and aq. HCl → Product B

(A) m-diethylbenzene

(B) o-diethylbenzene

(C) p-ethylacetophenone

- (D) p-diethylbenzene
- 20. What is the product of the reaction of propionic acid with ethyl lithium?
 - (A) 3-ethyl-3-pentanol

(B) 3-pentanone

(C) ethyl propyl ketone

- (D) ethyl acetate
- 21. What is the product, C, of the following sequence of reactions?

- 22. What product results from the reductive amination of acetaldehyde with aniline?
 - (A) C₆H₅-NH-CH₂-CH₃

(B) C₆H₅-N(CH₂-CH₃)₂

(C) (C₆H₅)₂-N-CH₂-CH₃

(D) C₆H₅-NH-CO-CH₃

The Commence of the Commence o

23.	Whi	ch one of the following	g contains a <i>thio</i> e	ester i	unctional group?			
	(A)	nylon 6,6 (B)	erythromycin	(C)	coenzyme A	(D)	penicillin	
24.	of I	ition of a small amou D-glucose and two osaccharides?			= ,			
	.(A)	D-mannose and D-fr	ructose	(B)	D-mannose and	L-ma	nnose	
	(C)	L-glucose and D-gal	actose	(D)	D-erythrose and	l D-th	reose	
25.		at is the product obta yceraldehyde?	ained when the	Kiliaı	ni-Fischer synthe	sis is	carried ou	ıt on
,	(A)	D- and L-erythrose		(B)	D- and L-threos	e	v	-
	(C)	D-threose and D-ery	throse	(D)	D-ribose			
26.	Wha	at is the purpose of the	e Edman degrade	ation	in peptide analys	is?		•
	(A)	to locate all -S-S- lin	kages			٠	•	
	(B)	to identify the N-ter	minal amino acid	i				
	(C)	to identify the C-terr	minal amino acio	i				
	(D)	to determine which	amino acids mak	e up	the peptide		· ·	
27.	Pred	lict the product of the	reaction: C ₆ H ₅ N	₂ Cl +	$CuCl \rightarrow ? + N_2$.			-
•	(A)	$C_6H_5NH_2$ (B)	C ₆ H ₅ NH ₂ .HCl	(C)	$\mathrm{C_6H_5OH}$	(D)	$\mathrm{C_6H_5Cl}$	
2 8.		at are the products of ase? (Ph- = C_6H_5)	the reaction of a	acetop	henone with exce	ess I ₂	in the pres	ence
٠	(A)	PhC(O)-Cl ₃		(B)	PhC(O)-CHl ₂			
	(C)	m-iodoace t ophenone	•	(D)	PhC(O)-CH ₂ l		•	
29.	Men	ntion the product from	the reaction of g	glycin	e with acetic anh	ydride	?	
	(A)	CH ₃ -CO-NH-CH ₂ -CO	O ₂ H	(B)	H ₂ N-CH ₂ -CO-C	O-CH	3	
	(C)	H ₂ N-CH ₂ -CO-O-CO-	CH ₃	(D)	H ₂ N-CH ₂ -CO-O	-CO-C	H ₂ -NH ₂	
30.	Whi	ch of the following is	a copolymer?				,	
	(A)	Natural rubber (B)	Nylon 6,6	(C)	Orlon	(D)	Teflon	

31.		mine has two naturally occurring isot		
·		. In the mass spectrum of naturally ear as	occu	rring dibromine, the parent ion wil
	(A)	two peaks of equal intensity		
	(B)	three peaks of equal intensity		
	(Ç)	three peaks with an approximate int	ensity	ratio 1:2:1
	(D)	one peak	:	
32.	Find	I out the product in the autoionization	in sol	vent sulphur dioxide :
· -	SO_2	$+ SO_2 \leftrightarrow ? + SO_3^2$		
	(A)	Thionyl ion (B) Sulphite ion	(C)	Sulphide ion (D) Oxide ion
33.	are	culate the dipole moment, µ of a diaton separated at a distance of 2 Å apart (e	lectric	charge $e = 1 \times 10^{-10} \text{ esu}$).
	(A)	6.7×10^{-28} coulomb.cm	(B)	3.4×10^{-28} coulomb.cm
	(C)	6.7×10^{-18} coulomb.cm	(D)	6.7×10^{-28} coulomb.m
34.		sider X_2 molecules for which $X = B$ ervation provides experimental evidence		•
	(A)	O ₂ is paramagnetic	(B)	N ₂ is diamagnetic
	(C)	B ₂ is paramagnetic	(D)	F ₂ is diamagnetic
35.	The	product of the a- decay of ²³⁴ 92U is giv	en as	•
	(A)	²³⁰ ₉₂ U (B) ²³⁰ ₉₀ Th	(C)	$^{234}_{93}$ Np (D) $^{234}_{90}$ Th
36.	The	correct order of size of the ions is: Br,	I , M	g ²⁺ , Ca ²⁺
	(A)	$Br < I > Mg^{2+} < Ca^{2+}$	(B)	$Br > I > Mg^{2+} < Ca^{2+}$
	(C)	$Br < I > Mg^{2+} > Ca^{2+}$	(D)	$Br > I > Mg^{2+} > Ca^{2+}$
37.	The	conjugate acid of [Ti(OH ₂) ₅ (OH)] ²⁺ is	ž	
* · • · · · ·	(A)	$[(H_2O)_4Ti(\mu\text{-}OH)_2Ti(OH_2)_4(OH)]^{4+}$	(B)	[Ti(OH ₂) ₄ (OH) ₂] +
	(C)	[Ti(OH ₂) ₅ O] ⁺	(D)	[Ti(OH ₂) ₆] ³⁺

38.	In w	hich of the follow	ring t	he metal is redi	uced? ((these are not ba	lanced	equations.	.)
	(A)	[Fe(CN) ₆] ⁴⁻		[Fe(CN) ₆] ³ -	(B)	[MnO ₄] ———	M	nO_2	
	(C)	[MnO ₄] ²	→ []	MnO4]	(D)	[Cr ₂ O ₇] ²	<u>→</u> [C	crO4]	
39.	Whi	ch of the followin	g is a	Lewis acid?					٠
	(A)	$[SbF_6]$	(B)	[AlCl ₄]	(C)	$\mathbf{BF_3}$	(D)	NF ₃	
40.	Sila	ne reacts with sil	ver n	itrate to produc	e the i	following compou	ınd		٠.
	(A)	Silicon dioxide	(B)	Silver metal	(C)	Silver ion	(D)	Silicon	
41.	Wha	at happens when	Al di	ssolves in aqueo	ous Na	ЮН?			
	(A)	Soluble NaAl(O	H)4 f	orms	•		•	.	
	(B)	Al ₂ O ₃ precipitat	es						
	(C)	Al(OH) ₃ precipi	tates						
	(D)	[Al(OH ₂) ₆] ³⁺ for	ms w	hich releases H	[+				
42.	Wha	nt is calgon that i	s usei	ful in softening	of har	d water?			
	(A)	Silver metaphos	sphat	e	(B)	Sodium hexa m	etaph	osphate	•
	(C)	Calcium phospl	nate	¥	(D)	Magnesium py	rophos	phate	
43.	The	substance used i	n sm	oke screen is kn	own a	s	·. · ·		
•	(A)	Calcium fluorid	.e	•	(B)	Sodium chlorid	e		
	(C)	Zinc phosphate	٠.		(D)	Calcium phosp	hide		
44.		ch of the followin	_			et sequence of bo	nd ent	halpy term	ıs fo
	(A)	C-C < Si-Si < C	i ie-Ge	< Sn-Sn	(B)	C-C > Si-Si > 0	Ge-Ge	> Sn-Sn	,
	(C)	C-C > Si-Si < C	e-Ge	> Sn-Sn	(D)	C-C < Si-Si < C	Ge-Ge	> Sn-Sn	•
45 .	Pred	lict the type of re	actio	n in which the c	onver	sion is : H ₃ PO ₄ to) H ₄ P ₂ (O ₇	
	(A)	Reduction	(B)	Oxidation	(C)	Condensation	(D)	Hydrolys	is

- 46. Which statement about H₂O₂ is *incorrect*?
 - (A) H₂O₂ is kinetically stable with respect to decomposition to H₂O₂ and O₂
 - (B) H₂O₂ is thermodynamically stable with respect to decomposition to H₂O₂ and O₂
 - (C) H₂O₂ is explosive when in contact with readily oxidized material
 - (D) H₂O₂ readily reacts with Cl₂ to release O₂
- 47. Which of the following *correctly* describes the trends in values of Pauling electronegativities (χ^p) and ionic radii (r_{ion}) ?
 - (A) $\chi^{P}: F > Cl > Br > I; r_{ion}: F > Cl > Br > I$
 - (B) $\chi^{P}: F < Cl < Br < I ; r_{ion}: F > Cl > Br > I$
 - (C) $\chi^{P}: F > Cl > Br > I; r_{ion}: F < Cl < Br < I$
 - (D) $\chi^{P}: F < Cl < Br < I$; $r_{ion}: F < Cl < Br < I$
- 48. Optical isomerism is shown by octahedral complexes having
 - (A) Two trans bidentate ligands
- (B) Three bidentate ligand
- (C) Six monodentate ligands
- (D) Two trans monodentate ligands
- 49. "Zn²⁺ complexes are atypical of d-block complexes in general." Which answer below is correct and supports this statement?
 - (A) Zn²⁺complexes are paramagnetic
 - (B) Zn²⁺complexes tend to be colourless
 - (C) Zn²⁺complexes are always octahedral
 - (D) Zn²⁺is one of the several oxidation states of Zn
- 50. Which statement is *incorrect* about typical metal carbonyl complexes $M(CO)_n$?
 - (A) they are likely to obey 18-electron rule
 - (B) they contain π-acceptor ligands
 - (C) m is in a zero oxidation state
 - (D) they are likely to be paramagnetic
- 51. Which of the following reactions or reaction schemes involves disproportionation?
 - (A) $2Cu^{2+} + 4l \rightarrow 2Cul + l_2$
 - (B) $2Cu + O_2 \rightarrow 2CuO \rightarrow Cu_2O + \frac{1}{2}O_2$
 - (C) $Cu_2O + H_2SO_4 \rightarrow CuSO_4 + Cu + H_2O$
 - (D) $\text{CuO} + 2\text{NH}_3(\text{ag}) \rightarrow [\text{Cu(NH}_3)_2]^+ \rightarrow [\text{Cu(NH}_3)_4]^{2+}$

52 .	Whi	ch statement is $incorrect$ about the second and third row d -block metals?
	(A)	The highest melting metals in the two rows are, respectively, Mo and W
	(B)	Each pair of metals in a group (e.g. Nb and Ta, or Rh and Ir) possess approximately the same metallic radius
	(C)	Enthalpies of atomization are lowest for the group 10 metals
	(D)	Technetium is a man-made element
5 3.	Whi	ch of the following σ -bonded alkyl groups can undergo β -hydrogen elimination?
•	(A)	CH ₂ CH ₃ (B) CH ₂ Ph (C) CH ₃ (D) CH ₂ SiMe ₃
54 .	Lan	thanoid hydrides of formula LnH ₂
	(A)	contain the lanthanoid metal in oxidation state +2
	(B)	are electrically conducting materials
	(C)	possess 3-dimensional covalent structures
	(D)	are mixed valence Ln(I)/Ln(III) compounds
55 .	To b	be classed as "nanoscale", an object must have one dimension that is of the order o
٠	(A)	10^{-10} m (B) 10^{-12} m (C) 10^{-9} m (D) 10^{-8} m
56 .	In o	xy haemoglobin, the iron centre is best described by one of the following
	(A)	high-spin Fe(III) (B) high-spin Fe(II)
	(C)	low-spin Fe(III) (D) low-spin Fe(II)
57 .	Whi	ch statement is <i>true</i> about the bonding in B ₂ H ₆ ?
	(A)	A localized bonding picture can be developed for B_2H_6 in which each B atom obeys the octet rule
	(B)	Bonding pictures for B ₂ H ₆ involve multicentre bridge bonds
	(C)	B-H terminal bonds cannot be considered as 2c-2e interactions
	(D)	The observed structural parameters in B_2H_6 suggest the presence of a localized B-B interaction
58.	The	conjugate base of $[H_2PO_4]$ - is
	(A)	$[PO_4]^{3-}$ (B) $[HPO_4]^{2-}$ (C) H_3PO_4 (D) $H_3P_2O_7]^{-}$

59.		sider the follows ect about the red	_] Whic	ch statement is
	(A)	Au is oxidized;	O is o	xidized; F is 1	educed		٠.,	•
	(B)	Au is reduced;	O is o	xidized; F is r	educed			
	(C)	Au is oxidized;	O doe	s not undergo	a redox	change; F is re	duced	
	(D)	Au is reduced;	O is o	xidized; F is o	xidized		·	÷ .
60.	Нур	ochlorous acid a	nd per	chloric acid a	re repre	sented respecti	vely as	
	(A)	HOCl and HCl	O ₄	1	(B)	HOCl and HC	$1O_3$	
	(C)	HClO ₂ and HC	1O ₃		(D)	HClO ₂ and HO	ClO ₄	
61.		in a cylindrica ough a distance 3	-					_
	(A)	4.24 m ³		:	(B)	17.0 m ³		•
•	(C)	$4.24 \times 10^{-4} \text{ m}^3$		4	(D)	$17.0 \times 10^{-4} \text{ m}^3$		
62.		nixture contains 5CH3. Calculate		•				
	(A)	0.564	(B)	0.436	(C)	0.599	(D)	0.401
63.	acce	culate the magn derated through kV cm ⁻¹ .						
	(A)	2.00 nJ	(B)	2.00 pJ	(C)	2.00 fJ	(D)	2.00 aJ
64.		the kinetic theo ecules at a temp			nine the	root-mean-squ	are spe	ed of phosphine
٠.	(A)	570 m s ⁻¹	(B)	23 m s ⁻¹	(C)	730 m s^{-1}	(D)	670 m s^{-1}
65.	406	critical point of K and molar v nonia at the crit	olume	of 72.5 cm ³				
	(A)	0.243	(B)	1	(C)	4.12	(D)	0.741
66.		culate the heat tersibly at a const		-				
	(A)	–144 J	(B)	-746 J	(C)	-1.72 kJ mol-	(D)	2.48 kJ

				_	perature incr loes not vary	-		ou may a	sume that	the
	(A)	1.04 kJ		(B)	1.46 kJ	(C)	1.87 kJ	(D)	520 J	
68.	tran		rom the	syster	the entropy n to the surre					
•	(A)	+1.68 J	K-1	(B)	-1.68 J K ⁻¹	(C)	+500 J K ⁻¹	(D)	–500 J K	-1
69.					of cyclohexa porization of			Use Tr	outon's ru	le to
	(A)	6.89 kJ	mol ⁻¹	(B)	18.7 kJ mol	-1 (C)	85 kJ mol ⁻¹	(D)	30.1 kJ m	10l ⁻¹
70.	Calc				l red phosph ne molar volu			-	_	-
	(A)	5.990 m	³ mol ⁻¹		•	(B)	5.990×10^{-2}	$m^3 \text{ mol}^{-1}$		
,	(C)	5.990 ×	10 ⁻⁶ m ³	mol-1		(D)	5.990 × 10-4	m³ mol-1		
71.	the		ure is i		tribromomet sed from 288					
	(A)	−222 J]	K-1 mol-	1		(B)	222 J K-1 m	iol-1		
٠.	(C)	0.222 J	K-1 mol	-1		(D)	22.2 J K m	o l- 1		
72.	volu benz are	me of th zene in d 0.879 g c	ne liquio ilute aq m ⁻³ and	l mix ueous 0.998	C_6H_6 , is additure is 137 c solutions gives $g \text{ cm}^{-3}$ respectives.	m³. Ca ven that	lculate the the density	partial m of benzer	olar volume se and of w	ne of vater
	(A)	88.9 cm	3 mol-1			(B)	81.8 cm ³ m	o l -1		· · .
	(C)	14.6 cm	³ mol ⁻¹			(D)	86.8 cm ³ m	ol-1		•
73.	expi pres	ressed in	terms entan-3	of co one a	for pentan-3-on ncentration bove an aque	as 51 kF	Pa mol ⁻¹ dm³	. Calcula	ate the va	pour
	(A)	12 kPa		(B)	51 kPa	(C)	31 kPa	(D)	3.0 kPa	

12

The constant pressure molar heat capacity of nitrogen gas, N_2 , is 29.125 J K^{-1} mol $^{-1}$ at 298.15 K. Calculate the change in the internal energy when 2.00 mol of nitrogen gas

67.

369

74 .	The	value of the equ	ıilibriu	m constant	for the ele	ectrochemica.	l reaction		٠.
	MnO	O ₄ -(aq) + 2 H+(a	$(q) + \frac{1}{2}$	$\operatorname{Cl}_2(g) \to M$	$n^{2+}(aq) + C$	ClO ₃ -(aq) + H ₂	O(aq)		
	Is; reac	5.88×10^{-5} . Vtion?	Vhat is	s the valu	e of the e	equilibrium (constant i	for the re	verse
	(A)	5.88×10^{-5}	(B)	-5.88×10	O-5 (C)	17.0×10^{3}	(D)	-1.70 ×	10³ .
75.	–992 Assu tem	sulfur hexaflu 2 kJ mol ⁻¹ and iming that the perature, estima 48 K.	the sta values	ndard ent	ropy of for halpy and	rmation is – entropy of f	350 J K ⁻¹ ormation	mol ⁻¹ at 2 vary little	298 K. with
	(A)	-992 kJ mol-1			(B)	-18 kJ mol-	-1 [']	-	
	(C)	-975 kJ mol-1		·	(D)	-1010 kJ m	ol ⁻¹		
76.	Calc	ulate the conce	ntratio	n of hydron	ium, H₃Oʻ	, ions in a so	lution wit1	h pH = 11	.2.
	(A)	$11.2 \times 10^{-3} \text{ mo}$	l dm-³		(B)	$1.36 imes 10^{-5}\mathrm{r}$	$nol dm^{-3}$		
	(C)	$1.58 \times 10^{10}\mathrm{mo}$	l dm-3	•	(D)	$6.3 \times 10^{-12}\mathrm{m}$	ol dm ⁻³		
77.		ulate the pH of sphorous acid, H			and the second s		phosphite	, NaHPO	3. For
	(A)	4.30	(B)	2.00	(C)	6.59	(D)	2.29	
78.		the Debye-Hüc and NO ₃ - ions				to a contract of the contract	-		
	(A)	0.94	(B)	0.97	(C)	0.75	(D)	0.12	
79.	Na ₃	culate the limiti PO4, given that are 5.01 and 24	the ion	ic conducti	vities of th	ne sodium, N			-
	(A)	29.0 mS m ² m	ol-1		(B)	77.0 mS m^2	mol^{-1}		
	(C)	39.0 mS m ² m	iol ^{–1}		(D)	19.0 mS m ²	mol^{-1}		
80.	is 50 ligh	molar absorpti 0 dm³ mol ⁻¹ cm ⁻¹ t of this wayel centration 0.100	^l atav ength	vavelength passes thr	of 590 nm ough an a	. Determine aqueous solu	the trans	mittance	when

(D) 10-4

(B) 10⁻²

10-6

(A)

10-5

	82.	forw	ard rea	action ar	e 2 × 1	$0^7 m dm^3n$		nd fo	r the first	stants for t order backy		-
		(A)	0.2 ×	10-2	(B)	50		(C)	1 × 10 ⁹	(D)	1 × 10	-4
v	83.			diation e ne photo			•	er is	of wavelen	gth 6328 Å	. Calcu	late the
		(A)	3.139	× 10 ⁻¹⁹ J	- ,			(B)	3.139×10^{-2}) ^{–29} J		
		(C)	4.193	× 10 ⁻⁴⁰ J				(D)	4.193 × 10)-20 J		
	84.	met	al. Th	e work	functio	n of po		is 2	2.25 eV. C	liate a sam Salculate tl		
		(A)	1.89 ×	106 m s	-1		•	(B)	1.18×10^{6}	m s ⁻¹		,
		(C)	0.890	× 10 ⁶ m	s ⁻¹			(D)	1.68×10^{6}	m s ⁻¹		
	85.			~		_	_			a sample o		•
		(A)	0.79		(B)	0.63		(C)	1.3	(D)	1.0	
	86.			•		_			the ends on the half of the ha	of a polyise	obutylen	e chain
×.		(A)	540 n	m _.	(B)	9.1 Å		(C)	5.4 Å	(D)	9.1 gm	
	87.	LiF +15	(s). All 9 kJ mo	values ol ⁻¹ ; Ioniz	refer to cation e	a temp	erature of Li(g)	of 29 : +52	8 K. Entha 0 kJ mol ⁼¹ .	298 K of I lpy of subbl Enthapy o	dissoci	of Li(s): ation of
									ment to F(kJ mol ⁻¹	e): -328 kJ	mol⁻¹, E	nthalpy
		(A)	1046	kJ mol-1	(B)	1123 k	J mol-1	(C)	1702 kJ m	nol-1 (D)	468 k	J mol ⁻¹
	369	٠				-	14	•		÷	-	

The rate constant for the gas-phase reaction $H_2(g)+I_2(g)\rightarrow 2$ HI(g) has the value of

What is the equivalent rate constant in units of

(B) $7.39 \times 10^{-29} \ molecule^{-1} \ cm^3 \ s^{-1}$

(D) $7.39 \times 10^{-26} \ molecule^{-1} \ cm^{3} \ s^{-1}$

81.

(A)

(C)

 $4.45 \times 10^{-5} \text{ mol}^{-1} \text{ dm}^3 \text{ s}^{-1}$.

 $7.39 \times 10^{-28} \; molecule^{-1} \; cm^{3} \; s^{-1}$

 $4.45\times10^{-2}~molecule^{-1}~cm^3~s^{-1}$

 $molecule^{-1} cm^3 s^{-1}$?

88. Calculate the Coulombic potential energy of an electron at a distance of 52.9 pm from a lithium, Li²⁺, nucleus

 $-4.37 \times 10^{-18} \,\mathrm{J}$ (B) $-1.31 \times 10^{-17} \,\mathrm{J}$ (C) $-5.20 \times 10^{20} \,\mathrm{J}$

(D) $9.63 \times 10^6 \text{ J}$

Estimate the de Broglie wavelength of a neutron that has a kinetic energy of 0.025 eV 89.

(A) 1.8 Å

(B) 78 Å

(C) $7.0 \times 10^6 \text{ m}$

(D) $72 \times 10^{-21} \text{ m}$

The rate constant for the gas-phase reaction between hydrogen and iodine, $H_2(g) + l_2(g) \rightarrow 2 Hl(g)$ has the value $4.45 \times 10^{-5} \text{ mol}^{-1} \text{ dm}^3 \text{ s}^{-1}$. What is the equivalent rate constant in units of molecule-1 cm³ s-1?

(A) 7.39×10^{-28} molecule⁻¹ cm³ s⁻¹

(B) 7.39×10^{-29} molecule⁻¹ cm³ s⁻¹

(C) 4.45×10^{-2} molecule⁻¹ cm³ s⁻¹

(D) 7.39×10^{-26} molecule⁻¹ cm³ s⁻¹

The orbital angular momentum of an electron is represented using the expression

(A) $\sqrt{l(l+1)}.h/2\pi$

(B) $\sqrt{l(m+1).h/2\pi}$

(C) $\sqrt{l(s+1).h/2\pi}$

(D) $\sqrt{l(l+1).h^2/2\pi}$

Potential energy of an electron in hydrogen like atom is given by 92.

(A)

(B) $-Ze^2/r$

(C) $-Ze^2/r^2$

(D) $-Ze^2/kr$

The solution for the differential equation $(1+x^2y^2)ydx + (x^2y^2-1)xdy = 0$ is equal to 93. (C is a constant)

(A) $xy = \ln \frac{x}{y} + C$

(B) $xy = 2 \ln \frac{y}{x} + C$

(C) $x^2y^2 = 2\ln\frac{y}{x} + C$

(D) $x^2y^2 - 2\ln\frac{x}{y} + C$

For the matrix $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 2 & 1 & 0 \end{bmatrix}$, which of the following option is correct?

(B) $A^3 - 3A^2 - I = 0$ (D) $A^3 - A^2 + I = 0$

(A) $A^3 + 3A^2 - I = 0$ (C) $A^3 + 2A^2 - I = 0$

- 95. Let f(x) be a differentiable function in the interval (0, 2), then the value of the definite integral $\int_{0}^{2} f(x) dx$ is equal to
 - (A) f(c) for at least one $c \in (0,2)$
- (B) 2f(c) for at least one $c \in (0,2)$
- (C) f'(c) for at least one $c \in (0,2)$
- (D) 2f'(c) for at least one $c \in (0,2)$
- 96. A curve passes through the point (2, 0) and the slope of the tangent at any point (x, y) is $x^2 2x$ for all values of x. The point of maximum ordinate on the curve is
 - (A) (0, 4/3)
- (B) (0, 2/3)
- (C) (1, 2/3)
- (D) (2, 4/3)
- 97. The total number of solutions of the equation $\sin(\pi x) = |\ln x|$ is
 - (A) 2

- **(B)** 4
- (C) 6

- (D) 8
- 98. For the quadratic equation $x^2 + 2(a+1)x + 9a 5 = 0$, which of the following are true?
 - (A) If 2 < a < 5 then roots are of opposite sign
 - (B) If a > 0 then roots are of opposite sign
 - (C) If a < 7 then roots are negative
 - (D) If $2 \le a \le 5$ roots are not real
- 99. Let $S_n = \frac{3}{2^1 \cdot 2 \cdot 1} + \frac{4}{2^2 \cdot 3 \cdot 2} + \frac{5}{2^3 \cdot 4 \cdot 3} + \cdots$ n terms then
 - (A) $S_n = 2 \frac{1}{2^n (n+1)}$

(B) $S_n = 1 + \frac{1}{2^n (n-1)}$

(C) $\lim_{n\to\infty} S_n = 2$

- $(\dot{\mathbf{D}}) \quad \lim_{n \to \infty} S_n = 1$
- 100. Sum of all possible 3 digit numbers (no digit being zero) having the property that all digit are perfect squares is equal to
 - (A) 6216
- (B) 3108
- (C) 13986
- (D) 7247