ENTRANCE EXAMINATION FOR ADMISSION, MAY 2013.

M.Sc. (COMPUTATIONAL BIOLOGY)

COURSE CODE: 310

Register Number:	``.	
		Signature of the Invigilator (with date)
		· · · · · · · · · · · · · · · · · · ·

COURSE CODE: 310

Time: 2 Hours

Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you -1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

		•		the state of the s	
1.	Whi	ich one of the following statement	s is not true	?	
	(A)	Trypsin is an endopeptidase	•		
	(B)	Trypsin cleaves n-terminus to ly	ysine and a	rginine	
	(C)	Trypsin exhibits autocatalytic a	ctivity		•
	(D)	Trypsin is synthesized as inacti	ve zymogen	precursor	
2.		w many cycles of PCR are necess y of DNA?	sary to obta	in 10 copies of a ger	ne from a single
:	(A)	5 cycles	(B)	3 cycles	•
	(C)	4 cycles	(D)	10 cycles	
3.	E-va	alue of significant blast alignmen	t should ide	ally be	•
	(A)	less than 1 and more than 0	•		
	(B)	more than 1			·
	(C)	a negative number			
	(D)	none of these			
4.	Whi	ich is the most common post trans	slation mod	ification seen in secre	eted proteins
•	(A)	phosphorylation	(B)	signal peptide	,
	(C)	glycosylation	(D)	acetylation	
5.	Whi	ich one of the following statement	is not true	for a processed pseud	dogene?
	(A)	it lacks intronic regions			*
	(B)	it is produced by genome duplic	ation event		
	(C)	it requires reverse transcription	activity		
	(D)	none of the above			
6.		ich chromatography method is be	ased on rev	ersible chemical inte	eractions of high
	(A)	reversed phase chromatography	<i>t</i>	• •	
	(B)	Hydrophobic interaction chroma	atography		
	(C)	gel permeation chromatography	T		
	(D)	affinity chromatography	-		
7.	Stat	tionary phase in a Reversed-phase	e chromatog	graphy is generally	
	(A)	polar	(B)	Non-polar	•
	(C)	any one of these	(D)	none of these	

ð.	wna	t is peptide mass lingerprinting:		
	(A)	Peptides are fragmented in the mas	ss specti	rometer and a short stretch of amino
	(B)	Peptides are fragmented in the mas are used to search the database	s spectr	cometer and the fragment ion masses
	(C)	protein is digested and the peptide	masses	are used to search the database
	(D)	None of the above		
9.	Wha	-	resent	in the transmembrane domains of
	(A)	hydrophobic	(B)	polar
	(C)	amphipatic	(D)	hydrophilic
10.	Mass	s spectrometry derived protein seque	nces cai	n be used for
	(A)	identification of novel gene	•	
	(B)	identification of protein isoforms		
	(C)	identification of post translational r	nodifica	tions
	(D)	all of the above		
11.	Whic	ch of the following is not a DNA sequ	ence da	tabase?
	(A)	GenBank	(B)	EMBL
	(C)	DDBJ	(D)	PIR
12.	BRE	NDA is a "" database.		
	(A)	Protein	(B)	Nucleic acid
	(C)	Enzyme	(D)	Chemical
13.		culation of isoelectric point and othersible in	er prope	erties based on the input sequence is
	(A)	Protein Data bank	(B)	Swiss-Prot
	(C)	ExPASy	(D)	DDBJ
14.	PIR	(Protein Information Resource) is a	"	" type of database.
	(A)	Structure	(B)	Sequence
	(C)	Ligands	(D)	
15.	PR	INTS, BLOCKS, IDENTIFY and PRO	OSITE a	re all " " types of database.
	(A)	•	(B)	
	(C)		(D)	Structure
	(~)	· • •		•

16.	PHY	TLIP database is	used	for				
	(A)	Sequence analy	sis ar	ıd alignment	(B)	Phylogenetic a	3	
	(C) Motif detection			(D)	Active site ana	lysis		
17.	The type of helix found in leucine zipper			leucine zipper r	notif			
	(A)	lpha - helix			(B)	$oldsymbol{eta}$ - helix		
	(C)	Both α and β	helix		(D)	Two β-helice	8	
18.	The	compounds used	for d	enaturation of p	protein			
	(A)	$oldsymbol{eta}$ - mercapto et	thanol	l	(B)	Urea		
	(C)	Guanidonium i	on		(D)	All the above		
19.	The (S-1)	turnover numberis	er of e	nzyme <i>carboni</i>	c anhyo	drase with HCC) ₃ . as s	ubstrate in k
	(A)	0.4	(B)	40,000	(C)	400,000	(D) .	40,000,000
20.	The	important inorg	anic e	lement that ser	ves as	cofactor for glute	athion	<i>e peroxidase</i> i
	(A)	Mn ²⁺	(B)	Zn ²⁺	(C)	Mo	(D)	Se
21.	The	approximate nu	mber	of genes in hun	nan is:			
	(A)	15000	(B)	22000	(C)	30000	(D)	35000
22.	Whi	ch of the followin	ng is l	NOT an assump	tion un	der Hardy Weir	iberg e	quillibrium:
	(A)	No mutation			(B)	Panmictic pop	ulatior	ı
	(C)	No migration			(D)	No genetic dri	ft	
23.	The	calcium homeos	tasis i	n blood is main	tained	by:		
	(A)	T3 and T4			(B)	Insulin and glu	ucagon	l ,
	(C)	Calcitonin and	parat	hormone	(D)	Calcitonin and	l eryth	ropoietin
24.	Ery	thropoietin is sec	reted	by:				
	(A)	Liver			(B)	Pancreas		
. ,	(C)	Kidney			(D)	Adrenal	-	
25 .	Son	natomedin is secr	reted l	by:	•			
	(A)	Liver			(B)	Pancreas		
	(C)	Kidney			(D)	Adrenal		

26.	ın n	uman ovary, corpus luteum is regres:	sed into	:
	(A)	Corpus regressum	(B)	Corpus albicans
	(C)	Corpus mortium	(D)	Graffian follicle
27.	Ovu	lation in human is triggered by surge	in:	
	(A)	FSH (B) LH	(C)	HCG (D) PMSH
28.		ch of the following are least likely to eins:	be invol	ved in three dimensional structure of
	(A)	Disulphide bonds	(B)	Hydrogen bonds
	(C)	Ester bonds	(D)	Hydrophobic interactions
29.	The	organelle having high level of acid pl	nosphat	ase activity is:
	(A)	Lysosomes	(B)	Smooth ER
	(C)	Rough ER	(D)	mitochondria
30.		merase chain reaction needs a the erium known as:	rmostab	ole DNA polymerase isolated from a
	(A)	Thermus thermus	(B)	Thermus aquaticus
	(C)	Thermus marina	(D)	Thermus namibiensis
31.	inde	7 7		dium into another medium of higher e statements about the beam of light
	(A)	its speed increases	(B)	its wavelength decreases
	(C)	its frequency remains the same	(D)	it bends toward the normal
32.	fron	•	_	displaced downward at a distance Y sed, it oscillates with period T. At a
	(A)	a maximum and directed upward		
	(B)	a maximum and directed downward	i	
	(C)	constant		
	(D)	zero		

	٠.							
							•	
33.		aday's law of ele	•	tic induction	desc	cribes how	an electr	ic field can b
•	(A)	an electric char	ge	(E	3)	a constant n	nagnetic :	field
	(C)	a changing mag	netic field	(I))	a steady cur	rent	
34.		ch one of the perature"?	following	temperature	s i	s approxim	ately eq	ual to "roor
	(A)	0 K	(B) 0 C	(0))	100 C	(D)	293 K
35.		ch would cause a C and why is this		ous burn: 30 g	of s	team or 30 g	of liquid	water, both a
	(A)	water, because	it is denser	than steam.				
	(B)	Steam, because	of its speci	fic heat capac	ity			
	(C)	Steam, because	of its later	t heat of vapo	riza	tion		
	(D)	water, because	its specific	heat is greater	r tha	an that of st	eam.	
36.	Whi	ch one of the follo	owing is tru	ae concerning	mon	nentum?		
	(A)	· Momentum is a	force	•				
•	(B)	Momentum and	l impulse a	re measured i	n th	e same units	3.	
	(C)	Momentum is a	scalar qua	ntity	,	•		
٠	(D)	The momentum	of an obje	ct is always po	siti	ve.		
37.	with	head of a hamm the same speed are average force t	after an e	astic collision	las	ting 0.075 s.		
	(A)	6.8 N	(B) 60 N	1 ((C)	90 N	(D)	180 N
38	the l	ationary bomb e location of the ex following stateme	plosion, the	net force due	to g	ravity is zer		_
	(A)	Kinetic energy	is conserve	d in this proce	88	×		
	(B)	The fragments	must have	equal kinetic e	ener	gies.		
			4.5 50		the	fragments	must be z	ero
	(C)	The vector sum	of the line	ar momenta or				
	(C) (D)	The vector sum The sum of the	•			-	e zero.	
39.	(D) Two car two		kinetic ene ss collide o e car B has	orgies of the fra n a horizontal s a constant ve	agm fric	ents must be tionless surf ty of 12 m/s	ace. Befo . After th	ne collision, th
39.	(D) Two car two	The sum of the cars of equal ma A is at rest while bodies are stuck	kinetic ene ss collide o e car B has	orgies of the fra n a horizontal s a constant ve What is the sp	agm frice eloci eeed	ents must be tionless surf ty of 12 m/s	ace. Befo . After th	ne collision, the ly (A + B) afte

40.	Whi	ch one of the following statements conc	ernin	g permanent magnets is false?						
	(A)	The north pole of a permanent magne	t is a	ttracted to a south pole						
	(B)	All permanent magnets are surrounded by a magnetic field.								
	(C)	C) The direction of a magnetic field is indicated by the north pole of a compass.								
•	(D)	When a permanent magnet is cut in l piece will be south pole.	half, d	one piece will be a north pole and one						
41.	Whi zero	ch one of the following is an example of?	f an c	object with kinetic energy not equal to						
	(A)	a satellite in geosynchronous orbit								
	(B)	a stationary pendulum								
	(C)	(C) a car parked at the top of a hill								
	(D)	a boulder resting at the bottom of a cl	iff							
42.	_	rogram that can copy itself and infe	ct a	computer without the permission or						
	(A)	Virus	(B)	Floppy						
	(C)	Monitor	(D)	Java						
43.		ch one of the following is responsible vities and the sharing of the resource of								
	(A)	Motherboard	(B)	Application software						
	(C)	Operating system	(D)	RAM						
44.	In c	omputers, '.tmp' extension refers usual	ly to v	what kind of file?						
	(A)	Image file	(B)	Video file						
•	(C)	Text file	(D)	Temporary file						
45.	Wha	at does BIOS stand for?								
	(A)	Basic Input Output System								
	(B)	Better Integrated Operating System								
••	(C)	Battery Integrated Operating System	L							
	(D)	Backup Input Output System		•						

46.		specially designed o	omp	outers to perform	V	ery con	plex c	alculati	ons extremely
	(A)	Laptops		(B)		Mainfr	ame co	mputers	3
	(C)	Mini computers		(D)		Super (comput	ers	
47.	Com	puters use the		language to proces	ss	data			
	(A)	Assembly language		(B)		High le	evel lan	guage	
	(C)	Binary language		(D)		Repres	entatio	nal lang	guage
48.	Wor	d processing, spreads	sheet	t, and photo-editing	g t	ire exa	mples o	of:	
	(A)	Application softwar	æ	(B)		Operat	ing Sys	stem sof	tware
	(C)	System software		(D)		Platfor	m softv	vare	
49.		ch one of the following illations extremely ra	_		n€	d com	puters	that pe	rform complex
	(A)	Servers		(B)		Laptop	s		
è	(C)	Supercomputers		(D)		Mainfr	ames		
50.		steps and tasks need on, are called	led to	o process data, sucl	h	as resp	onses t	o questi	ons or clicking
	(A)	Instructions		(B)		The op	erating	system	l
	(C)	The system unit		(D)		Applic	ation se	oftware	
51.	Mat	ch the following term	ıs wi	th their meanings:	:				
		I. Data	a.	the main circuit	bo	ard in	the sys	tem uni	t
		II. Memory	b.	representation (information)	of	a f	act or	· idea	(unprocessed
		III. Output	c.	processed data or	· i	nforma	tion		٠.
		IV. Storage	d.	holds instructions	8 (r data	that th	e CPU 1	processes
		V. Motherboard	e.	data or information	OI	that c	an be a	ccessed	again
	(A)	I-b, $II-d$, $III-c$,	IV –	e, V – a					
	(B)	I-b, $II-c$, $III-a$,	IV –	d, V – e					•
	(C)	I-b, $II-c$, $III-a$,	IV –	e, V d					,
	(D)	I-a, $II-d$, $III-c$,	IV -	e, V – b					•

52.		Modern computers do not work with decimal numbers. Instead, they process binary numbers i.e., groups of 0's and 1's. because									
	(A) Electronic devices are most reliable when designed for two state operation										
	(B)	(B) Memory is only possible for binary numbers									
	(C) With decimal numbers, the circuits are complex and costly										
	(D)	Binary circuits are simple									
53.	The	process of forming curd is called	-								
	(A)	Sublimation reaction	(B)	Condensation reaction							
	(C)	Fermentation reaction	(D)	Reduction reaction							
54.	Who	solved the structure of collagen									
	(A)	Venki Ramakrishnan	(B)	G.N. Ramachandran							
	(C)	Sir. C.V. Raman	(D)	Wim Hole							
55.		us assume Carbon, Oxygen and Hyd appropriate equation for this reaction	-	nixture gives methanol. Which would							
	(A)	$C + H + O \rightarrow CH3OH$	(B)	$C + 4H + O \rightarrow CH3OH$							
	(C)	$C + H_2 + O_2 \rightarrow CH3OH$	(D)	$C_2 + H_2 + O_2 \rightarrow CH3OH$							
56.	Bala	ance the following chemical reactionF	e + Cl	₂ → FeCl₃							
	(A)	$2\text{Fe} + 3\text{Cl}_2 \rightarrow 2\text{FeCl}_3$	٠								
	(B)	Fe + 3Cl ₂ → 2FeCl ₃									
·	(C)	$2Fe + 2Cl_2 \rightarrow 2FeCl_3$									
	(D)	Fe + Cl ₂ → FeCl ₃									
57.	The	smallest unit of life is									
	(A)	DNA molecule	(B)	Organelle							
	(C)	Cell	(D)	Virus							
58.	Sim	nilarity is measured by									
	(A)	Correlation	(B)	Mean							
	(C)	Median	(D)	Mode							

59.	Men	ntion the type of following reaction		
	CH ₃	$_{1}$ -CH ₂ OH + HCl \rightarrow CH ₃ - CH ₂ Cl + H ₂ O		
	(A)	Addition	(B)	Substitution
	(C)	Hydrogenation	(D)	Elemination
60.	Nat	ural amino acids found in following con	forme	ation
	(A)	L and D	(B)	D and R
	(C)	Ľ · · · ·	(D)	D and S
61.	Chi	ral carbon is the one		
	(A)	Having all four different attached gro	up	•
	(B)	Radio labeled carbon		
	(C)	Carbon used in C13 NMR spectroscopy	,	
	(D)	Carbon present other than organic co	mpou	nds
62.	L ar	nd D notation for chemical samples was	deno	ted based on
	(A)	Ramachandran plot		
	(B)	Linus Pauling and Robert Corey's pre	dictio	on
	(C)	Emil Fischer's work		
	(D)	IUPAC rule		
63.	Zwi	tter ions are the one	i	
	(A)	Having Neutral and free radicals		•
	(B)	Having Negative ions and free radical	ls	
	(C)	Having positive and negative ions		
	(D)	Having positive ion and free radicals		
64.		nessenger RNA is 666 nucleotides long ons. The number of amino acids in the p		
	(A)	222	(B)	221
	(C)	223	(D)	220
65.	The	R group found in amino acids consists	of	
	(A)	an amine group	(B)	a hydroxyl group
	(C)	an amine group and a carboxyl group	(D)	at least a hydrogen atom

66.	The empirical formula for carbohyd	rates is
	(A) $(CH_2O)_n$	(B) 2(CHO)n
	(C) $(C_2HO)_n$	(D) $(CHO)_2$
67.	The protein surface tends to be mor	e than the inner core.
	(A) hydrophilic	(B) hydrophobic
	(C) aromatic	(D) acidic
68.	Transmembrane regions of membra	ne proteins are usually more
	(A) Hydrophilic	(B) Hydrophobic
	(C) Acidic	(D) Basic
69.	Irregular heart beat is due to the de	eficiency of
	(A) Copper	(B) Magnesium
	(C) Potassium	(D) Sodium
70.	The median of the following data:	
	5, 8, 11, 8, 10, 16, 13, 8, 10, 7	
	(A) 10 (B) 9	(C) 8 (D) 7
71.	The mode of the following data:	•
	3, 8, 5, 4, 7, 2, 9	
	(A) 5.4	(B) 4.5
	(C) 4	(D) Does not exist
72.	The ozone layer is formed by the re-	action of
	(A) Oxygen and IR rays	(B) Oxygen and chlorine
	(C) Oxygen and carbon dioxide	(D) Oxygen and UV rays
73.	The value of is $6_{\mathbf{C}_2}$	
	(A) 18	(B) 20
	(C) 24	(D) 15

74.	A bo it is		and 4	black balls. Une	ball 1	s drawn, what is	s the p	probability that
	(A)	3/5	(B)	2/5	(C)	1/5	(D)	1/10
75.	If a	Sample Space		•				
		$S = \{1, 2, 3, 4, 5, 6\}$	and	an event $C = \{2,3\}$,5} the	en C ^c is equal to		
	(A)	{1,4,6}	(B)	{1,3,5}	(C)	{2,4,6}	(D)	{1,2,3,5}
76.	Whi	ch of the followin	ng sta	tement is true for	tRN	A molecules?		
	(A)	it binds to DNA	to in	itiate translation				
	(B)	it gives the stal	bility	to ribosomes				
	(C)	there is at least	t one i	form for each kin	d of a	mino acid		
	(D)	it transfers the	code	from nucleus to c	ytopl	asm		
77.	Whi	ch pair of amino	acid a	absorbs the most	UV li	ght at 280nm?		
	(A)	Thr and His			(B)	Trp and Tyr		
	(C)	Cys and Asp			(D)	Phe and Pro		
78.		d', non-functions ny use, are called	_	ies of genes prese	ent els	sewhere in the g	enome	e, but no longer
	(A)	Pseudogenes		•	(B)	Selfish genes		
	(C)	Jumping genes			(D)	Holandric gene	8	
79.	The	primary action o	of ster	oid hormones is a	it the	level of		
	(A)	replication			(B)	transcription		
	(C)	translation			(D)	post transcript	ional	modification
80.	Yea	st artificial chro	noson	nes are used for				
•	(A)	genome sequen	cing	•	(B)	transfer plant	genes	to yeast
	(C)	finding gene m	arker		(D)	fermentation to	echnol	logy
81.	Gen	es for typical sin	gle-cł	naracter Mendelia	ın tra	its are called		
	(A)	segmental dup	licatio	ons	(B)	multigene fami	lies	÷
	(C)	tandem cluster	:8		(D)	single-copy gen	es	
82.	Whe	en a T-cell recogn	nized	an antigen, it				
	(A)	moves from the	e thyn	nus to the spleen	(B)	multiplies		
	(C)	releases interfe	erons		(D)	releases antibo	dies	

83.	The field of study which involves the sequencing of the genomes of organisms is									
	(A)	proteomics				bioinformatics				
	(C)	genomics			(D)	molecular genet	tics			
84.	The correlation coefficient between any two variables								٠	
	(A)	(A) does not depend on the origin or scale of the observations								
	(B)	depend on the origin or scale of the observations								
	(C)	does not depend on the origin but depends on scale of the observations								
	(D)	does not depend on scale but depends on origin of the observations								
85.	A class contains 10 male and 20 female students, of which half the male and half the female students have brown-eyes. What is the probability p that a student chosen a random is a male or has brown-eyes									
	(A)	1/6	(B)	2/3	(C)	1/3	(D)	5/6		
86.	A fair coin is tossed three times. What is the probability of appearing exactly 2 heads									
	(A)	1/4	(B)	1/8	(C)	3/8	(D)	3/4		
87.	The period of revolution of sun at pole is									
	(A)	1 day	(B)	25 days	(C)	34 days	(D)	7 days		
88.	The rate of the first order reaction depends on the									
	(A)	Concentration of the reactant				Concentration of the product				
	(C)	Time		•	(D)	Temperature				
89.	First free-living organism with known complete genomes sequence:									
	(A)	Mycoplasma genitalium				Saccharomyces cerevisae				
	(C)	Haemophilus influenzae				Synechocystis sp.				
90.	The number of genes present in a nematode worm (Caenorhabditis elegans) is:									
	(A)	14,000	(B)	18,000	(C)	22,000	(D) .	30,000		
91.	The neutral theory of evolution was proposed by:									
	(A)	Motoo Kimura	·		(B)	JBS Haldane			-	
*	(C)	Charles Darwin	n	•	(D)	R.A. Fisher				

92.	2. The average length of a gene (ORF) in prokaryotes and eukaryotes is:							•			
	(A)	600 bases	(B)	800 bases	(C)	1000 bases	(D)	1200 bases			
93.	Scale-free biological network is characterized by:										
	(A)	A) Power law degree distribution				Logarithmic degree distribution					
	(C)	Exponential degree distribution				Geometric degree distribution					
94.	Retr	Retrotransposons comprise about 90% of the genome in:									
	(A)	Human	(B)	Rice	(C)	Maize	(D)	Zebrafish			
95.	Which of the following method is NOT used to study protein-protein interaction:										
	(A)	Yeast two- hybrid analysis				Affinity chromatography					
	(C)	Coimmunoprec	ipitat	ion	(D)	MALDI		·			
96. The trichromatic vision in old world monkeys is evolved by:						evolved by:					
	(A)	Whole genome duplication				Gene duplication					
. ,	(C)	Retrotransposit	tion		(D)	Lateral gene	transfe	r			
97.	A gene desert in a genome contains:										
	(A)	Low number of	genes	3	(B)	High number	of disea	ase genes			
	(C)	Low number of	essen	itial genes	(D)	High number of dispensable gene					
98. A genetic change that occurs between 1% to 99% of individ							in a pop	oulation:			
	(A)	Polymorphism				Mutation					
٠	(C)	Substitution			(D)	Recombination					
99.	A genetic change that is completely fixed in a population:										
٠	(A)	Polymorphism			(B)	Mutation					
	(C)	Substitution			(D)	Recombination	n				
100.	The	trigonometric ex	press	ion cos²θ – sin	² θ is equi	valent to					
	(A)	$2\cos^2\theta - 1$			(B)	$1 + 2\sin^2\theta$					
	(C)	$2\cos^2\theta + 1$			(D)	$1-2\cos^2\theta$					

92.	The average length of a gene (ORF) in prokaryotes and eukaryotes is:									
	(A)	600 bases	(B)	800 bases	(C)	1000 bases	(D)	1200 bases		
93.	Scale-free biological network is characterized by:									
	(A)) Power law degree distribution				Logarithmic degree distribution				
(C) Exponential degree d			listribution	(D)	Geometric degree distribution					
94.	4. Retrotransposons comprise about 90% of the genome in:									
	(A)	Human	(B)	Rice	(C)	Maize	(D)	Zebrafish		
95. Which of the following method is NOT used to study protein							otein in	teraction:		
	(A) Yeast two- hybrid analysis			(B)	Affinity chromatography					
	(C)	Coimmunoprec	ipitat	ion	(D)	MALDI				
96.	6. The trichromatic vision in old world monkeys is evolved by:									
	(A)	Whole genome duplication				Gene duplication				
	(C)	Retrotransposit	ion		(D)	Lateral gene	transfe	r		
97.	A ge	gene desert in a genome contains:								
	(A)	Low number of	gene	3	(B)	High number	of dise	ase genes		
	(C)	Low number of	esser	itial genes	(D)	High number of dispensable gene				
98. A genetic change that occurs between 1% to 99% of individuals						in a pop	oulation:			
	(A)	Polymorphism			(B)	Mutation				
	(C)	Substitution			(D)	Recombination				
99.	A ge	A genetic change that is completely fixed in a population:								
,	(A)	Polymorphism			(B)	Mutation				
	(C)	Substitution		•	(D)	Recombination	n			
100.	The	trigonometric ex	press	ion cos²θ – si	n²θ is equi	valent to				
	(A)	$2\cos^2\theta-1$			(B)	$1 + 2\sin^2\theta$				
	(C)	$2\cos^2\theta + 1$			(D)	$1-2cos^2\theta$				