ENTRANCE EXAMINATION FOR ADMISSION, MAY 2013.

M.Sc. (DISASTER MANAGEMENT)

COURSE CODE: 379

Register Number :					
			هو.	•	,
		-	Signature of the (with da	he Invigilato te)	or

COURSE CODE: 379

Time: 2 Hours

Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	Whi	ch of the follo	wing gro	up of countries	is most	famous for exp	orting v	wool and meat?					
	(A)	Australia, S	ri Lanka,	Indonesia,									
	(B)	Argentina,	France, C	hile,									
	(C)	Australia, A	Argentina,	New Zealand									
	(D)	New Zealar	id, Argent	ina, Italy									
2.	Whi	ch of the follo	wing soil	s is most suital	ble for t	he cultivation	of cotto	n in India?					
	(A)	Red soil	(B)	Laterite soil	(C)	Alluvial soil	(D)	Regur soil					
3.	Whi	ch of the follo	wing stat	te groups is the	largest	t producer of ir	on-ore i	n India?					
	(A)	Orissa, Mac	ihya Prad	lesh, Bihar			•	•					
	(B)												
	(C)												
	(D)	Bihar, W. B	engal, Or	issa									
4.	Which of the following landforms is different from other three on the basis of the mode of origin?												
	(A)	Fold	(B)	Anticline	(C)	Nappes	(D)	Rift Valley					
5.	Whi	ch of the follo	wing lan	dform is not as	sociated	d with glaciation	n?	•					
	(A)	Hanging va	lley (B)	Moraines	(C)	Inselberg	(D)	Drumlin					
6.	Which of the following order is given to the planets of solar system on the basis of their size?												
	(A)	Saturn, Jup	oiter, Mer	cury, Neptune									
	(B)	Jupiter, Sa	turn, Nep	tune, Mercury.	•			•					
	(C)	Jupiter, Me	rcury, Ne	ptune, Saturn									
	(D)	Neptune, M	lercury, S	aturn, Jupiter									
7.	As v	ve go higher i	into the a	tmosphere, the	air bec	ome s —		,					
•	(A)	Thinner,	(B)	Denser,	(C)	Warmer,	(D)	Visible					
8.	Fro	m which of th	e followin	ng longitude the	e Indiar	n standard time	e is dete	ermined?					
	(A)	82° 30' East	t, (B)	80° West,	(C)	90° East,	(D)	81° 30' East					
9.	Whi	ch of the folk	owing oce	ans are connect	ted by F	Panama Canal?							
	(A)	Pacific and	Atlantic,		(B)	Atlantic and	Indian (Ocean,					
	(C)	Indian Ocea	an and Pa	cific	(D)	Atlantic and	North C)cean					

10.	For	which crop pro	duction	is 'Saopalo' fa	mous?			
	(A)	Cotton,	(B)	Maize,	(C)	Coffee,	(D)	Tea
11.	Wha	ıt would result	if the s	edimentary de	posit of	the Ganga Plair	n is con	npressed
	betv	veen the Him	alayas a	and the Deccar	n Plateau	u and then uplif	ted?	•
	(A)	Block mounta	ain,		(B)	Fold mountain	1,	
	(C)	Rift valley,			(D)	Volcanic plate	au	•
12.	Wha	ıt would happe	n to oce	ean water if th	e moon o	comes nearer to	the ear	rth?
	(A)	Fall of tempe	rature,	•	(B)	Stopping of oc	ean cu	rrents,
	(C)	Rise of sea le	vel,		(D)	Increase in he	ight oc	eanic tides
13.	The	line joining pla	aces of e	equal atmosph	eric pres	sure is termed-		
	(A)	Contour,	(B)	Isohyet,	(C)	Isotherm,	(D)	Isobar
14.	Wha	it would happe	n to typ	es of rainfall i	f the ear	th's surface bec	omes a	all plain?
	(A)	No cyclonic ra	ainfall,		(B)	No orographic	rainfa	11,
	(C)	No convection	nal rain	fall,	(D)	No frontal rais	nfall	
15.	The	maximum risl	to air t	travel is from-	_			
	. (A)	Clouds,	(B)	Rainfall,	(C)	Fogs,	(D)	Strong winds
16.	Whi	ch one of the fo	ollowing	countries is t	he large	st producer of ri	ce in t	ne world?
	(A)	China,	(B)	Japan,	(C)	Philippines,	(D)	Bangladesh
17.	Whi	ch of the follow	ving cou	ntries possess	es a stro	ong natural reso	urce ba	ase for iron and
	stee	l industry ?		•				
	(A)	Russia,	(B)	Pakistan,	(C)	Japan,	(D)	Bangladesh
18.	The	present day se	arch for	r fuels alternat	tive to p	etroleum, is due	mainl	y to
	(A)	Iran-Iraq wa	r,			,		
	(B)	Strained rela	tions be	etween Israel a	nd Mide	dle East countri	es	
	(C)	Highly increa	ased cos	t of petroleum	,			
	(D)	Increase in tl	ne const	ımption of pet	roleum			
19.		it is the popu isand square k			District	which has 50	Lakh	people and 25
	(A)	50 persons pe	er sq. kı	n.,	(B)	100 persons pe	er sq. k	m.,
	(C)	150 persons j	per sq. k	rm.	(D)	200 persons pe	er sq. k	m.

20.	The	Savana type of climate is characterize	ed by	
ů.	(A)	Humid summers and dry winters,	(B)	Humid winters and dry summers
	(C)	Humid throughout the year	(D)	None
21.	Wha	at should India increase in order to be	come oi	ne of the most prosperous countries of
	the	world?		
	(A)	Food production,	(B)	Industrial production,
	(C)	Population,	(D)	Trade
22.	Whi Indi	ch of the following regions has almost	preval	ent types of natural vegetation in
	(A)	The Himalaya mountain,	(B)	The Deccan Plateau,
	(C)	The Ganga plain,	(D)	The Coastal plains
23.		which of the following manufacturing ources?	indust	ries does India have the most natural
	(A)	Glass Synthetic rubber,	(B)	Synthetic rubber,
	(C)	Iron and Steel,	(D)	Aluminium
24.	One	of the characteristics of India's popul	ation is	s lesser number of women compared
	to m	nen. Which one of the following explain	ns this	phenomenon?
	(A)	Excess males at birth,		
	(B)	Lower social status of women,		
	(C)	Neglect of females in childhood		
	(D)	High maternity mortality		
25.	Ear	thquake waves are recorded in		
	(A)	Barograph, (B) Hydrograph,	(C)	Seismograph, (D) Pantagraph
26.	Whi	ch of these is young folded mountain?		
	(A)	The Himalayas,	(B)	The Vindhyas,
	(C)	The Nilgiris,	(D)	The Western Ghats
27.	Ank	aleshwar is famous for		
•	(A)	Gold mining,	(B)	Petrochemical Industry,
	(C)	Manufacturing Industry,	(D)	Wheat producton

28.	Fels	par is the most abundant mine	ral of the ear	th's crust weather by
	(A)	Physical weathering,	(B)	Hýdrolysis,
	(C)	Exfoliation,	(D)	Dissolution
29.	The	average inclination of the conti	inental shelf i	s about
	(A)	0.1°	(B)	0.5°
	(C)	1.0°	(D)	4 to 5°
30.	The	Rock type sandstone is made u	p of	
	(A)	Quartz and feldspar,		
	(B)	Quartz, feldspar and mica,		
	(C)	Campacted Volcanic ash		
	(D)	Feldspar ,mica, pyroxenes and	d olivine	·
31.	Wh	ich of the following is used for c	lating and co	relation in Magnetostratigraphy?
	(A)	Field intensity,	(B)	Polarity reversal,
	(C)	Normal polarity,	(D)	Secular variation
32.	A vo	olcano which is composed of lav	a flow sand py	yroclastic material and which is
	stee	p-sided and very tall is known :	as:	
	(A)	Syncline,	(B)	Composite cone
	(C)	Anticline	(D)	None of these
33.	The	solidified lava of a volcano belo	ngs to which	rock family? Is it:
	(A)	igneous,	(B)	metamorphic,
•	(C)	sedimentary,	(D)	fossilized
34.	In g	eological studies,a dome shaped	l intrusion is	called a:
	(A)	volcanic neck,	(B)	laccolith
	(C)	nueeardente	(D)	calder
35.	Icela	and has a great deal of volcanic	activity. The	reason for this is:
•	(A)	it was formed above a mid-oce	ean rift.	
	(B)	it is part of the "Ring of Fire".		
	(C)	Two tectonic plates are rubbin	ng against eac	ch other under Iceland.
	(D)	The American plate is diving	under the Eu	ropean plate in this region.

36.		he following, the thering is	e rock	that is most r	esista	nt to both chem	ical a	nd mechanical		
	(A)	shale	(B)	limestone	(C)	marble	(D)	quartzite		
37.	Wha	t percentage of t	he ear	rth's atmosphere	does	O2 comprise?				
	(A)	75%	(B)	50%	(C)	21%	(D)	32%		
38.	The	tanningrays of tl	ne sur	n are called:	.*					
	(A)	infrared rays			(B)	visible light				
	(C)	ultraviolet rays			(D)	gamma rays		خد		
39.	_	it is the relative l the air has a cap					rams į	per cubic meter		
	(A)	4%	(B)	9%	(C)	25%	(D)	400%		
40.	Whi	ch one of the follo	owing	minerals does N	OT c	ontain silica tetra	ahedr	ons?		
	(A)	quartz	(B)	muscovite	(C)	halite	(D)	orthoclase		
41.	_	eological studies reddish color?	, arko	se contains whi	ch of	the following mi	nerals	which gives it		
	(A)	Orthoclase	(B)	calcite	(C)	aragonite	(D)	quartz		
42.	Whi	ch of the followin	ıg mir	verals is noted fo	r its o	ne perfect cleave	ige?			
	(A)	calcite	(B)	muscovite	(C)	quartz	(D)	pyrite		
43.	Whi	ch of the followin	ıg gas	es is given off in	the a	cid test of a carbo	onate	mineral?		
	(A)	Chlorine	(B)	nitrogen	(C)	carbondioxide	(D)	sulfurdioxide		
44.	Fine parallel lines, orstriations, are most likely to be seen on a leavage surface of which of the following minerals?									
	(A)	quartz	(B)	orthoclase	(C)	hornblende	(D)	plagioclase		
45 .	Whi	ch of the followin	ıg mir	erals is NOT as	ilicate	?				
	(A)	orthoclase	(B)	muscovite	(C)	augite	(D)	magnetite		
46.	Whi	ch of the followin	ıg pai	rs contain so nei	gneou	s and one sedime	entary	rock?		
	(A)	shale and marb	le		(B)	sandstone and	quart	zite		
	(C)	granite and lim	eston	e	(D)	obsidian and g	neiss			
47.	Whi	ch of the se pairs	of m	inerals are alwa	ys fou	nd in granites?				
	(A)	muscovite and		9	(B)	quartz and ortl	noclas	e		
	(B)	hornblende and	l talc		(D)	augite and mag	gnetite	9		
48.	An e	example of a rock	whos	se minerals have	been	crushed in to thi	n she	ets or bands is:		
	(A)	shale	(B)	schist	(C)	Conglomerate	(D)	granite		

49.	ine	nyarolysis of ort	nocia	se results in the i	orma	tion of:			
	(A)	shale			(B)	kaolin		•	
•	(C)	lime			(D)	hydrochloricaci	d		
50.	Whi	ch of the followin	g ma	terials is the har	dest?				
	(A)	calcite	(B)	silicon carbide	(C)	topaz	(D)	quartz	
51 .	Igne	ous rocks that fo	rm fr	om magma are k	nown	as:			
	(A)	minerals	(B)	granite	(C)	intrusive rocks	(D)	gneiss	
52 .	The	mineral halite is	:						
	(A)	potassium chlor	ride		(B)	sodium chloride	;		
	(C)	calcium chlorid	e		(D)	calcium bromid	е		
53.		it is the name of ication of cerami		hite clay which hes? Is it:	as be	en used for thous	ands	Of years in the	е
	(A)	Talc	(B)	Kaolin	(C)	Feldspar	(D)	Quartz	
54.		000-kg car and a sing the more ma		0-kg car are ho car requires	isted	the same distan	ce in	a gas station	۱.
٠	(A)	less work.,			(B)	as much work.		•	
	(C)	twice as much	work.	•	(D)	four times as m	uch w	vork.	
55.	An o	bject that has ki	netic	energy must be					
	(A)	moving.			(B)	falling.	•	•	
	(C)	at an elevated p	positio	on.	(D)	at rest.			
56.	An o	bject that has po	tenti	al energy may ha	ve thi	s energy because	of its		
	(a)	speed.	(B)	acceleration.	(C)	momentum.	(D)	location.	
57.		ets are fired fron le airplane will b		irplane in the fo	rward	direction of moti	ion. I	The momentun	α
	(A)	decreased.	(B)	unchanged.	(C)	increased.	(D)	none	
58.				a vertical distand vation. With the				_	٠-
	(A)	half as much,	(B)	twice as much.	(C)	the same.	(D)	none	
59. ,		ow is drawn so t lly have a kinetic		t has 40 J of pot gy of	ential	l energy. When i	fired,	the arrow wil	1
	(A)	less than 40 J.	(B)	more than 40 J	(C)	40 J.	(D)	20 J	
60.	Whe	n a car is braked	l to a	stop, its kinetic e	nergy	is transformed t	x 0		
	(A)	stopping energy	7.		(B)	potential energy	y.		
	(C)	energy of motio	n.	٠	(D)	heat			

	61.	No work is done by gravity on a bowling ball that rolls along a bowling alley because
		(A) no force acts on the ball.
•		(B) no distance is covered by the ball.
	•	(C) the force on the ball is at right angles to the ball's motion.
		(D) no potential energy is being converted to kinetic energy.
	62.	Which requires more work: lifting a 50-kg sack vertically 2 meters or lifting a 25-kg sack vertically 4 meters?
		(A) lifting the 50-kg sack,
	•	(B) lifting the 25-kg sack,
		(C) Both require the same amount of work.
		(D) none
	63.	A 50-kg sack is lifted 2 meters in the same time as a 25-kg sack is lifted 4 meters. The power expended in raising the 50-kg sack compared to the power used to lift the 25-kg sack is
		(A) twice as much., (B) half as much. (C) the same. (D) none
	64.	A TV set is pushed a distance of 2 m with a force of 20 N that is in the same direction as the set moves. How much work is done on the set?
a a		(A) $2 J$, (B) $10 J$, (C) $20 J$, (D) $40 J$
	65.	One end of a long, uniform log is raised to shoulder level. Another identical log is raised at its center to the same level. Raising the second log requires about
		(A) the same amount of work. (B) twice as much work.
		(C) more than twice as much work. (D) Less than twice
	66.	Two identical arrows, one with twice the kinetic energy of the other, are fired into a hay bale. The faster arrow will penetrate
		(A) the same distance as the slower arrow.
		(B) twice as far as the slower arrow.
		(C) four times as far as the slower arrow.
,	•	(D) more than four times as far as the slower arrow.
	67.	A car moves 4 times as fast as another identical car. Compared to the slower car, the faster car has
	•	(A) 4 times the KE. (B) 8 times the KE.
•		(C) 12 times the KE. (D) 16 times the KE.
	379	8

68.	A ball is projected into the air with 100 J of kinetic energy which is transformed to gravitational potential energy at the top of its trajectory. When it returns to its original level after encountering air resistance, its kinetic energy is										
	(A)	less than 100 J	•	•	(B)	more than 100	J.				
	(C)	100 J.			(D)	not enough inf	formati	on given.			
69.	cond	ctly speaking, if litioner, headligh ement is	•		_						
	(A)	totally false.						•			
	(B)	true only if the	car's	engine is runni	ng.						
	(C) true only if the car's engine is stopped.										
	(D)	almost always	true.	•							
70.	If ar	n object has kine	tic ene	ergy, then it als	o must	have					
	(A)	impulse.	(B)	momentum.	(C)	acceleration.	(D)	force.			
71.	If th	e speed of a mov	ing ob	ject doubles, th	en wha	at else doubles?		·			
	(A)	momentum,	(B)	kinetic energy	, (C)	acceleration,	(D)	all of these			
72.	An c	bject at rest may	y have	}		,					
	(A)	speed.	(B) v	elocity.	(C)	energy.	(D)	momentum.			
73.	A feather and a coin dropped in a vacuum fall with equal										
	(A)	forces.	•	• •	(B)	momenta.					
	(C)	accelerations.			(D)	kinetic energi	es.				
74.		(g) Ý H2(g) + I2(25 mole each of									
	(A)	3.2,	(B)	1.6,	(C)	6.4,	(D)	0.8			
75.	2.80	$O_2(g) + O_2(g)$ is a	an exa	mple for							
	(A)	irreversible res	ction,		(B)	heterogenous	catalys	is,			
	(C)	homogenous ca	talysi	s;	(D)	neutralisation	reacti	on			
76.		cc of HCl, 20 co		•		*		mixed and the			
	(A)	1,	(B)	3,	(C)	8,	(D)	2			

77.	that	oles of SO ₂ and 6 60% of SO ₂ is u osphere, the part	sed u	p. If the partial		_		
	(A)	0.21 atm,	(B)	0.41 atm,	(C)	0.82 atm,	(D)	0.52 atm
78.	disco	em ³ of 0.2 N He ontinued after a ong 0.5 N KOH. T	dding	50 cm ³ of NaO	H. The	remaining titr	ation i	s completed by
	(A)	10 cm ³ ,	(B)	12 cm ³ ,	(C)	10.5 cm ³ ,	(D)	25 cm ³
79.	Whi	ch one of these is	NOT	TRUE for benz	zene?	·		
	(A)	It forms only or	ne typ	e of mono subst	ituted ;	product		
	(B)	There are thre	e car	bon-carbon sin	gle bor	nds and three	carbon	-carbon double
	(C)	Heat of hydroge	enatio	on of benzene is	less th	an the theoretic	al valu	ıe
	(D)	The bond angle	betw	een carbon-carl	on bon	ds is 120°		٠.
80.	Whi	ch one of the foll	owing	is paramagnet	ic?		•	
	(A)	N_2 ,	(B)	NO,	(C)	CO,	(D)	O ₃
81.	Whi	ch one of the foll	owing	; is a covalent ci	ystal?			
	(A)	Ice,	(B)	Rock salt,	(C)	Dry ice,	(D)	Quartz
82.	Whi	ch one of the foll	owing	DOES NOT in	volve co	agulation?		
	(A)	Formation of de	elta re	egion ,			·	
	(B)	Clotting of bloo	d by t	he use of ferric	chlorid	е,		
	(C)	Peptization						
	(D)	Treatment of d	rinkir	ng water by pote	ash alu	m	•	•
83.	Whi	ch one is not a co	onstit	uent of nucleic a	acid?			
	(A)	Uracil,	(B)	Guanidine,	(C)	Phosphoric ac	id (D)	Ribose sugar
84.		ody of mass 10 Broglie wave asso				ity of 100 ms	1. The	wavelength o
	(Not	te : h = 6.63 ´ 10-	34Js)					
	(A)	6.63 ′ 10-37m,			(B)	6.63 ′ 10-31m	,	
	(C)	6.63′10-34m,			(D)	6.63 ′ 10-35m		
379				10		• .		

00.		62 ´ 10-35m. Her			-	100 ms . Its de	, DIOE	me wavelength
	(A)	0.15 kg,	(B)	0.2 kg,	(C)	0.1 kg,	(D)	0.25 kg
86.	acet		bove t	ouffer solution, 0	.1 mo	cetate dissolved i le of sodium ace equal to		
	(A)	pKa,	(B)	pKa - Log2,	(C)	pKa + Log2,	(D)	pKa + 2
87.	conc	•).20 M	I. If the equilibri		centration of NH onstant, Kb for N		
	(A)	8.73,	(B)	9.08,	(C)	9.43,	(D)	11.72
88.	A co	mplex compound	l in w	hich the oxidatio	n nun	nber of a metal is	zero	is
	(A)	K ₄ [Fe (CN) ₆],	x.		(B)	K ₃ [Fe (CN) ₆],		
	(C)	[Ni (CO) ₄]			(D)	[Pl (NH ₃) ₄]Cl ₂		
89.		ch of the follow centrated HCl?	wing	is used to prep	are (Cl2 gas at roon	n tem	perature from
	(A)	MnO ₂ ,	(B)	H ₂ S,	(C)	KMnO ₄ ,	(D)	Cr ₂ O ₃
90.	Whi	ch of the followir	ıg is r	not an ore of mag	nesiu	m?		
	(A)	Carnallite,	(B)	Dolomite,	(C)	Calamine	(D)	Sea water
91.	Whi	ch of the followir	ng has	the highest bon	d orde	er?		
	(A)	N_2 ,	(B)	O ₂ ,	(C)	He ₂ ,	(D)	H_2
92.	Whi	ch of the followir	ıg giv	es an aldehyde o	n dry	distillation?		
	(A)	Calcium acetat	e + ca	lcium benzoate,	(B)	Calcium forma	te + cı	alcium acetate,
	(C)	Calcium benzo	ate,		(D)	Calcium acetat	e	
93.	Whi	ch of the following	ng doe	es not give benzoi	ic acid	l on hydrolysis?		
	(A)	phenyl cyanide	•		(B)	benzoyl chlorid	e,	
	(C)	benzyl chloride	,		(D)	methyl benzoat	e	

94.	80 g	of oxygen contai							
	(A)	80 g of hydroge	n,		(B)	1 g of hydroger	1,		
	(C)	10 g of hydroge	n,		(D)	5 g of hydroger	1 -	•	
95.	mag	of electric curre mesium metal th aber of moles of t	us obt	tained is complet	ely co	nverted into a G			
	(A)	1 ′ 10-4,	(B)	5 ′ 10-4,	(C)	1 ′ 10-5,	(D)	5 10-5	-
96.	A 69	% solution of ure	a is isc	otonic with					
	(A)	6% solution of	Glucos	se,	(B)	25% solution of Glucose,			
٠	(C)	1 M solution of	Gluco)se,	(D)	0.05 M solution	n of GI	ucose	
97.		ivalent metal ha ate is	s an	2. The molecula	r mas	ss of the met	al		
	(A)	192,	(B)	188,	(C)	182	(D)	168	
98.	the	ompound of 'A' ar lattice points at of the cube. The	the co	omers of the cub	e. Th	e 'B' atoms occu	py the	-	
	(A)	AB,	(B)	AB3,	(C)	AB2,	(D)	A3B	
99.		valent molecule electrons in the				re. The number	of lone	e pair and bor	ıd
	(A)	3 and 1,	(B)	1 and 3,	(C)	2 and 2	(D)	0 and 4	
100.	A di	abetic person car	ries a	pocket of Glucos	se wit	h him always, b	ecause		
	(A)	Glucose reduce	s the l	blood sugar level	•				
	(B)	Glucose increas	ses the	e blood sugar lev	el alm	ost instantaneo	usly.		
	(C)	Glucose reduce	s the l	blood sugar level	slowl	y.			
	(D)	Glucose increas	ses the	e blood sugar lev	el slov	wly.			
		•	ē	• •					