ENTRANCE EXAMINATION FOR ADMISSION, MAY 2012.

M.Sc. (ECOLOGY AND ENVIRONMENTAL SCIENCES)

COURSE CODE: 371

Register Nur			
			Signature of the Invigilato (with date)
			(with date)

COURSE CODE: 371

Time: 2 Hours Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each of the question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	Whi	ch of these group	s is a	t the apex of	the food	chain?		
	(A)	Herbivores	(B)	Bacteria	(C)	Plants	(D)	Predators
2.	The	Chi-square test	is use	datawa		22 THO 102		
	(A)	To compare fre	quenc	y distribution	is (B)	To assess pro	babilitie	S
	(C)	To compare sar	nple n	neans	(D)	To compare v	ariances	
3.	Wha	at are the respira	tory o	rgans in inse	cts?			
	(A)	Gills	(B)	Trachea	(C)	Lungs	(D)	Skin
4.	Exce	ess of water esca	ping f	rom the plant	ts in a lic	quid form is cal	lled	
	(A)	transpiration	(B)	osmosis	(C)	guttation	(D)	respiration
5.	Fina	l product of ana	erobic	respiration i	S			
	(A)	methanol	(B)	pyruvate	(C)	ethanol	(D)	starch
6.	Acco	ording to the law	s of th	ermodynami	cs which	of the followin	g can be	recycled
	(A)	Both matter an	d ene	rgy	(B)	Matter, but n	ot energ	у
	(C)	Neither matter	nor e	nergy	(D)	Energy, but n	ot matte	er
7.	How	is carbon trans	ferred	from living o	rganism	s to the atmosp	here?	
	(A)	Photosynthesis			(B)	Cellular respi	iration	
	(C)	Transpiration			(D)	Decompositio	n	
8.	Whi	ch one of the foll	owing	is produced	from mir	neral oil?		
	(A)	Castor oil	(B)	Kerosine	(C)	Jetropa oil	(D)	Ranseed oil
9.	Kyo	to Convention is	conce	rned with				
	(A)	oil pollution			(B)			
	(C)	terrorism			(D)	climate chang		
10.	As a	result of rising	global	temperature	s followi	ng two major i	mpacts a	are expected
	(A)	relatively long	summ	ers and drier	winters	deweige of the		
	(B)	rise in the sea	level a	and regional o	limatic o	changes		
	(C)	Increased wat				like lakes a		
	(D)	Increased wat						

11.	The	function of water in photosynthes	sis is					
	(A)	combine with CO ₂						
	(B)	absorb light energy						
	(C)	supply of electrons in the light-	dependent	reactions				
	(D)	transport H+ ions in the light-ir	17 10 11					
12.	In t	he production of rice India occupie	es					
	(A)	first position	(B)	second position				
	(C)	third position	(D)	fourth position				
		al a state with the section		rang ar Employees th				
13.		wing two or more crops simulta wn as	aneously v	with no distinct ro	w arrangement is			
	(A)	mixed cropping	(B)	mixed intercroppi	ng			
	(C)	relay cropping	(D)	alley cropping	MIC INTO COLUMN			
14.	Indi	viduals of the same species in a p	articular l	ocality constitute				
	(A)	population (B) communit	ty (C)	flora	(D) fauna			
15.	Den	gue is transmitted by						
	(A)	Aedes (B) Anopheles	(C)	Culex	(D) None of above			
16.	Exa	mple of poikilotherms is						
	(A)	Bird (B) Snake	(C)	Cow	(D) Man			
		speaking tree (G)						
17.	Endangering plant species can be multiplied through							
	(A)	transgenesis	(B)	r DNA technology				
	(C)	cloning	(D)	tissue culture				
18.		progressive series of changes the t was once a bare rocky island is			nax community on			
	(A)	primary succession	(B)	speciation				
	(C)	secondary succession	(D)	evolution				
19.		terrestrial ecosystem, the troph		at would contain th				
	(A)	producers	(B)					
	(C)	secondary consumers	(D)	highest order cone				

20.	The	e most serious en	vironn	nental effect p	osed by	hazardous waste	s is		
	(A)	air pollution			(B)	contamination of	of grou	ındwater	
	(C)	increased use o	f land	for landfills	(D)	destruction of h	abitat		
21.	Gro	Groundwater mining in coastal areas can result in							
	(A)	decrease in the	toxici	ty of groundw	ater				
	(B)	decrease in the	salini	ity of groundw					
	(C)	increase in the	water	table					
	(D)	increase in the	salini	ty of groundwa	ater				
22.	One	of the best solut	ions t	o get rid of nor	n-biode	gradable wastes i	S		
	(A)	Burning	(B)	Dumping	(C)	Burying	(D)	Recycling	
23.	In	a lake polluted	with	pesticides, w	hich or	ne of the follow	ng w	ill contain the	
	max	kimum amount of	pesti	cides?					
	(A)	Small fish			(B)	Microscopic ani	mals		
	(C)	Phytoplankton			(D)	Water birds			
24.	The	fact that viruse			cellular	parasites means	that	they require	
	(A)	culture dish			(B)	host cell			
	(C)	phenol red brot	h		(D)	secondary virus			
25.	All	of the following s	tructu	res of bacteria	contai	n (or are made of) prote	ein except	
	(A)	plasmids			(B)	ribosomes	•		
	(C)	pili			(D)	cell membrane			
26.	The well known fungus genus widely used for controlling plant diseases, is								
	(A)	VAM	(B)	Rhizobium		Trichoderma		None of these	
	, ,		,_/	Herae, Parasina	(0)		(2)	TYONG OF BIRDS	
27.	Dur	ing cell division,	the ph	ase at which a	all chro	matids move to th	ne equ	atorial plane is	
	(A)	prophase	(B)					telophase	
28.	Hyd	rocarbons are ric	h in n	nembers of the	family	3610,4000			
	(A)	Malvaceae			(B)	Fabaceae			
	(C)	Musaceae			(D)	Euphorbiaceae			
29.	The	parameter k in t	he log	istic equation	denote	s			
	(A)	Resources			(B)	Carrying capaci	ty		
	(C)	Sustainability			(D)	Growth rate			

30.	A li	fe-table is used to study						
	(A)	Population processes	(B)	Animal behaviour				
	(C)	Human evolution	(D)	Community structure				
31.	Wha	at does this Conservation Category 'Lea	ast C	oncern' mean?				
	(A)	Species that has gone extinct		in a local of conductive warming and				
	(B)	No danger of extinction in immediate	futu	re				
	(C)	Has been saved from extinction						
	(D)	No danger of extinction						
32.	The	Dodo, a bird that went extinct a few ce	entur	ies ago was found in				
	(A)	Madagascar	(B)	Mozambique				
	(C)	Mauritius	(D)	Maldives				
33.	The	cell wall type that is most vulnerable t	to the	action of penicillin is				
	(A)	Gram negative	(B)	Gram positive				
	(C)	Both (A) and (B)	(D)	None				
34.	Ani	mal(s) which is/are active at night						
	(A)	Owl (B) Rat	(C)	Cockroach (D) All the above				
35.	Two	or more crops are managed simultane	ously	in the same field is known as				
	(A)	intercropping	(B)	monocropping				
	(C)	multicropping	(D)	alley cropping				
36.	Plant and fungal cell wall are respectively made of							
	(A)	chitin and creatinin	(B)	maltose and lactose				
	(C)	cellulose and chitin	(D)	glucose and galactose				
37.	Succession initiating from aquatic environment is							
	(A)	Hydrosere	(B)	Xerosere				
	(C)	Mesosere	(D)	None of the above				
38.	Exti	nct bird of Mauritius island is						
	(A)	Sunbird (B) Humming bird	(C)	Dodder (D) Dodo				
39.	Mar	rine mammals include						
	(A)	Sea cucumber, corals and polychetes						
	(B)	Mammoths mouse, deer and marsh co	rocod	ile				
	(C)	Manatees, dugongs and whales						
	(D)	Caulerpa, Halimeda and Codium						

40.	Her	emaphrodite refers to		
	(A)	male and female parts in the differ	ent flov	vers of same plant
	(B)	male and female parts in the same	flower	
	(C)	male and female flowers in separat	e plant	S
	(D)	plants with some female and some	bisexua	al flowers
41.	Pop	ulation regulation mechanisms help	in	
	(A)	density reduction and diversity ma	intenar	nce
	(B)	density increase and diversity redu	ction	
	(C)	diversity and density increase equa	ally	mile men and being the service of the
	(D)	diversity and density decrease equa	ally	
42.		lutionary changes in floral morp inator morphology and vice versa. Th		influence evolutionary changes in of evolution is known as
	(A)	Evolutionary ecology	(B)	Ecological evolution
	(C)	Co-evolution	(D)	Macroevolution
43.	Maj	or wetlands include		
	(A)	bogs, marshes, mangroves and swa	mps	
	(B)	oceans, continental shelf rivers and	stream	ns
	(C)	lakes, ponds and puddles		
	(D)	rivers, streams and ponds		
44.	Tick	the related mammal group	-	
	(A)	manatees, elks and cheetah	(B)	musk deer, otters and lion
	(C)	capibara, elands and bats	(D)	mammoths, elephants and tapirs
45.	Exot	tic plants exhibit		
	(A)	slow growth and low-nutrient effici	ency	
	(B)	fast growth and high-nutrient effici	ency	
	(C)	slow elongation and growth		
	(D)	none of the above		
46.	Majo	or determinants of global distribution	n of bio	mes include
	(A)	altitude, latitude, and longitude	(B)	temperature and rainfall
	(C)	soil and rainfall	(D)	temperature and altitude

47.	Con	servation areas are prioritised ba	sed on							
	(A)	high species diversity, endemici								
		(B) low diversity, wide distribution and geological substrate								
	(C) climate, soil and cultigens									
	(D)	human population, climate and	soil							
48.	Defe	prestation reduces	- and incre	eases						
	(A)	CO ₂ uptake in Photosynthesis,								
	(B)	O ₂ uptake in respiration and gu	2 0(10)							
	2.00		iccacion							
	(C)	N uptake and Photosynthesis								
	(D)	P uptake and transpiration								
49.	Hyd	rochory refers to								
	(A)	Pollination by water	(B)	Seed dispersal by water						
	(C)	Absorption of water	(D)	Elimination of water						
50.	Mer	cury pollution causes the disease	called min	amata which affects						
	(A)	lymphatic	(B)	nervous system						
	(C)	respiratory system	(D)	ophthalmic complex						
51.	Plan	nt growth substances include								
	(A)	Adenine, Guanine, Cytosine	(B)	Sporopollenin, Chlorophyll						
	(C)	Auxin, Gibberellin Cytokinin	(D)	Nitogen, Phosphorus, Potassium						
52.	Can	ses of coastal pollution include								
O and	(A)	oil-spills, effluents solid dumps,	etc							
	(B)	oil-extraction, aquaculture agric								
	(C)	over-exploitation of fishery reso								
	(D)	under-utility of fishery resource								
53.	Wile	d relatives of species are useful in	increasing	g						
	(A)	disease treatment of domesticat								
	(B)	disease resistance in domestical								
	(C)	disease induction in domesticat								
	(D)	disease testing in domesticated								
54.	Ticl	k the odd item								
	(A)	Corals, Sponges, Fishes	(B)	Oaks, Teak, Sal						

(C) Camel, Lizards, Spiders (D) Palms, Gingers, Orchids

55.	Ane	mophily and Chiropt	erophily respectiv	vely re	efer to			
	(A)	pollination by anim	als and water	(B)	seed dispersal by bate	and baboons		
	(C)	pollination by wind	s and bats	(D)	seed dispersal by win	d and insects		
56.		anisms reproducing	once in life tim	e are	respectively referred	in plants and		
	(A)	monocarpic and ser	nelparous	(B)	polycarpic and iterop	arous		
	(C)	monophyletic and p	oolyphyletic	(D)	viviparous and semel	parous		
57.	Indi	an Remote Sensing s	atellite is					
	(A)	Cartosat (B		(C)	Spot (D)	Ikonos		
58.	Ann	elids includes						
	(A)	Flat worm (B) Round worm	(C)	Earth worm (D)	Blood worm		
59.	Stud	ly of chromosomes is						
	(A)	Dendrology (B) Cytology	(C)	Karyology (D)	Chronology		
60.	Tick	the set of invasive v	veeds					
	(A)	Pine, fir, linden		(B)	Teak, sal, red sander	S		
	(C)	Lantana, Eichhorn	ia, Chromolaena	(D)	Gnetum, Connarus, I	Derris		
61.	Biod	Biodiversity is dealt at three levels						
	(A)							
	(B)	Ecosystem species		ıs				
	(C)	Genes, species and						
	(D)	Genes, cells and tis						
62.	Tick	the order indicating	increasing rainfa	all				
	(A)	cold deserts, hot de	serts, grasslands					
	(B)	rainforests, savann	as and deciduous	forest	ts			
	(C)	grasslands, rainfor	ests and deserts					
	(D)	deserts, savannas,	deciduous and ev	ergree	en forests			
63.	Phy	sical and chemical de	efense against her	rbivor	y are			
	(A)	Thorns and Total p		(B)	Epidermis and Lipids			
	(C)	Vasculature and G	lycerol	(D)	Nectories and Protein	10		

64.	Repr	resentatives of four major Arthopod c	lasses	include				
	(A)	canids, felids and bovids						
	(B)	annelids, centipedes and polychaete	S					
	(C)	millepedes, crabs, lepidopterans and	l arach	nnids				
	(D)	nematodes, earthworms and corals						
65.	CAN	I plants open stomata in						
	(A)	day time to transpire	(B)	night time to economise water				
	(C)	summer to respire	(D)	winter to avoid evaporation				
66.	Wat	er and food conducting tissues includ	е					
	(A)	Parenchyma and Aerenchyma	(B)	Chlorenchyma and Collenchyma				
	(C)	Xylem and Phloem	(D)	Cambium and stomium				
67.	Sust	Sustainable use of resources would refer to						
	(A)	optimal resource harvest within reg	enerat	tive potential of species				
	(B)	maximal resource harvest in all sea	sons					
	(C)	resource harvest at long time interv	als o r	esource harvest at all				
	(D)	no resource harvest at all						
68.	Imp	Important shelter belt species for coastal protection include						
	(A)	Spinifex, Casuarina	(B)	Teak, Ixora				
	(C)	Cinnomon, Verbena	(D)	Salix, Fagus				
69.	End	lemics are						
	(A)	species with wide distribution	(B)	species with restricted distribution				
	(C)	biomes of wide range	(D)	biomes of narrow range				
70.	Attr	Attractive macrofungal fruit bodies are basically made of						
	(A)	Mycelium (B) Cambium	(C)	Cellulose (D) Lignin				
71.	Met	hods of fossilization include						
	(A)	sublimation, impression, predation	and di	spersion				
	(B)	sedimentation, impression, compres	ssion a	nd petrifaction				
	(C)	nitrification, cryopreservation, com	pressio	on and pollination				
	(D)	denitrification, crystallization, fossi	lizatio	n and preservation				
72.	Lea	ther industries utilize						
	(A)	seed lectins and potassium perman						
	(B)	bark and fruit tannins or chromium	sulph					
	(C)	stem latex and sodium citrate						
	(D)	root oils and lead nitrate						

73.	One	e of the followi	ng plant	groups is kno	wn for	spice source		
	(A)	Ericaceae, C			A see her child ables (A)			
	(B)			ceae, Asterace	200			
	(C)			ae, Malvaceae				
	(D)			e, Zingiberace				
	(D)	Dauraceae, 1	viyitacea	e, Zingiberace	ae			
74.	The	architect of th	ne compo	und microscop	e and	discoverer of pla	nt cell	
	(A)	Robert Hook	e		(B)	Charles Darw	in	
	(C)	Gregon Men	del		(D)	Kolliker		
75.	Plan	nts growing in	the full	sunlight are c	alled as	meso Secondo		
	(A)	Sciophytes	(B)	Halophytes	(C)	Heliophytes	(D)	Dailonheston
	(4.4)	octopity tes	(D)	Tratophytes	(0)	Henophytes	(D)	Psilophytes
76.	Pop	ulation around	d cement	industry are	largely	affected by		
	(A)	Cordiac dise	ases		(B)	Pulmonary dis	seases	
	(C)	Eye diseases	3		(D)	Urinary disea	ses	
77.	Tra	nsgenics are k	nown to	he				
	(A)	Disease-pror			(B)	Disease-resist	ont	
	(C)	Disease-prof			(D)			
	(0)	Disease-mut	icive		(D)	Disease-promo	otive	
78.	Win	gless insect is						
	(A)	Moths	(B)	Beetles	(C)	Silverfish	(D)	Dipterans
79.	Con	mercially cult	ivated N	ledicinal resou	irces in	clude		
	(A)	Aloe, Glorios	a, Vinca		(B)	Apium, Toona	Musa	
	(C)	Alnus, Panda			(D)	Buxus, Taxus,		
0.0	~			Dear Chi	olitare r	nna H		
80.	calle	cession resulti ed	ing from	changes brou	ight ab	out by the org	anisms	themselves,
	(A)	Autogenic	(B)	Allogenic	(C)	Primary	(D)	Secondary
		16		or has referen				
81.				hesis, in succe	ssion, v	vas proposed by		
	(A)	FE Clements			(B)	RF Daubenmi	re	
	(C)	RH Whittake	er		(D)	SW Watson		
82.	The	deepest zone	of the oce	ean is called				
	(A)	Epipelagic		CALCAR TOP	(B)	Mesopelagic		
	(C)	Benthopelag	ic		(D)	Bathypelagic		
371	1-1		7.			Dunij penagic		
911				10	,			

83.	Whi	ch of the following is not a typical loti	c habi	tat?
		River (B) Stream	(C)	
84.	A m	ovement is defined as one way inward	l move	ement Which is known as
	(A)	Migration	(B)	Immigration
	(C)	Emigration		None of the above
85.	Wee	ed control is achieved by		
	(A)	Cytological Physiological and embry	ologica	al means
	(B)	Mechanical, chemical and biological		
	(C)	Pathological karyological and Cytological	gical	means
	(D)	Chronological, cytological and astrol	ogical	means
86.		ulation of the salt concentration in	cells a	and body fluids. This phenomenon is
	(A)	Osmoregultion	(B)	Osmosis
	(C)	Ordination	(D)	Osmotic pressure
87.		limits, for all important environmenties can survive, grow and reproduce i		atures Within Which individuals of a
	(A)	Niche	(B)	Niche Packing
	(C)	Niche differentiation	(D)	Niche complementary
88.		act of leaving eggs or progeny to bent – usually a member of another spe		ched by an individual that is not the known as
	(A)	Brood parasitism	(B)	Parasitism
	(C)	Mutualism	(D)	Ammensalism
89.		rate at which oxygen disappears tygenating ability commonly used as a		a sample of water – a measure of ex of the quality of sewage effluent
	(A)	Biological oxygen demand	(B)	Oxygen deficiency
	(C)	Sewage treatment	(D)	None of the above
90.	Geo	logical period occurred from		
	(A)	c. 240 to 221 million years ago	(B)	c. 270 to 220 million years ago
	(C)	c. 265 to 223 million years ago	(D)	c. 263 to 225 million years ago
91.		plants which survive at very low te winters. These are the plants of cold		ature and they can stand very severe lpine regions which are known as
	(A)	Microtherms	(B)	Mesotherms
	(C)	Megatherms	(D)	Hekistotherms

92.	The	arithmetic mean is		
	(A)	A parameter of dispersion	(B)	A measure of central tendency
	(C)	A sample	(D)	Variance of sample
93.		organism that spends only a part of the tof their life as free living organism. The		e cycle as parasite which spends major nenomenon is known as
	(A)	Permanent parasites	(B)	Facultative parasites
	(C)	Definite and Intermediate hosts	(D)	Partial parasites
94.	Whe	en body temperature of organisms corr	espon	ds to environment, they are called
	(A)	Poikilothermic	(B)	Endothermic
	(C)	Homeothermic	(D)	Endoexothermic
95.	Hun	nus of the soil consists of		
	(A)	Rock or unmodified material	(B)	Only clay particles
	(C)	Sand and soil particles	(D)	Decomposed organic matter
96.	Pred	datory-prey models are described by		
	(A)	AJ Lotka and V Volterra	(B)	CB Huffaker
	(C)	CS Holling	(D)	EP Odum
97.	The	part of the atmosphere, which is conta	et wi	th the earth's surface is called
	(A)	Lithosphere	(B)	Mesosphere
	(C)	Troposphere	(D)	Thermosphere
98.	Path	nogenic protozoans include		
	(A)	Nostoc, Anabaena etc.	(B)	Noctileuca, Paramecium etc.
	(C)	Entamoeba, Plasmodium etc.	(D)	Chlorella, Chlamydomonas etc.
99.	In p	ost-fertilization stage ovary, ovule & z	ygote	respectively develop into
	(A)	Seed, embryo and fruit	(B)	Seed, endosperm and perisperm
	(C)	Fruit, seed and embryo	(D)	Embryo, endosperm and fruit
100.	Wha	at are alleles?		
	(A)	Alternate forms of the same gene on	homo	logous chromosomes
	(B)	A codon		
	(C)	Structural genes		
	(D)	Proteins		