ENTRANCE EXAMINATION FOR ADMISSION, MAY 2012.

M.Sc. (FOOD SCIENCE AND NUTRITION)

COURSE CODE: 389

Register Nu	ımber :	
		1
		Signature of the Invigilator (with date)

COURSE CODE: 389

Time: 2 Hours

Max: 400 Marks

Instructions to Candidates:

- Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	Pron	ninent differences between prokaryoti	c and	eukaroytic cells is the					
		(A) Larger size of prokaryotes							
	(B)								
	(C)								
		Presence of a cell wall in prokaryotes	3						
	()								
2.	The	following part was absent in Leuwenh	ock's	microscope					
	(A)	Focusing screw	(B)	Lens					
	(C)	Specimen holder	(D)	Condenser					
3.	The	scientist who laid the theory of sponta	neou	s generation was					
	(A)	Lois Pasteur	(B)						
	(C)	Robert Koch	(D)	John Tyndall					
4.	The term culture refers to the — growth of microorganism in								
	(A)	Rapid an incubator	(B)	Macroscopic, media					
	(C)	Microscopic, the body	(D)	Artificial colonies					
5.	A m	ixed culture is							
	(A)	The same as a contained culture							
	(B)	One that has been adequately stirred	ł						
	(C)	One that contains two or more know	n spe	cies					
	(D)	A pond sample containing algae and	proto	zoa					
6.	Mos	Most heat resistant spores is							
	(A)	Staphylococcus aureus	(B)	Clostridium botulinum					
	(C)	Cl. Sporogens	(D)	$Bacillus\ stear other mophillus$					
7.	In th	he microbial estimation using impedar	nce						
	(A)	The psychrotrophs show long selection	on tin	ne					
	(B)	Coliforms shows short detection time	е						
	(C)	Lactobacillus shows short detection	time						
	(D)	All the above							
8.	Whi	ich of the following is not the immunor	nagne	etic particle					
	(A)	Polystyrene paramagnetic micro par	ticle						
	(B)	Polystyrene/ divenly- benzene							
	(C)	Polyacrolein/ iron sulphate particles							
	(D)	Dynaheads							

9.	Chaitin assay is used for the determination of							
	(A)	Bacteria	(B)	Molds and yeasts				
	(C)	Algae	(D)	Protozoans				
10.	Mici	roscopic and electronic method is ex	pressed	in terms of				
	(A)	Numer of cell/ml	(B)	C.f.u/ml				
	(C)	Optical density	(D)	None of the above				
11.	Coco	nut extract agar detects						
	(A)	Aflatoxin	(B)	Ochratoxin				
	(C)	Penicillin	(D)	Calcitonin				
12.	Mal	todextrin have DE value						
	(A)	Less than 5	(B)	Less than 50				
	(C)	Less than 20	(D)	More than 50				
13.	If bu	affers are present The rate of brown	ing reac	tion				
	(A)	Decreases	(B)	Increases				
	(C)	Remains constant	(D)	Cannot be predicted				
14.	In h	ard water, which of the following sa	lts is / a	re present				
	(A)	Sodium chloride	(B)	Sodium bicarbonate				
	(C)	Magnesium sulphate	(D)	All of the above				
15.	Mill	ard reaction is favored in more						
	(A)	Acidic conditions	(B)	Alkaline conditions				
	(C)	Neutral conditions	(D)	It is pH independent				
16.	End	product of Maillard reaction is						
	(A)	Melanin	(B)	Melanoidins				
	(C)	Carmel	(D)	All the above				
17.	Aga	r seems to decrease its gel strength	when pl	I changes towards				
	(A)	Acidity	(B)	Alkalinity				
	(C)	Neutrality	(D)	It is independent of pH				
18.	The	product of enzymic browning is						
	(A)	Melanin	(B)	Melanoidins				
	(0)	Caramal	(D)	All of the above				

19.	Whi	ch of the following statement is correc	ct						
	(A)								
	(B)								
	(C)	Retrograding of starch is more if flo							
	(D)			erring more ripad					
20.	Whi	Which if the following process is responsible for the staling of bread							
	(A)	Gelatinization	(B)	Retrogradation					
	(C)	Hydrolysis of starch	(D)	All the above					
21.	Algi	nates have							
	(A)								
	(B)	Galacturonic acid and mannouronic	acid						
	(C)	Glucouronic acid and mannouronic	acid						
	(D)	D) Galactouronic acid, glucouronic acid and mannouronic acid							
22.	Gela	atinization of starch is							
	(A)	Endothermic process	(B)	Exothermic process					
	(C)		(D)	Responsible For staling of bread					
23.	Use of agar is in								
	(A)	Microbiolofica lexperiemtn	(B)	Bakery industry					
	(C)	Confectionaly industry	(D)	All of the above					
24.	Starch gel is								
		Pseudoplastic	(B)	Plastic					
	(C)	Elastic	(D)	Thixotropic					
25.	Waxy starch has								
	(A)								
	(B)	More amylose and less amylopectin							
	(C)								
	(D)	None of the above							
26.	Safo	onification index is useful in expressin	ıg						
	(A)	Mean molecular weigh of fats/oils	(B)	Degree of unsaturation of oil					
	(C)	Extend of rancidity	(D)	None of the above					
27.	Pro	pyl gallate is used in fats/ oil processin	ng indi	ustrv as					
	(A)	Synergistic	(B)	Plasticizer					
	(C)	Emulsifier	(D)	Antioxidants					
			-						

28.	Aga	r is obtained from							
	(A)	Gelidium spp.	(B)	Pseudomonas spp.					
	(C)	Aspergillus spp.	(D)	None of the above					
29.	Whi	ch of the following acts as the syner	gistic						
	(A)	Citric acid	(B)	Acetic acid					
	(C)	Benzoinc acid	(D)	Formic acid					
30.	Whi	ch of the Following is are natural an	ntioxida	nt present in oil					
	(A)	Butylated hydroxyl anisole	(B)	Tocopherol					
	(C)	Ascorbic acid	(D)	All the above					
31.	Whi	ch of the following is/are used as the	antioxi	dants in fats and oil processing					
	(A)	Calcium propionate							
	(B)	Butlyated hydroxyl hydrazine							
	(C)	Butylated hydroxyl anisole							
	(D)	All the above							
32.	Isot	achophorosis is also called							
	(A)	Iso - electric focusing	(B)	Displacement electrophoresis					
	(C)	Chromatography	(D)	None of the above					
33.	In is	In iso- electric focusing the gradient increases from							
	(A)	High pH at the cathode	(B)	Low pH at the cathode					
	(C)	High pH at anode	(D)	Low pH at anode					
34.	PAC	E is							
	(A)	(A) Partition, adsoprotion and gel electrophoresis							
	(B)	Polyacrylamisde gel electrophorosi	s						
	(C)	(C) Principle adsorbent for gel electrophoresis							
	(D)	None of the above							
35.		ch of the following separation metho of the separating material	ods does	not depend upon the charges and the					
	(A)	Ion exchange chromatography	(B)	Gel filtration					
	(C)	Affinity chromatography	(D)	PAGE					
36.		ercritical fluid chromatography ressure and temperature	fers to	the chromatography performed at a					
	(A)	Above the critical value of mobile p	ohase						
	(B)	Below the critical value of mobile p	ohase						
	(C)	Above the critical value of stationa							
	(D)	Below the critical value of stationa	ry phas	e					

37.	ANS	SA is used for the estimation of						
	(A)	Iron	(B)	Calcium				
	(C)	Phosphorus	(D)	Copper				
38.	Foli	n-Lowry method is for the estimation	n of					
	(A)	Sugar	(B)	Protein				
	(C)	Vitamin K	(D)	Copper				
39.	The	reagent used for the estimation of p	rotein b	y Lowry's method is/ are				
	(A)	Phosphomolybdate	(B)	Tungstomolybdate				
	(C)	Molybdic acid	(D)	All of the above				
40.	Wor	ngs method is used for the estimation	n of					
	(A)	Reducing sugar	(B)	Iron				
	(C)	Biotin	(D)	Aflatoxin				
41.	Which of the following mineral is not estimated calorimetrically							
	(A)	Calcium	(B)	Copper				
	(C)	Iron	(D)	Phosphorus				
42.	Soxhlet method is used for the determination of							
	(A)	Crude fat	(B)	Crude protein				
	(C)	Crude fibre	(D)	None of the above				
43.	Soxhlet method is based on the principle of							
	(A)	Chemical analysis	(B)	Solvent extraction				
	(C)	Colorimetery	(D)	Chromatography				
44.	For the estimation of fatty acid composition of fat by gas chromatography, the firstep is							
	(A)	Isomerization	(B)	Transstrification				
	(C)	Derivatization	(D)	Hydrogenation				
45.	In d	erivatization of fat, fat is converted	to					
	(A)	Fatty acids	(B)	Fatty acid methyl ester				
	(C)	Glycerol	(D)	Soap				
46.	Cold	I test of fat is the measure of						
	(A)	Freezing point of oil						
	(B)	Strength of solid fats at -2.5 °C						
	(C)	Resistance of oil to crystallinization	n					
	(D) Viscosity of oil at the temperature just above the freezing point							

47.	Kjel	dalhs method is for the estimation of							
	(A)	Crude fibre contents	(B)	Crude fat content					
	(C)	Crude protein content	(D)	None of the above					
48.	Wha	at is the basic step in kjeldhals metho	d						
	(A)	Digestion	(B)	Distillation					
	(C)	Titration	(D)	All of the above					
49.	In this	he estimation of cholesterol in food by	gas c	hromatography the derivative product					
	(A)	Trimethylacetyl	(B)	Trimethyl choloride					
	(C)	Trimethylsilyl ether	(D)	All of the above					
50.	In tl	he gas chromatography the area unde	r a gra	aph show the					
	(A)								
	(B) Concentration of the substance present in the sample								
	(C)	Elution time		•					
	(D)	Cost of estimation of unit sample							
51.	of so	— is the ratio of concentration of solute in stationary phase to concentration of solute in mobile phase							
	(A)	Partition coefficient	(B)	Concentration gradient					
	(C)	Rf value	(D)	Elution ratio					
52.	Bile	salts are bile acids in conjugation wit	h						
	(A)	Glycien or serine	(B)	Glycine or taurine					
	(C)	Glycien or chenodoxycholic acid	(D)	Glycine or potassium					
53.	Whi	ch of the following amino acids is pres	sent in	bile acids					
	(A)	Alanine	(B)	Glyceine					
	(C)	Phenylalanine	(D)	Methinine					
54.	Whi	ch of the following is the primary bile	acid						
	(A)	Cholic acid		Hydrocholoric acid					
	(C)	Tartaric acid		All of the above					
55.	Saus	alene is formed by the condensation of	f ——	isoprepoids					
556	(A)	2	(B)	B.6					
	(C)	C.18		D.27					
			100000000000000000000000000000000000000						

56.	Cho	lesterol is synthesized from							
	(A)	Alanine	(B)	Stearic acid					
	(C)	Acetyl coenzyme	(D)	Choline					
57.	The	enzymes for lipid biosynthetis is pres	ent in						
	(A)	Mitochondria	(B)	Nucleus					
	(C)	Endoplasmic reticulum	(D)	Lysosome					
58.	Fru	ctose is converted to fructose -1- phos	phate l	by the action of enzymes					
	(A)	Fructokinase	(B)	Hexokinase					
	(C)	Fructophosphatase	(D)	Fructo- phosphor transferase					
59.	Nut	rition includes the study of —							
	(A)	The organism's food							
	(B)	Process of digestion							
	(C)	The way an organism obtains food							
	(D)	All of the above							
60.	Autotrophic organisms include								
	(A)	Green plants and sulphur bacteria							
	(B)	Green plants and all the bacteria							
	(C)	Bacteria and virus							
	(D)	Bacteria and fungi							
61.	Org	Organisms that synthesise their own food are called ————							
	(A)	Green plants	(B)	Sulphur bacteria					
	(C)	Autotrophs	(D)	Purple-sulphur bacteria					
62.	Amo	peba feeds with the help of							
	(A)	Tentacles	(B)	Pseudopodia					
	(C)	Food vacuole	(D)	None of the above					
63.	An e	example of higher plant parasite is —		<u></u>					
	(A)	Pythium	(B)	Phytophthora					
	(C)	Agaricus	(D)	Cuscuta.					
64.	In c	ytochrome, the electron are picked up	and r	eleased by					
	(A)	Iron	(B)	Molybdenum					
	(C)	Copper	(D)	Zinc					

65.	Number of oxygen molecules required for glycolytic breakdown of cone glucose molecules							
	(A)	Zero	(B)	Three	(C)	Six	(D)	Thirty eight
66.	Rate of respiration shall							
	(A)	Increase with	the rise	e in temperat	ure			
	(B)	Decrease in the	he prese	ence of light				
	(C)	Increase in w	inter					
	(D)	No change wi	th seaso	on and enviro	nment c	ondition		
67.	RQ	of protein is						
	(A)	More than un	ity		(B)	Less than unity	у	
	(C)	Unit			(D)	Zero		
68.	In p	entose phospha	ite shur	t the net form	nation o	f ATP molecule i	s	
	(A)	12	(B)	6	(C)	2	(D)	10
69.	Whi	ch one is the fir	nal elect	tron acceptor				
		OAA		NADP	(C)	Cytochrome	(D)	Pyruvate
70.	For	any enzymatic	reaction	,Km is				
	(A)	The concentra						
	(B)	The concentra						
	(C)	The concentra						
	(D)	The concentra	ation of	the intermed	iates			
71.	Enzymes with different forms but performing similar function is called							
		Apoenzyme			(B)	Holoenzyme		
	(C)	Isoenzyme			(D)	Alloenzyme		
72.	Extra mitochondrial source of NADH for ETC is							
	(A)	HMP			(B)	Krebs cycle		
	(C)	EMP			(D)	All of the above	е	
73.	Whi	ich of the follow	ing is a	ssociated with	h lipid n	netabolism		
	(A)	HMP pathwa	У		(B)	EMP		
	(C)	Carnitine tra	nsport s	system	(D)	All of the above	е	
74.	Oxio	dation of lipids	take pla	ace in				
	(A)	Mitochondria			(B)	Cytoplasm		
	(C)	Ribosome			(D)	Endoplasmic re	eticulu	m

75.	In ce	ells the free fatty	acids	are present	t in combin	nation with	i angyan To ar 'al'		
	(A)	a protein			(B)	z protein			
	(C)	Q protein			(D)	X protein			
76.	How	many ATP is ga	ined f	from the a o	xidation o	f one molec	cule of C _{16:0} fatty acid		
	(A)	115	(B)	129	(C)	131	(D) 138		
77.	How	many ATP is ga	ined f	rom the Kr	ebs cycle o	f one mole	cule of acetyl Co-A		
	(A)	10	(B)	12	(C)	15	(D) 17		
78.	End	product of β oxi	datio	n of fatty ac	id is				
	(A)	Pyruvic acid			(B)	Actyle Co.	A		
	(C)	Acetone			(D)	Carbon di	oide and water		
79.	The	eating disorder t	hat is	characteriz	zed by self	imposed s	tarvation is		
	(A)	Anorexia			(B)	Flatulenc	е		
	(C)	Obesity			(D)	Malnutrit	ion		
80.	Ribo	se molecule is se	en in	the structu	re of				
	(A)	Vitamin B ₆			(B)	Vitamin F	B_1		
	(C)	Vitamin B ₂			(D)	Vitamin I	312		
81.	When pantathonic acid degrades under acidic conditions, the product formed is								
	(A)	β tochopherol			(B)	β alaning	е		
	(C)	β glucose			(D)	None of th	ne above		
82.	Thiazolidine is the product of heating of food containing which of the following vitamin							wing	
	(A)	Pyridoxine			(B)	Biotin			
	(C)	Ascorbic acid			(D)	Folic acid			
83.	Poli	shing of rive rem	oves						
	(A)	Vitamin K			(B)	Vitamin I	31		
	(C)	Vitamin C			(D)	Vitamin A	A		
84.		is the co	mpon	ent of CoA					
	(A)	Vitamin K			(B)	Thiamin			
	(C)	Pantathonic aci	id		(D)	Biotin			
85.	2 M	ethyl-1,4- naptha	quino	ne is the in	tegral strı	acture of vi	tamin		
	(A)	A	(B)	B.B2	(C)	K	(D) C		

86.	Yell	ow green fluorescence	in the whey show	ws th	e presence of w	hich vitamin		
	(A)	Riboflavin		(B)	Ascorbic acid			
	(C)	Thiamine		(D)	Biotin			
87.	Pter	rin residue is found in	which of the follo	owing	y vitamin			
	(A)	Riboflavin		(B)	Ascorbic acid			
	(C)	Retinol		(D)	Folic acid			
88.		ATP synthase completron transport system			— ATP 's for e	ach NADH that enters		
	(A)	1 (B)	2	(C)	3	(D) 4		
89.	At v		formed during th	he TC	CA cycle enters	the electron transport		
	(A)	NADH dehydrogena	se	(B)	Cyctochrome			
	(C)	Coenzyme Q		(D)	ATP synthase			
90.	The compound that enters the TCA cycle from glycolysis is							
	(A)	Citric acid		(B)	Oxaloacetic ac	cid		
	(C)	Pyruvic acid		(D)	Acetyl coenzy	me A		
91.	The is	net yield of ATP's giv	en off in the fern	nenta	tion of a glucos	e in aerobic respiration		
	(A)	40 (B)	6	(C)	38	(D) 2		
92.	The number of ATP's in complete oxidation of glucose molecule is							
	(A)	4 (B)	6	(C)	38	(D) 2		
93.	Whi	ch of the following sta	atements regardi	ng en	teral nutrition	formulas is TRUE?		
	(A)					rients in whole (ie non- t contain all three		
	(B)	For acute pancreation semi-elemental form			2	sion, jejunal delivery of n support		
	(C)		re formulated to			icronutrients if caloric		

polymeric formulas in patients with cirrhosis and COPD, respectively

(D) Specialty formulas for liver and pulmonary disease are superior to regular

94.		ch of the following is an acceptable ition support?	meth	od for determining caloric needs for				
	(A) (B)	Caloric needs per kilogram of body w Underwater weighing	reight	(ie 25-30 kcal/kg body weight)				
	(C)	Cockcroft-Gault equation with activi	ty mo	difier				
	(D)	Anthropometry and Body impedance	analy	rsis				
95.	Whie	ch of the following is NOT a clinical c	onseq	uence of refeeding syndrome?				
	(A)	Hypophosphatemia	(B)	Hypomagnesemia				
	(C)	Hypervolemia	(D)	Hyperphosphatemia				
96.	Whi	ch one of the following micronutrients	is rou	atinely added to TPN?				
		Vitamin D	(B)	Iron				
	(C)	Vitamin E	(D)	Vitamin K				
97.	ago,	leaving him with 75cm of small bow	el. If	esection secondary to a volvulus 1 year he did not receive adequate nutrition temical or clinical evidence of essential				
	(A)	4 days (B) 4 weeks	(C)	4 months (D) 1 year				
98.		ch one of the following medications cal in circumstances?	can l	be added to TPN in the appropriate				
	(A)	H2 Receptor Antagonists	(B)	Proton pump inhibitors				
	(C)	Fluroquinolones	(D)	Narcotics				
99.	Whi	ch one of the following statements i	s TRU home	JE regarding central venous catheter total parenteral nutrition				
	(A)	A) The most common organism causing cather infection is staphylococcus Aureus.						
	(B) Double lumen catheters reduce the risk of catheter infection compared with single lumen catheters							
	(C)		sk of	catheter infection compared with				
	(D)	In an uncomplicated catheter infect antibiotic therapy without removing	ion th	e accepted standard of care is to start atheter				
100.	In w	which of the following clinical situation rovided in nutrition support?	ns sh	ould >1.0g protein per kg body weight				
	(A)	Patients with renal failure on hemod	dialysi	is				
	(B)	Hospitalized patients						
	(C)	Obese patients						
	(D)	Cirrhosis with hepatic encephalopat	thy.					