ENTRANCE EXAMINATION FOR ADMISSION, MAY 2012.

M.Sc. (MARINE BIOLOGY)

COURSE CODE: 373

	 Left to white		
		and the same of th	Construction of
			Signature of the Invigilar (with date)

COURSE CODE: 373

Time: 2 Hours

Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each of the question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you -1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	The	animal cell is surrounded by									
	(A)	A thin cell wall									
	(B)	A thick cell wall									
	(C)	A rigid membrane									
	(D)	A flexible membrane made largely of	prote	in and fat.							
2.	Cell	s without a definite nucleus are called									
	(A)	Eukaryotic (B) Prokaryotic	(C)	Unicellular (D) A cellular							
3.	Nun	nber of essential amino acids in our boo	ly is								
	(A)	10 (B) 20	(C)	26 (D) 12							
4.	Helical model of DNA was provided by										
	(A)	Watson and Crick	(B)	Tatum							
	(C)	Khorana	(D)	Stanley and Iwanowsky							
5.	ATP is										
	(A)	An enzyme									
	(B)	A hormone									
	(C)	An energy rich protein									
	(D)	A nucleotide with three phosphoric ac	cid m	olecules							
6.	DNA	DNA differs from RNA									
	(A)	In having a double bond	(B)	In having thyamine							
	(C)	In having de-oxyribose	(D)	All the above							
7.	Gen	etic information is stored in									
	(A)	Structural protein	(B)	Enzymes							
	(C)	DNA	(D)	DNA and Enzymes							
8.	Chr	omosomes are principally composed of									
	(A)	DNA + Proteins	(B)	DNA							
	(C)	RNA	(D)	Proteins							
373		2									

9.	Live	er is able to manu	ıfactı	ire					
	(A)	Vitamin A	(B)	Vitamin K	(C)	Vitamin D	(D)	Vitamin C	
10.	Plas	sma membrane is	also	known as					
	(A)	Plasmalemma			(B)	Cytoplasmic membrane			
	(C)	Cell membrane			(D)	All the above			
11.	Oce	ans contain		% of water					
	(A)	70	(B)	30	(C)	45	(D)	90	
12.	Abs	ence of	_ mai	rks Porifera					
	(A)	Nervous system		(B)	Reproductive system				
	(C)	Respiratory sys		(D)	Digestive systen	n			
13.	Cor	al reef forming an	imal	s belong to the p	hylur	n			
	(A)	Mollusc	(B)	Coelentrata	(C)	Echinodermata	(D)	Porifera	
14.	Can	al system is a cha	aracte	eristic of					
	(A)	Hydra	(B)	Sea anemone	(C)	Sponge	(D)	Sea urchin	
15.	Stor	e house of malari	al pa	rasite in man's	body i	s			
	(A)	Liver	(B)	Blood	(C)	Spleen	(D)	All the above	
16.	Mut	ation is							
	(A)	Small variation	s in n	ature	(B)	Large variations in nature			
	(C)	Changes in orga	noge	nesis	(D)	Change in histog	genes	is	
17.	Lar	vae of Hydra is kr	nown	as					
	(A)	Planula	(B)	Trochopore	(C)	Tornaria	(D)	None	
18.	Gen	es are made of							
	(A)	Histones			(B)	Polynucleotides			
	(C)	Hydrocarbons			(D)	Lipoproteins			
19.	Gre	en algae is charac	teriz	ed by					
	(A)	Chlorophyll A			(B)	Chlorophyll B			
	(C)	Chlorophyll C			(D)	Chlorophyll E			

20.	An e	example of wood	boring	g molluscs is				
	(A)	Teredo	(B)	Trigonia	(C)	Tridachna	(D)	Pholas
21.	Sim	ple Cell division	is call	ed				
	(A)	Mitosis			(B)	Meiosis		
	(C)	Binary fission			(D)	Mitosis and Mei	osis	
22.	Orga	anisms that live	s on de	ead organic ma	itter			
	(A)	Saprophytes			(B)	Parasites		
	(C)	Predators			(D)	Symbionts		
23.	The	torsion occurs a	t the a	ingle of				
	(A)	90°	(B)		(C)	180°	(D)	60°
24.	Asyı	mmetry in gastr	opods	is due to				
	(A)	Reduction of co	oelum		(B)	Muscular foot		
	(C)	Torsion			(D)	Over growth		
25.	Wat	er vascular syst	em of	echinoderm				
	(A)	Ectoderm			(B)	Endoderm		
	(C)	Coelom			(D)	All the above		
26.	Ske	leton of star fish	is ma	de up of				
	(A)	Chitinous mat	erial		(B)	Silicious materi	al	
	(C)	Calcareous ma	terial		(D)	None of the abo	ve	
27.	Brea	akdown of fatty	acid is					
	(A)	Polymerization	n		(B)	Addition		
	(C)	Hydrolysis			(D)	Oxidation		
28.	Stud	dy of migration o	of bird	s is				
	(A)	Ecology	(B)	Phenology	(C)	Nidology	(D)	Phrenology

29.	Site	of protein synthe	esis	100							
	(A)	Cytoplasm	(B)	Ribosome	(C)	Mitochondria	(D)	Lysosomes			
30.	Lar	gest living mamn	nal of	the world is							
	(A)	African elephan	nt (B)	Blue whale	(C)	Giraffe	(D)	Sperm whale			
31.	Stud	dy of animal visc	eral o	rgan is called a	ıs						
	(A)	Arthology			(B)	Angiology					
	(C)	Sitology			(D)	Splanchnology					
32.	Sha	rks and rays are	studie	ed under scienc	e calle	ed					
	(A)	Icythology			(B)	Traumatology					
	(C)	Torpedology			(D)	Saurology					
33.	In a	sucker fish the	sucke	r is a modificat	ion of						
	(A)	Dorsal fin	(B)	Gill slit	(C)	Mouth	(D)	Ventral fin			
34.	The	The golden age of reptiles are									
	(A)	Mesozoic	(B)	Cretaceous	(C)	Miocene	(D)	Palaeozoic			
35.	The main function of an epithelium is										
	(A)	Production	(B)	Protection	(C)	Absorption	(D)	Secretion			
36.	Fats in the body are stored under the skin as										
	(A)	Lipoprotein			(B)	Mucous layer					
	(C)	Adipose tissue			(D)	Lymphoid tissu	ie				
37.	Fat	her of genetics									
	(A)	Mendel	(B)	Morgan	(C)	Darwin	(D)	Muller			
38.	In n	narine teleost fisl	hes so	dium and chlor	ride io	ns are excreted by	y				
	(A)	Gills			(B)	Neuromast org	ans				
	(C)	Amionotelic			(D)	Scroll valve					

39.	The fertilization of ovum in mammals takes place in										
	(A)	Vagina	(B)	Uterus							
	(C)	Vestibule	(D)	Fallopian tube							
40.	Para	athyroid hormone is									
	(A)	Steroid (B) Lipid	(C)	Carbohydrate (D) Protein							
41.	Mor	phogenesis starts with									
	(A)	Neuralation	(B)	Gasturalation							
	(C)	Blastulation	(D)	Morulation							
42.	The oldest era is										
	(A)	Palaeozoic (B) Protoerozoic	(C)	Archaeozoic (D) Proteozoic							
43.	Gene can be defined as										
	(A)	Unit of function	(B)	Unit of recombination							
	(C)	Unit of physiological activity	(D)	Unit of segregation							
44.	Αve	ector is									
	(A)	Human parasite	(B)	Pathogenic protozoan							
	(C)	Disease transmitting host	(D)	Natural reservoir of disease							
45.	Dow	n syndrome is due to									
	(A)	Extra chromosome 21st autosome	(B)	Extra chromosome 17th autosome							
	(C)	Hormone deficiency	(D)	Extra chromosome 13th autosome							
46.	The	vestigial organ in man is									
	(A)	Cocyx (B) Spleen	(C)	Pinna (D) Lips							
47.	Cha	rles Darwin used the ship									
	(A)	HMS Elizabeth	(B)	HMS Victoria							
	(C)	HMS Beagle	(D)	HMS Nadharkani							
48.	Mar	supials are characteristics of									
	(A)	North America (B) Asia	(C)	Australia (D) Africa							

49.	Pathogens produce disease through											
	(A)	Toxin production	(B)	Antigen production								
	(C)	Tissue damage	(D)	Both (A) & (C)								
50.	Rest	triction enzymes are										
	(A)	Synthesize ATP	(B)	Synthesize RNA								
	(C)	Synthesize DNA	(D)	Cut DNA at certain places								
51.	Islet	t of langerhans are seen in										
	(A)	Kidney (B) Pancreas	(C)	Ovary (D) Ileum								
52.	Bios	sphere refers to										
	(A)	Area occupied by living organisms	(B)	Plants of the world								
	(C)	Spherical plants	(D)	Plants of particular area								
53.	Den	Denitrifying bacteria convert										
	(A)	Nitrate to free nitrogen	(B)	Nitrogen to ammonia								
	(C)	Nitrate to nitrite	(D)	Ammonification								
54.	Min	amata disease is related to		eigniggs a class status, see								
	(A)	Methyl mercury	(B)	Pathogens								
	(C)	Oil spill	(D)	Nutrient deficiency								
55.	Trop	phic level is formed by										
	(A)	only animals	(B)	only plants								
	(C)	carnivorous	(D)	organism linked to food chain								
56.	Con	nmon name of vertebrate trachea is										
	(A)	Wind type	(B)	Respiratory type								
	(C)	Oesophagus	(D)	Gullet								
57.	A sp	piral bacterium is called										
	(A)	Coccus	(B)	Bacillus								
	(C)	Diplococcus	(D)	None of these								

58.	End	oplasmic reticul	lum is o	concerned with							
	(A)	Fatty Acid syr	thesis		(B)	Peptide bond for	matic	on			
	(C)	Cholesterol for	rmation	1	(D)	Proteolysis					
59.	The	two strands of	DNA is	held by							
	(A)	Phosphate bor	nd		(B)	Sulphide bond					
	(C)	Oxygen bond			(D)	Hydrogen bond					
60.	The	animal cell is s	urroun	ded by							
	(A)	a thin cell wal	1								
	(B)	a thick cell wa	all								
	(C)	a rigid membr	ane								
	(D)	a flexible mem	brane	made largely of	prote	in and fat.					
61.	The	messenger RNA	A in cel	1							
	(A)	carries DNA	to the s	ite of protein sy	nthes	is					
	(B)	(B) only makes the information of DNA more effective									
	(C)	stimulates pro	tein sy	nthesis							
	(D)	inhibits protei	n syntl	nesis							
62.	X ch	romosome is co	nsidere	ed to be							
	(A)	Sex determini									
	(B)	Epicentre chro	omoson	ne							
	(C)	Plain chromos	ome								
	(D)	Cytoplasmic c	hromos	ome							
63.	Pur	ine bases are									
	(A)	G&C	(B)	A&T	(C)	A&C	(D)	T&C			
64.	Biol	uminescence is	exhibit	ed by							
	(A)	Ceratium	(B)	Toxaplasma	(C)	Paramaceium	(D)	Plasn	nodium		
65.	Whi	ch of he followin	ng class	s exhibits polyn	norphi	sm?					
	(A)	Hydrozoa	(B)	Scyphozoan	(C)	Calcarea	(D)	Polyc	haeta		
373				8							

66.	Fishes belonging to class dipnoi are commonly called as										
	(A)	Lung fishes			(B)	Mud puppies					
	(C)	Flying fishes			(D)	Globe fishes					
67.	Web	beriam ossicles a	re pre	esent in							
	(A)	Anabas	(B)	Catla	(C)	Wallago	(D)	Mystus			
68.	The	water vascular s	ystem	performs all bu	ut one	functions					
	(A)	Excretion			(B)	Respiration					
	(C)	Food capturing			(D)	Sense organ					
69.	Petro	omyzon is not a t	rue fi	sh because							
	(A)	it lacks median	fins		(B)	it lacks paired	fins				
	(C)	c) it lacks operculum				it has a circular	r mout	h			
70.	Com	Common type of caudal fin in fishes is									
	(A)	Protocerccal	(B)	Heterocercal	(C)	Diphycercal	(D)	Homocercal			
71.	Which method is not found in Amoeba?										
	(A)	Binary fission			(B)	Multiple fission	ı				
	(C)	Sporulation			(D)	Conjugation					
72.	The number of gills in a bony fish is										
	(A)	1 pair	(B)	3 pair	(C)	5 pair	(D)	4 pair			
73.	Long	gest part in a sm	all int	estine							
	(A)	Duodenum	(B)	Illeum	(C)	Jejunum	(D)	Colon			
74.	Gall	bladder in man	mals	is situated on							
	(A)	Right central lo	be of	liver	(B)	Left central lob	e of liv	/er			
	(C)	Caudate lobe			(D)	Straight lobe					
75.	Hear	rt is made up of									
	(A)	Cardiac muscle			(B)	Longitudinal muscles					
	(C)	(C) Smooth muscle				Striated muscles					

76.	Com	nmon name of verterbrate trachea is									
	(A)	Wind pipe	(B)	Respiratory pipe							
	(C)	Oesophagus	(D)	Gullet							
77.	Peps	sin enzyme converts protein into									
	(A)	Polypeptides	(B)	Glucopeptides							
	(C)	Glycoprotein	(D)	Emulsified protein							
78.	A m	A molecule of haemoglobin is									
	(A)	Dull red in colour	(B)	Orange red in colour							
	(C)	Bright red in colour	(D)	Brown in colour							
79.	Red	algae is									
	(A)	Cyanophyceae	(B)	Myxophyceae							
	(C)	Chlorophyceae	(D)	Rhodophyceae							
80.	Mos	t flagellates in algae cells is									
	(A)	Unicellular									
	(B)	Colonial									
	(C)	Most unicellular and some colonial									
	(D)	Some unicellular and most colonial									
81.	Viru	ses can be studied under									
	(A)	Light microscopes									
	(B)	High powers of the light microscope									
	(C)	Electron microscope									
	(D)	All of these									
82.	Sola	r energy is the source of energy for									
	(A)	Green plants	(B)	Photosynthetic autotrops							
	(C)	Heterotropic organisms	(D)	All of these							
83.	Visi	ble light has the wavelength range of									
	(A)	200-400 nm	(B)	400-700 nm							
	(C)	700-900 nm	(D)	< 200 nm							

84.		The green and purple sulfur bacteria use hydrogen sulfide instead of water to reduce CO ₂ . There will be liberation of										
	(A)	Oxygen			(B)	Sulphur						
	(C)	Both			(D)	None of these						
85.	The	cells stores i	s energy	reserves in th	e form o	of						
	(A)	ATP	(B)	NADPH	(C)	Food	(D) NADH					
86.	In tl	he process of	nitrogen :	fixation Nitro	gen is co	nverted to						
	(A)	Nitrate			(B)	Nitrite						
	(C)	Ammonia			(D)	Carbylamine						
87.	Fact	ultative organ	nisms are	those which o	an live							
	(A)	Aerobically			(B)	Anaerobically	у					
	(C)	On both			(D)	On none						
88.	Nitr	Nitrogen is a component element of										
	(A)	Proteins			(B)	Nucleic acid						
	(C)	Both			(D)	None						
89.	Most of the enzyme are inactivated at temperatures above											
	(A)	25 °C	(B)	45 °C	(C)	50 °C	(D) 65 °C					
90.	An i	nteraction in	which on	e population	benefits,	the second is	unaffected					
	(A)	Parasitism			(B)	Amensalism						
	(C)	Commensal	ism		(D)	Predation						
91.	An e	enzyme which	is not pr	oteinaceous								
	(A)	Isozyme	(B)	Ribozyme	(C)	Holozyme	(D) Trypsin					
92.	Clin	iging roots ar	e present	in								
	(A)	Mangrove v	egetation	300	(B)	Xerophytes						
	(C)	Halophytes			(D)	Epiphytes						

93.	All Heterotrophs are									
	(A)	Producers	(B)	Convertors						
	(C)	Consumers	(D)	Decomposers						
94.	The	sea floor from the shore to the edge	of the co	ontinental shelf forms the						
	(A)	Littoral zone	(B)	Benthic environment						
	(C)	Pelagic environment	(D)	Photic zone						
95.	Sour	rce of agar-agar is								
	(A)	Phaeophyceae (Brown algae)	(B)	Porphyra						
	(C)	Sea weeds	(D)	Gelidium, Gracilaria						
96.	Irish moss is known as									
	(A)	Chondrus	(B)	Rhodemia						
	(C)	Porphyra	(D)	Brown algae						
97.	Alginic acid used as source of energy, food, and chemicals is obtained from									
	(A)	Brown algae	(B)	Red algae						
	(C)	Purple algae	(D)	Green algae						
98.	The	carrier of genetic information is								
	(A)	Ribosomal RNA	(B)	Transfer RNA						
	(C)	Ribosomes	(D)	DNA						
99.	Site	of protein synthesis is								
	(A)	DNA	(B)	RNA						
	(C)	Endoplasmic Reticulum	(D)	Ribosomes						
100.	Proc	cess by which new species are formed	l is calle	ed						
	(A)	Speciation	(B)	Natural selection						
	(C)	Orthogenesis	(D)	Palaeontology						