Examination: M.Sc Mathematics **SECTION 1 - SECTION 1 Question No.1** Let A be a square matrix of order 4 with a_{ij} = 3 for all i, j. Then the rank of A is 3 **4** 0 (1 **Question No.2** The radius of convergence of the series $\sum_{n=1}^{\infty} z^n / n^2$ is 1 05) e 1/e **Question No.3** The coefficient of x^{2n} in the expansion of $\left(1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \ldots\right)^2$ is equal to 2^{2n} (2n)! \bigcirc 2^{2n} 2(2n)!0 ° <u>1</u> **Question No.4** In [0, 1] with usual metric, the closure of $A = Q \cap (0, 1)$ is 0, 1) $\bigcirc A$ 0, 1) 0, 1] **Question No.5** Consider the group of all integers \mathbb{Z} with respect to * defined by a*b = a+b+7

for all $a, b \in \mathbb{Z}$. The the identity element in that group is

-7
1
-1
7

Question No.6

If \vec{b} is a unit vector, then $(\vec{a}.\vec{b})\vec{b} + \vec{b} \times (\vec{a} \times \vec{b})$ is $|\vec{a}.\vec{b}|\vec{b}$

 $^{\circ}$ \vec{a}

 $|\vec{a}.\vec{b}|\vec{a}$

 $^{\bigcirc} \vec{b}$

Question No.7

Equation of the directrix of the parabola $y^2 + 4y+4x+2=0$ is

- x = 3/2
- x = -3/2
- x = -1
- x = 1

Question No.8

```
The value of

\lim_{n\to\infty} ((1^2 + 2^2 + ... + n^2)/n^2) is

1/6

1/3

1/4
```

0 1/2

Question No.9

Let A and B be two sets with |A| = 30, |B| = 45 and $|A \cap B| = 10$. Then $|A \Delta B|$ equals 45 55 6585

Question No.10

The sum of the series
$$\sum_{n=0}^{\infty} \frac{n^2 + n + 1}{n!}$$
 is

$^{\circ}$ $_{2e}$	
\circ $_{4e}$	
$3 \frac{3}{2}e$	
\circ	
Question No.11	
Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = 1$ if x is rational and $f(x) = 0$ if x is irrational. Then $f^{-1}([\frac{1}{2}, \frac{3}{2}])$ is $\bigcirc \mathbb{R}$ $\bigcirc \phi$	
$ \begin{array}{c} \bigcirc \mathbf{Q} \\ \bigcirc \mathbf{R} - \mathbf{Q} \end{array} $	
Question No.12	
Let f be defined by $f(x) = \begin{cases} \frac{1 - \cos x}{x}, & x \neq 0; \\ k, & x = 0. \end{cases}$ Then f is continuous at $x = 0$ if	
$-\frac{1}{2}$	
$\bigcirc \frac{1}{2}$	
Overtier No 42	
Expansion of the matrix $\begin{vmatrix} 1 & z & -y \\ -z & 1 & x \\ y & -x & 1 \end{vmatrix}$ gives	
$^{\circ} 1 + x + y + z$	
$^{\circ}1 + xyz$	
$1 + x^2 + y^2 + z^2$	

$x^2 + y^2 + z^2$	
Question No.14	
Let G be a group of order 49. Then G is o non-abelian	
 non-cyclic abelian 	
Question No.15	
Let H be a subgroup of a group G . Then ─ H is cvclic if G is nonabelian	
H is cyclic if G is cyclic	
 H is cyclic if G is abelian H is cyclic 	
Question No.16	
Two finite sets have m and n elements respectively. The total number of subsets of first set is 56 m the total number of subsets of the second set. The values of m and n respectively are	ore than
 ○ 5, 1 ○ 8, 7 	
7,6	
Question No.17	
The evolute of the cycloid	
$x = a(\theta - \sin\theta)$ and $y = a(1 - \cos\theta)$ is	
 a straight line 	
 ○ a circle 	
Question No.18	
Which of the following subset of R is neither compact nor connected?	
Q	
 ○ K ○ [0, 100] 	
Question No.19	
If the standard deviation of the binomial distribution (q+p) 16 is 2, then mean of the distribution is	
• • • 6	
0 12	
0 10	

Question No.20

- A is closed
- A is bounded

Question No.21

If
$$y = e^{\tan x}$$
, then $\cos^2 x \frac{d^2 y}{dx^2}$ is equal to

$$\begin{array}{c} & (1 - \sin 2x) \frac{dy}{dx} \\ & \circ & -(1 - \sin 2x) \frac{dy}{dx} \\ & \circ & -(1 + \sin 2x) \frac{dy}{dx} \end{array} \end{array}$$

Question No.22

An equilateral triangle is inscribed in the circle $x^2 + y^2 = a^2$ with the vertex at (a,0). The equation of the side opposite to this vertex is

2x + a = 0
2x - a = 0

- x+a = 0
- ─ 3x 2a =0

Question No.23

The correct statement is _____

 $^{\circ}$ ((-1)^{*n*}) is a convergent sequence

- $^{\circ}$ ((-1)^{*n*}) is a bounded sequence
- $^{\circ}$ ((-1)^{*n*}) is a divergent sequence
- $^{\circ}$ ((-1)^{*n*}) is a monotonic sequence

Question No.24

The solution of $3x + 7y + 8z = -13$; $2x + 9z = -5$; $-4x + y - 26z$	<mark>= 2</mark>
is	
x = 7, y = 0, z = -1	
x = -7, y = 0, z = 1	
x = 0, y = 0, z = 3	
$^{\circ} x = -7, y = 0, z = 2$	
Question No.25	
In an ellipse , the distance between the focii is 6 and minor axis is 8. Then the eccentricity is 3/5 4/5	
 1 /√5 1/2 	
Question No.26	
Let $f: N \rightarrow R$ be defined by $f(n) = n/2$ if n is even and $f(n) = (1 - n)/2$ if n is odd. The range of the sequence is N R Z Q	
Question No.27	
The focus of the parabola $4y^2 + 12x - 20y + 67 = 0$ is (-3/4, 5/2) (-7/2, 5/2) (5/2, -3/4) (-17/4, 5/2)	
Question No.28	
Every square matrix satisfies its own characteristic equation. This is Cayley-Hamilton theorem Cauchy"s theorem Eigen value theorem Sylow"s theorem	
Question No.29	
In a discrete metric space , the only connected subsets are finite sets singleton sets	

all proper subsets

Question No.30

If $\lambda_1, \lambda_2, ..., \lambda_n$ are the eigen values of a matrix *A* of order *n*, then the eigen values of A^m are

$$\lambda_{1}^{m}, \lambda_{2}^{m}, \dots, \lambda_{n}^{m}$$

$$\frac{1}{m+\lambda_{1}}, \frac{1}{m+\lambda_{2}}, \dots, \frac{1}{m+\lambda_{n}}$$

$$m + \lambda_{1}, m + \lambda_{2}, \dots, m + \lambda_{n}$$

$$\frac{1}{\lambda_{1}^{m}}, \frac{1}{\lambda_{2}^{m}}, \dots, \frac{1}{\lambda_{n}^{m}}$$

Question No.31

In linear ordinary differential equation , the dependent variable and it differential coefficient are not multiple together and occurs only in _____

- Fourth degree
- First degree
- Second degree
- Third degree

Question No.32

The solution of $\frac{dy}{dx} = \frac{y^2}{xy - x^2}$ is $e^{\frac{y}{x}} = ky$ $e^{\frac{y}{x}} = kx$ $e^{\frac{x}{y}} = kx$ $e^{\frac{-y}{x}} = ky$

Question No.33

The number of non-trivial ideals in the ring of integers is

- 0 (
- 01
- finite
- infinite

Question No.34 The area lying in the first quadrant and bounded by the circle $x^2 + y^2 = 4$, the line $x = \sqrt{3}y$ and x -asis is \circ π sq. unit $\bigcirc \frac{\pi}{2}$ sq. unit $^{\circ}$ $\frac{\pi}{4}$ sq. unit $\bigcirc \frac{\pi}{3}$ sq. unit **Question No.35** Let A and B be two square matrices such that AB = A and BA = B. Then A and B are nilpotent idempotent periodic identity **Question No.36** Consider the sequence $(a_n) = (1, 2, 3, 1, 2, 3, ...)$. Then lim sup an and lim inf a_n are respectively 3 and 2 1 and 3 3 and 1 2 and 3 **Question No.37** The HCF and LCM of $x^2 + 3x$ and 3x + 9 in Z[x] is _____ $^{\circ}x + 3$, $3x^2 + 9x$ $^{\circ} x^3 + 3x, x + 3$ 9,18 $^{\circ}$ x, x^{2} **Question No.38** Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2 + 1$. The values of $f^{-1}({17})$ and $f^{-1}({-3})$ are respectively, \bigcirc {4, -4}, ϕ Φ, {3, -3} $\phi, \{4, -4\}$

Let the rank of the matrix
$$\begin{bmatrix} -1 & 2 & 5\\ 2 & -4 & a - 4\\ 1 & -2 & a + 1 \end{bmatrix}$$
 is one, then the value of a is

$$\begin{array}{c} 2\\ -1\\ 0 & -6\\ 0 & 1 \end{array}$$
Question No.44
Let f, g be two continuous functions defined on [0, 1] such that f(0) = g(1) = 0, f(1) = g(0) = 1. Then there
exists $x \in (0, 1)$ such that $f(x) = g(x)$. This is due to
Archemedian property
Heine-Borel property
Heine-Borel property
Neighbourhood property
Question No.45

$$\begin{array}{c} \cos\left(i\log\frac{a-ib}{a+ib}\right) \text{ is equal to} \\ \frac{a^2-b^2}{a^2+b^2} \\ 0 & \frac{2ab}{a^2+b^2} \\ 0 & \frac{a^2-b^2}{2ab} \\ 0 & ab \end{array}$$
Question No.46

Let *f* be a homomorphism from $(R, +) \rightarrow (R^*, \times)$. If f(2) = 5 then the value of f(-8) is $\begin{array}{c} \circ \\ \frac{1}{20} \end{array}$

[°] 625

 $\begin{array}{c} \begin{array}{c} 1\\ 625\\ \end{array}\\ \begin{array}{c} 20\\ \end{array}\\ \end{array}$

on none of these

Question No.48

If
$$\frac{d}{dx} \{f(x)\} = \frac{1}{1+x^2}$$
, then $\frac{d}{dx} \{f(x^3)\}$ is
 $\bigcirc \frac{3x^2}{1+x^6}$
 $\bigcirc \frac{3x}{1+x^3}$
 $\bigcirc \frac{3}{2}$
 $\bigcirc \frac{-6x^5}{(1+x^6)}$

Question No.49

The pair of lines given by (a+2b)x+(a-3b)y = a-b for different values of a and b pass through the fixed point. The coordinates of the fixed point are

 $\begin{array}{c} \circ \quad \left(\frac{2}{5}, \frac{2}{5}\right) \\ \circ \quad \left(\frac{2}{5}, \frac{3}{5}\right) \\ \circ \quad \left(\frac{3}{5}, \frac{3}{5}\right) \\ \circ \quad \left(\frac{1}{5}, \frac{1}{5}\right) \end{array}$

Question No.50

The number of solutions of tan x + sec x = 2 cos x in [0, 2 \Box] is

- 0 (
- 03
- 02

Let $T : \mathbb{R}^n \longrightarrow \mathbb{R}$ be a linear transformation. Then which of the following is a linear transformation on \mathbb{R}^n ?

$$T_1 = T + 3$$

$$T_1 = 5T$$

$T_1 = T^2$ where $T^2(x) = T(x).T(x)$ for all $x \in \mathbb{R}^n$
$^{\circ} T_1 = 5T + 3$
Question No.56
The number of idempotent elements in any finite group is
0 1
infinite
Question No.57
Let G = Z ₇ – $\{0\}$ be the group under multiplication. The inverse of 3 is
○ 3
5
Question No.58
The sum of <i>n</i> terms of the series, $\frac{1}{\sqrt{1}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{5}} + \frac{1}{\sqrt{5}+\sqrt{7}} + \dots$ is
$^{\circ}\frac{\sqrt{2n+1}}{2}$
$\bigcirc \frac{\sqrt{2n+1}-1}{2}$
$^{\circ}\sqrt{2n-1}$
$^{\bigcirc} rac{1}{\sqrt{2n+1}}$
Question No.59
Let $(1, 1)$ be an end of the diameter of a circle and the other end lies on the line $x + y = 3$. The locus of the centre of circle is
2(x - y) = 5 2(x + y) = 5
2x + y = 3
○ x + y = 1
Question No.60

Let G be the Petersen graph. Which of the following is true? G is Eulerian

Question No.67	
Two tangents are drawn from the origin to a circle with centre at (2, -1). If the equation of one of th	e
tangents is $3x+y = 0$, the equation of the other tangent is	
x + 3y = 0	
$\bigcirc x - 3y = 0$	
x + 2y = 0	
0 3x - y - 0	
Question No.68	
Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be uniformly continuous functions. Which of the following	
is not true?	
2f + 3g is uniformly continuous	
f + g is uniformly continuous	
 fg is uniformly continuous 	
f - g is uniformly continuous	
Question No.69	
Let $f(2) = 2$ and $f'(2) = 1$. Then $\lim_{x\to 2} \frac{2x^2 - 4f(x)}{x - 2}$ is equal to -4 -2 -2 4	
Question No.70	
Which of the following series is not convergent?	
$\sum 1/n^3$	
$\sum \frac{1}{n}$	
$\sim \sum_{n=1}^{\infty} 1/n!$	
$\sum \frac{1}{n^4}$	
Question No.71	
	is
Let z be a complex number satisfying $\left \frac{z-25}{z-1}\right = 5$. Then the value of $ z $	
Let z be a complex number satisfying $\left \frac{z-25}{z-1}\right = 5$. Then the value of $ z $ \Im	
Let z be a complex number satisfying $\left \frac{z-25}{z-1}\right = 5$. Then the value of $ z $ 3 4	
Let z be a complex number satisfying $\left \frac{z - 25}{z - 1} \right = 5$. Then the value of $ z $ $\begin{array}{c} 3\\ 0\\ 4\\ 0\\ 6\end{array}$	

Question No 72	
$a_n = \frac{2^n n!}{n^n} then \lim_{n \to \infty} \frac{a_n}{a_{n+1}} =$	
^o 2e	
e	
$\circ e$	
$\frac{1}{e}$	
e	
Question No.73	
The equation $\frac{x^2}{2-\lambda} - \frac{y^2}{\lambda-5} - 1 = 0$ represents an ellipse if	
$2 > \lambda > 5$	
$\lambda > 5$	
2 < λ < 5	
Question No.74	
The kernel of the homomorphism	
$f: (Z, +) \rightarrow (\mathbb{R}^*, .)$ defined by $f(x) = 2^x$ is	
○ {0} ○ {1, -1}	
○ {1}	
C Z	
Question No.75	
The number of generators of the	
group (Z_{12}, \oplus) is	
0 1	
○ 2	
Question No.76	
Which of the following is a compact subset of R with usual metric?	
[0, 1] $[0, 5]$	

(0, 10)
Question No.77
The number of edges in the complete bipartite graph K _{m,n} is
n n
) mn
O m+n
Question No.78
Four persons are selected at random from a group of 3 men, 2 women and 4 children. The probability that exactly two of them are children is 10/23
 1/2 10/21
9/21
Question No.79
If a real valued function f is continuous on $[a, b]$ and differential on (a, b)
and $f'(x) \neq 0$ in (a, b) then
$\int f$ is strictly monotonic in [a, b]
$^{\circ}$ f is monotonic in (a, b)
$\int f(x)$ is constant on [a, b]
$^{\circ}$ f is monotonic in [a, b]
Question No.80
Applying the Cauchy's root test the series $\sum_{n=1}^{\infty} \left(\frac{n}{2n+1}\right)^n$ is
 Convergent neither convergent nor divergent
⊖ divergent
Question No.81
Let G be a group of order 2p where p is a prime. Let H be a normal subgroup of order p. Then the index of H in G is
○ p ○ 1

Question No.87

NLN -0	
x+y-c	
○ x-y=c	
° xy=c	
Question No.92	
Let $f(x) = \frac{x-1}{4} + \frac{(x-1)^3}{12} + \frac{(x-1)^5}{20} + \frac{(x-1)^7}{20} + \dots$, where $0 < x < 2$. Then $f'(x) = \frac{x-1}{4} + \frac{(x-1)^3}{12} + \frac{(x-1)^5}{20} + \frac{(x-1)^7}{20} + \dots$	(x)
is equal to	
$\bigcirc \frac{1}{4x(2-x)}$	
$\frac{1}{2-x}$	
$\bigcirc \frac{1}{2+x}$	
$\bigcirc rac{1}{4(x-2)^2}$	
Question No.93	
The function $f(x) = \sin x + \cos x$ is	
 an odd function an even function 	
 neither odd nor even 	
both odd and even	
Question No.94	
Which one of the following is not a subspace of \mathbb{R}^3 ?	
$\cup \ \{(a,a+b,-a+2b):a,b\in \mathbb{R}\}$	
$^{\bigcirc} \ \left\{ (a,b,c):a,b,c\in \mathbb{Q} ight\}$	
$^{\circ}$ (0, 0, 0)	
$\{(a,a-b,b):a,b\in\mathbb{R}\}$	
Question No.95	
Let G be a cyclic group of order 60. Then the number of non-trivial subgroups of G is	
3	
│	

0 10

Question No.96	
Let Z be the set of integers. The function $f: Z \rightarrow Z$ defined by $f(x) = 3x$ is 1-1 but not onto neither 1-1 nor onto onto but not 1-1 1-1 and onto	
Question No.97	
In the expansion of $(x + \frac{a}{x^2})^n$ $(a \neq 0)$, if term independent of x does not exist, then n must be $\begin{array}{c} 15\\ 0 \\ 18\\ 0 \\ 12\\ 0 \\ 16\end{array}$	
Question No.98The zeros of the function $(z+1)^2 (iz+2)^3 / (z+7)$ are1 and $-2/i$ -1 and $-2/i$ 0, 1 and $2/i$ -1 and $2/i$	
Question No.99 The inequality x - 2 < 6 can be expressed in the form a < x < b where a =and b =	
Question No.100	
The value of $\iint dx dy$ over the region bounded by x=0, x=2, y=0, y=2 is 2 0 4 3	