Sr. No.	Client Question ID	Question Body and Alternatives	Marks	Negativ Marks
Object	tive Question			
	1	Let $(y_n)_{n=1}^{\infty}$ be an unbounded sequence of positive terms. Then which of the following statements is TRUE?	4.0	1.00
		$ \begin{array}{ll} \text{Al} & (y_n)_{n=1}^{\infty} \text{diverges to } +\infty. \end{array} $		
		A2 $(y_n)_{n=1}^{\infty}$ has a subsequence that diverges to $+\infty$.		
		A3 $(y_n)_{n=1}^{\infty}$ cannot have a convergent subsequence.		
		$(y_n)_{n=1}^{\infty}$ must have a convergent subsequence.		
)bjec1	tive Question			
2	2	Which of the following is TRUE?	4.0	1.00
		A1 Every convergent sequence of real numbers is monotone.		
		A2 Every monotone sequence of real numbers is convergent.		
		A3 Every sequence of real numbers has a bounded subsequence.		
		A4 Every Cauchy sequence is bounded.		
	tive Question			
3	3	The function $f: \mathbb{R} \to \mathbb{R}$ defined as $f(x) = \begin{cases} x^2, & \text{if } x \le 1 \\ 2x - 1, & \text{if } x > 1 \end{cases}$ is	4.0	1.00
		A1 Continuous at 1 but not differentiable at 1 :		
		A2 Differentiable at 1 but not continuous at 1		
		A3 : Both continuous and differentiable at 1		
		A4 Neither continuous nor differentiable at 1		
)hiect	tive Question			

	Which of the following subsets of $C[0,1] = \{f: [0,1] \to R \mid f \text{ is continuous}\}\ $ are subspaces of $[0,1]$?		
	All The set of all $f \in C[0,1]$ such that $f\left(\frac{1}{3}\right) = 0$.		
	A2 The set of all $f \in C[0,1]$ such that $f\left(\frac{1}{2}\right)$ is a rational number.		
	A3 The set of all $f \in C[0,1]$ such that $\int_0^1 f(t)dt = 1$		
	The set of all $f \in C[0,1]$ such that f is not differentiable at $\frac{1}{2}$.		
Objective Question	<u> </u>		
5 5	Which of the following is a linearly independent subset of \mathbb{R}^3 ?	4.0	1.00
	A1 {(0,1,2),(0,-1,2),(0,0,4) }		
	A2 {(0,1,3),(0,1,4),(2,-1,5),(2,6,0) }		
	A3 {(0,0,0),(0,1,0),(0,1,1) }		
	A4 {(1,0,0),(1,2,0),(1,2,3) }		
Objective Question			
6 6	Consider the Mappings $f, g: \mathbb{R}^2 \to \mathbb{R}^2$ defined as $f(x, y) = (2x + 3y + 1, -x + y)$ and $g(x, y) = (x^2 + y, -x + y)$. Then,	4.0	1.00
	Both f and g are linear Mappings.		
	f is a linear Mapping but g is not.		
	g is a linear Mapping but f is not.		
	Neither f nor g is a linear Mapping		
Objective Question	<u> </u>		
7	Let $(a_n)_{n=1}^{\infty}$ be sequence given by $a_n = \begin{cases} \left(1 + \frac{1}{n}\right)^n & \text{if } n \text{ is odd} \\ 3 - \frac{1}{n} & \text{if } n \text{ is even} \end{cases}$. Then	4.0	1.00
	$\lim_{n\to\infty} a_n = e \text{ and } \liminf_{n\to\infty} a_n = 3$		
	A2		

	$\lim \operatorname{Sup}_{n \to \infty} a_n = e \operatorname{liminf}_{n \to \infty} a_n = 1$		
	$\lim_{n\to\infty} \sup_{n\to\infty} a_n = 3 \lim_{n\to\infty} a_n = 1$		
	$\lim_{n\to\infty} \operatorname{Sup}_{n\to\infty} a_n = 3 \operatorname{liminf}_{n\to\infty} a_n = e$		
Objective Question			
8 8	Let (X,d) be any metric space. Which of the following is FALSE?	4.0	1.00
	A1 Every compact subset of X is complete.		
	$\frac{A2}{A}$ Every compact subset of X is closed		
	A3 Every finite subset of X is both compact and connected.		
	A4 Every infinite subset of X has a limit point in X .		
Objective Question			
9 9	If $a_n = \frac{n^2}{n^5 + 1}$ and $b_n = \frac{1}{3^n}$ for all $n \in N$ then	4.0	1.00
	Both $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are convergent.		
	$\sum_{n=1}^{\infty} a_n$ is convergent but $\sum_{n=1}^{\infty} b_n$ is divergent.		
	$\sum_{n=1}^{\infty} a_n$ is divergent but $\sum_{n=1}^{\infty} b_n$ is convergent.		
	Both $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are divergent.		
Objective Question			
10 10	The number of analytic functions $f: C \to C$ which vanishes at every points on the unit circle $\{z \in C: Z = 1\}$ is [where C is the set of all complex numbers.]	4.0	1.00
	A1 Infinite		
	A2 0		
	A3 ₁		
	A4 ₂		
Objective Question			

11 1	11	Let W be the subspace of R^3 given by $W=\{(x,y,z)\in R^3: x+4y+3z=0\}.$ Then $dimW=$	4.0	1.00
		A1 0		
		A2 : 1		
		A3 2		
		A4 3 :		
Objectiv	ve Question			
	12	Which one of the following statements is TRUE?	4.0	1.00
		A1 A subspace of a connected metric space is connected:		
		A2 : A subspace of a compact metric space is compact		
		A3 A subspace of a complete metric space is complete		
		A4 A subspace of a bounded metric space is bounded:		
Objectiv	ve Question			
	13	Let $f:R\to R$ and $g:R\to R$ be uniformly continuous mappings. Which of the following is FALSE?	4.0	1.00
		f + g is uniformly continuous on R		
		$\stackrel{A2}{:} f - g$ is uniformly continuous on R		
		$^{A3}_{:}$ 3f is uniformly continuous on R		
		$^{A4}_{:} fg$ is uniformly continuous on R .		
Objectiv	ve Question	Л		
14 1	14	The value of $\lim_{x\to 0} \frac{x^{15}-1}{x^{10}-1}$ is	4.0	1.00
		A1 3/4		
		A2 3/2		
		A3 -3/4		

		A4 -3/2		
	ctive Question	WHAT ON OH A C. PATODO	4.0	1.00
IJ	15	Which of the following statements is FALSE?	4.0	1.00
		A1 Any subgroup of an abelian group is abelian		
		A2 Any subgroup of an non-abelian group is non-abelian		
		A3 : Any subgroup of a cyclic group is cyclic		
		A4 Any cyclic group is abelian		
Objec	ctive Question			
	16	The inverse Laplace transform $L^{-1}\left(\frac{s+1}{s^2+2s+2}\right)$ is	4.0	1.00
		$\stackrel{\text{A1}}{:} e^{-x} \cos x$		
		$\stackrel{A2}{:} e^{-x} \sin x$		
		$\begin{array}{c} A3 \\ \vdots \end{array} e^x \cos x$		
		$\stackrel{A4}{:} e^x \sin x$		
Objec	ctive Question			
	17	If $A = \left\{ \frac{m+n}{mn} \mid m, n \in N \right\}$ then	4.0	1.00
		$ ^{A1} lub A = 2 and glb A = 0 $		
		$ ^{A2} lub A = 1 and glb A = \frac{1}{2} $		
		$ ^{A3} lub A = 1 and glb A = 0 $		
		$ ^{A4} lub A = 0 and glb A = 2 $		
Ohiec	ctive Question			
	18	Consider the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined as	4.0	1.00
		Consider the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined as $T(x_1, x_2) = (x_1, x_1 + x_2, x_2)$, then the nullity of T is		

		A1 0 :		
		A2 1		
		A3 2 :		
		A4 3		
Objec	tive Question			
19	19	The function $f: \mathbb{R} \to \mathbb{R}$ defined as $f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$ is	4.0	1.00
		A1 Continuous at 0 but not differentiable at 0		
		A2 Differentiable at 0 but not continuous at 0		
		A3 Neither differentiable nor continuous at 0		
		A4 Both differentiable and continuous at 0		
Objec	tive Question			
20	20	Let $A = \{a, b, c\}$. Then number of relations containing (a, b) and (a, c) which are reflexive and symmetric but not transitive is	4.0	1.00
		A1 1 :		
		A2 2		
		A3 3		
		A4 ₄ :		
Objec	tive Question			
21	21	Let $A = \{1,2,3\}$. Then number of equivalence relations containing $(1,2)$ is	4.0	1.00
		A1 1 :		
		A2 2 :		

		A4 4		
	ctive Question			
22	22	Which of the following statement is FALSE?	4.0	1.00
		A1 The power set of any countable set is countable.		
		A2 The Cantor set is uncountable.		
		A3 [0,1]is uncountable.		
		A4 If X and Y are countable sets then $X \times Y$ is countable.		
	ctive Question			
23	23	The radius of convergence of the series $\sum_{n=1}^{\infty} z^{n!}$ Is	4.0	1.00
		A1 :		
		A2 0		
		A3 _∞ :		
		A4 e		
Ohio	ctive Question			
	24	The residue of the function $f(z) = \frac{e^z}{z^2}$ at the pole $z = 0$ is	4.0	1.00
		A2 : 1		
		A3 1/2		
		A4 π :		
Objec	ctive Question			
25	25	Which of the following functions is uniformly continuous on $(0,\infty)$?	4.0	1.00
		$ \stackrel{\text{A1}}{:} f(x) = x^2 $		

	$\int_{1}^{A3} h(x) = \sin x$		
	$ {}^{A4}_{:} k(x) = (x-1)^2 + 1 $		
bjective Que	stion		
6 26	What is $\sum_{k=0}^{n} \binom{n}{k}$?	4.0	1.00
	A1 n!		
	A2 n ⁿ		
	A3 2 ⁿ		
	$\begin{bmatrix} A4 \\ : \end{bmatrix}$ n^2		
bjective Que	stion		
7 27	If $\{x_n\}$ converge to l , then	4.0	1.00
	$ \stackrel{\text{A1}}{:} \{ x_n \} \text{ converge to } l . $		
	$A_{1}^{A_{2}}$ { $ x_{n} $ } will also converge to l .		
	A3 $\{ x_n \}$ converge to l , only when $l=0$.		
	$A4 \{ x_n \}$ need not converge.		
bjective Que	stion		
28	The limit superior and limit inferior of the sequence $\{x_n = (-1)^n n\}$ is	4.0	1.00
	$\stackrel{\text{A1}}{:}$ $-\infty$ and -1		
	$^{\mathrm{A2}}_{:}$ -1 and $-\infty$		
	$A3 - \infty$ and ∞ :		
	$^{\mathrm{A4}}_{:}$ ∞ and $-\infty$		
ojective Que	stion		

	A1 1- 1/2+1/3-1/4+1/5		
	A2 _{1/2-2/3+3/4-4/5+}		
	A3 _{1-1+ 1/2-1/2+1/3-1/3+}		
	A4 1- 1/1!+1/2!-1/3!+1/4!		
N-i notive	Question		
30 30		4.0	1.00
	(i) Rearrangement of series cannot converge to different limits. (ii) Rearrangement of series can converge to at most finite number of limits. (iii) Rearrangement of series can converge to any given real number. (iv) Any rearrangement of absolutely convergent series converge to a unique limit.		
	A1 (iii)		
	A2 (iv)		
	A3 (iii) and (iv)		
	A4 (ii) and (iv)		
Objective	Question		
31 31		4.0	1.00
	A1 Does not exist		
	A2 Exist and equal to 1		
	$^{\mathrm{A3}}_{:}$ Exist and equal to π		
	A4 Exist and equal to e		
Objective	Question		
32 32		4.0	1.00
	$\stackrel{A1}{:}$ Any real numbers x		
	$\stackrel{A2}{:}$ Only for positive real numbers x		
	A3 Non integer real numbers x		

		\parallel :		
		$^{\text{A4}}$ Only for negative real numbers x		
Object	tive Question			
33	33	The function $f: Z \to Z$, defined by $f(x) = 3x^3 - x$ is	4.0	1.00
		Al fis bijective		
		f is injective but not surjective		
		$^{\mathrm{A3}}$ f is surjective but not injective		
		$^{\mathrm{A4}}$ f is neither injective nor surjective		
Object	tive Question			
34	34	How many numbers in the range 1000-9999 end with 2?	4.0	1.00
		A1 1000 :		
		A2 1200		
		A3 900 :		
		A4 800 :		
Obiec	tive Question			
35	35	Let X and Y be sets with X =100 and Y =1000. How many bijective functions are there from X to Y?	4.0	1.00
		A1 100!		
		A2 1000!		
		A3 100000 :		
Object	tive Question			
36	36	Let X and Y be non-empty sets and f a mapping of X into Y. If A and B are respectively, subsets of X and Y, then	4.0	1.00
		A1 $ff^{-1}(B) \subseteq B$ if and only if f is bijective		
		A2 $ff^{-1}(B) = B$		

		A3 $ff^{-1}(B) = B$ if and only if f is surjective.		
		$^{A4}_{:}$ $ff^{-1}(B) = B$ if and only if f is injective		
	ctive Question			
37	37	Let $f:[a,b] \rightarrow \mathbf{R}$ be a monotonic function. Then	4.0	1.00
		Al f is continuous.		
		A2 f is discontinuous at at most two points.		
		A3 f is discontinuous at finitely many points.		
		A4 f is discontinuous at at most countable points.		
Obje	ctive Question			
38	38	In the real line R, what can one say about non-empty open set?	4.0	1.00
		A1 an open interval.		
		A2 the union of a countable disjoint class of open intervals.		
		A3 the union of a finite class of open intervals.		
		A4 none of these.		
Obje	ctive Question			
39	39	The sum of the degrees of the vertices of a graph is	4.0	1.00
		A1 the number of edges plus 2		
		A2 the number of vertices minus two		
		A3 two times the number of vertices		
		A4 two times the number of edges		
Obje	ctive Question			
40	40	The number of edges of a simple graph with n vertices and with ω components is	4.0	1.00

		$\begin{vmatrix} A1 \\ \vdots \end{vmatrix} \ge \frac{(n-\omega)(n-\omega+1)}{2}$		
		$ \stackrel{A2}{:} \leq \frac{(n-\omega)(n-\omega+1)}{2} $		
		$ \begin{array}{c} A3 \\ \underline{(n-\omega)(n-\omega+1)}\\ 2 \end{array} $		
		$ A4 \ge \frac{(n-\omega)(n-\omega-1)}{2} $		
Objec	ctive Question			
41	41	Let $S = \left\{\frac{1}{n} : n \in N\right\} \cup \{0\}$ and $T = \left\{n + \frac{1}{n} : n \in N\right\}$ be the subsets of the metric space R with the usual metric. Then	4.0	1.00
		A1 S is complete but not T:		
		A2 T is complete but not S:		
		A3 both S and T are complete		
		A4 neither T nor S is complete		
Objec	ctive Question			
42	42	$\int_{C} \frac{1}{2z+3} dz \text{ where C is } z+3/2 =2 \text{ is}$	4.0	1.00
		$^{\mathrm{A1}}_{:}$ $^{2\pi\mathrm{i}}$		
		A2 πi		
		A3 ₀		
		A4 1		
Objec	ctive Question			
43	43	The radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^2} (z-3i)^n$ is	4.0	1.00
		A1 _{1/4} :		
		A2 ₄		
		A3 1		

		A4 _{1/2} :		
	ctive Question			
44	44	For the function $\frac{1}{(2\sin z - 1)^2}$	4.0	1.00
		Al z=0 is a simple pole		
		A2 z=0 is a removable singularity		
		$\frac{A3}{6} \frac{\pi}{6}$ is a pole of order 2		
		$\frac{A4}{3}$ is a pole of order 2		
	ctive Question			
45	45	The range of a continuous real function defined on a connected space is	4.0	1.00
		A1 the real line		
		A2 an Interval		
		A3 a closed and bounded set		
		A4 : compact		
Ohiec	ctive Question			
46	46	Which of the following two spaces are homeomorphic:	4.0	1.00
		A1 [0,1] & (0,1)		
		A2 [0,1] & {0} $\cup \left\{\frac{1}{n}: n \in N\right\}$		
		A3 : $\{0\} \cup \left\{\frac{1}{n} : n \in N\right\} \& \left\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\right\}$		
		A4 (0,1) & $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\} - \{(1,0)\}$		
Ohiec	ctive Question			
47	47	Which of the following points are collinear?	4.0	1.00
		A1 (0,0,-1), (0,1,0), (1,2,3)		

		A2 (1,0,0), (0,1,0), (0,0,1)		
		A3 (5,3,-2), (3,2,1), (-1,0,7)		
		A4 (1,2,0), (2,3,0), (2,2,2)		
Objec 48	etive Question	The acute angle between the line joining the points $(3,1,-2)$, $(4,0,-4)$ and $(4,-3,3)$, $(6,-2,2)$ is	4.0	1.00
		The acute angle between the line joining the joining (3,1,-2), (4,0,-4) and (4,-3,3), (0,-2,2) is		
		$\begin{array}{ccc} A1 & \underline{\pi} \\ \vdots & 3 \end{array}$		
		$A2 \frac{\pi}{6}$		
		A3 $\frac{\pi}{7}$		
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
Obiec	ctive Question			
49	49	The angle between the planes $2x-y+z=6$ and $x+y+2z=3$ is	4.0	1.00
		$\begin{array}{c c} A1 & \pi \\ \vdots & 3 \end{array}$		
		$\begin{array}{ccc} A2 & \frac{\pi}{6} \\ \vdots & 6 \end{array}$		
		A3 π/ ₂ : 7		
		$\begin{array}{ccc} A4 & \frac{\pi}{4} \\ \vdots & 4 \end{array}$		
Objec	ctive Question			
50	50	(i). If A is contained in the union of a collection of sets, then A is contained in a set in the collection. (ii) If A contains an intersection of a collections of sets, then A contains a set in that collection	4.0	1.00
		A1 Both (i) and (ii) are true		
		A2 (i) is true but (ii) is not true		
		A3 (ii) is true but (i) is not true		
		A4 Neither (i) nor (ii) is true		
OIL:	etive Question	A4 Neither (i) nor (ii) is true		

		A1 A		
		A2 B		
		A3 a finite nonempty set		
		A4 some infinite set		
	ctive Question			
52	52	If $A = \{1,2,3\}$ and $B = \{2,4,6,8\}$, then the number of functions from A to B is	4.0	1.00
		A1 4C3		
		A2 4p ₃		
		A3 3 ⁴		
		A4 43 :		
	ctive Question		1	
53	53	Which is not a binary operator on Z	4.0	1.00
		$ \begin{array}{c} A1 \\ a * b = a \end{array} $		
		A2 $a * b = max(a,b)$		
		A3 a * b = average of a and b :		
		A4 = a * b = a + 2b		
	ctive Question			
54	54	Greatest common divisor of two integers a, b with a less than or equal to b, is 1	4.0	1.00
		A1 only if both a and b are prime numbers		
		A2 only if a and b have no common prime divisor		
		A3 only if $a = b$		
		A4 only if a does not divide b		

55	55	Let a prime factorization of an integer $n = p_1^{r_1} p_2^{r_2} \dots p_k^{r_k}$ is a square	4.0	1.00
		2172 7		
		$\overset{\text{Al}}{:}$ if $r_1, r_2,, r_k$ are squares		
		$^{\mathrm{A2}}_{:}$ if $r_1, r_2,, r_k$ are composite numbers		
		A3 if $r_1, r_2,, r_k$ are even integers		
		$^{\mathrm{A4}}$ if the product of $r_1, r_2,, r_k$ is a square		
Object	tive Question			
	56	The linear congruence ax = b(mod m) has a solution	4.0	1.00
		Al if a is a prime number:		
		A2 if b is a prime number:		
		A3 if a and b are prime numbers		
		A4 if no integer greater than 1 divide both a and m.		
Object	tive Question			
	57	Let S denote the set of all functions from Z to Z. The composition of the functions is	4.0	1.00
		A1 not an associative binary operator :		
		A2 not a commutative binary operator :		
		A3 not a binary operator		
		A4 not well defined :		
Object	tive Question			
	58	A permutation in a symmetric group S_n is	4.0	1.00
		(i) a product of disjoint cycles. (ii) a product of disjoint transpositions.		
		A1 Both (i) and (ii) are true		
		A2 (i) is true but (ii) is not true.		
		A3 (ii) is true but (i) is not true.		

		A4 Neither (i) nor (ii) is true.		
Ohiec	ctive Question		<u></u>	
59	59	Let G be a group with identity element e. For some a, b in G then	4.0	1.00
		(i) $ab = b$ then $a = e$		
		(i) $ab = b$ then $a = e$ (ii) $a.a = e$ then $a = e$		
		A1 Both (i) and (ii) are true		
		A2 (i) is true but (ii) is not true.		
		A3 (ii) is true but (i) is not true.		
		A4 Neither (i) nor (ii) is true.		
Objec	ctive Question			
60	60	Which one is a group	4.0	1.00
		A1 the set of integers modulo 6 with multiplication as binary operator :		
		A2 the set of integers modulo 6 without zero element with multiplication as binary operator :		
		A3 the set of 1,2,4,5,7,8 modulo 9 with multiplication as binary operator		
		A4 the set of 0,2,4 modulo 5 with addition as binary operator:		
Objec	ctive Question			
61	61	For every positive integer n	4.0	1.00
		A1 there exists a cyclic goup of order n		
		A2 there exists a group of order n but there may not be any cyclic gorup of order n		
		A3 there may not be any group of order n		
		A4 there exists a group of order n if n is a prime.		
Objec	ctive Question			
62	62	Let G be a cyclic group of order n where n > 2.	4.0	1.00
		Let G be a cyclic group of oracle it where it? 2.		
		A1 Then G has unique generator.		

		: Then G has unique generator if n is a prime number .		
		A3 Then G has exactly two generators.		
		A4 Then G has atleast two generators.		
Objec 63	etive Question	(i) A subgroup of a cyclic group is cyclic	4.0	1.00
05		(ii) A nontrivial subgroup of an infinite cyclic group is infinite		1.00
		A1 Both (i) and (ii) are true.		
		A2 (i) is true but (ii) is not true.		
		A3 (ii) is true but (i) is not true.		
		A4 Neither (i) nor (ii) is true.		
Objec	ctive Question			
54	64	Let G be a finite group and H be a subgroup of G. Which one of the statements is not true	4.0	1.00
		Al Any two left cosets of H in G have same number of elements		
		A2 A left coset of H and a right coset of H has same number of elements:		
		A3 Every left coset of H is equal to some right coset of H.		
		A4 A left coset aH is equal to the left coset bH if a = bh for some h in H:		
Ohier	ctive Question			
65	65	Let G be a group of order n. (i) For every divisor d of n there exists a subgroup of G with order d. (ii) For every subgroup H of G the order of H is a divisor of n.	4.0	1.00
		Al Both (i) and (ii) are true.		
		A2 (i) is true but (ii) is not true.		
		A3 (ii) is true but (i) is not true.		
		A4 Neither (i) nor (ii) is true.		

	Let G be a group. f and g are mappings from G to G defined as $f(a) = a^{-1}$ and $g(a) = a*a$ (i) f is a homomorphism (ii) g is a homomorphism		
	A1 Both (i) and (ii) are true.		
	A2 (i) is true but (ii) is not true.		
	A3 (ii) is true but (i) is not true.		
	A4 Neither (i) nor (ii) is true.		
Objective Q	lestion		
67 67	Let V be a finite dimensional vector space then a basis of V is a (i) maximal linearly independent set (ii) minimal generator set	4.0	1.00
	A1 Both (i) and (ii) are true.		
	A2 (i) is true but (ii) is not true.		
	A3 (ii) is true but (i) is not true.		
	A4 Neither (i) nor (ii) is true.		
Objective Q	lection		
68 68	Which one is not a countable set?	4.0	1.00
	A1 The set of all positive rational numbers less than 1.		
	A2 The set of positive irrational numbers less than 1.		
	A3 The set of all positive rational numbers.		
	A4 The set of all integers.		
Objective Q	estion		
69 69	The closed sets in real numbers is	4.0	1.00
	A1 a finite set :		
	A2 a countable set :		
	A3 a compact set		

	II		II	
		A4 is a set which may contain uncountable elements		
Obiec	tive Question			
70	70	(i) A countable infinite set of real numbers has a limit point (ii) A bounded infinite set of real numbers has a limit point	4.0	1.00
		A1 Both (i) and (ii) are true.		
		A2 (i) is true but (ii) is not true.		
		A3 (ii) is true but (i) is not true.		
		A4 Neither (i) nor (ii) is true.		
Obiec	tive Question			
71	71	Let f be a continuous real valued function defined on real line Then which one is not a correct statement.	4.0	1.00
		A1: If U is open interval then f ⁻¹ (U) is an open set.		
		$\stackrel{A2}{:}$ If V is closed interval then $f^{-1}(V)$ is a closed set.		
		A3 If U is open interval then f(U) is an open set.		
		A4 f ¹ need not be a continuous function.		
N .:	tive Question			
72	72	If f is a real valued function defined on an open interval (a,b) and f is differentiable at x, a point in the interval, then which one of the following statements is correct?	4.0	1.00
		A1 f is continuous at every point of (a,b).		
		A2 f is continuous at x but need not be continuous at every point of (a,b).		
		A3 f need not be continuous at x.		
		A4 f is bounded on (a,b).		
Obiec	tive Question			
73	73	Lef f: $S \to T$ be a function and for every subset of A of S, $f^1(f(A)) = A$ if and only if	4.0	1.00

		A2 f is onto.		
		A3 f is bijective.		
		A4 f is identity map.		
Objec	tive Question			
74	74	A set of real numbers S has supremum if and only if	4.0	1.00
		A1 S is bounded.		
		A2 S is bounded above.		
		A3 S is compact.		
		A4 S is closed.		
Objec	tive Question			
75	75	The constant sequence 1,1,1 is	4.0	1.00
		A1 Convergent and the limit is 1		
		$^{\mathrm{A2}}$ divergent and the limit is ∞		
		A3 convergent and the limit is 2		
		A4 none of these		
Objec	tive Question			
76	76	The sequence $\left\{\frac{1}{n}\right\}$ is	4.0	1.00
		Al Convergent		
		A2 divergent		
		A3 unbounded:		
		A4 none of these		
	tive Question			
Ohiec				

space, then the whole space X and the empty set $ arphi $ are	4.0	1.00
	4.0	1.00
	4.0	1.00
	4.0	1.00
	4.0	1.00
		1.00
ng function is uniformly continuous on (0,1)	4.0	1.00
ned by $f(x) = \begin{cases} 1 & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$ is	4.0	1.00
ble		
tion		
	nuous	ction

		A4 Unbounded :		
	etive Question		4.0	1.00
,1	O1	The sequence of functions $f_n(x) = \frac{1}{1 + (x - n)^2}$ on $(-\infty, 0)$ is	7.0	1.00
		A1 Pointwise Convergent		
		A2 Uniformly Convergent		
		A3 Divergent		
		A4 Convergent		
Object	ctive Question			
	82	The sum $1 + \frac{1}{2} + \frac{1}{4} + =$	4.0	1.00
		A1 1 :		
		A2 ₂		
		A3		
		A4 0		
Ohiec	etive Question			
	83	$Lt_{n\to\infty} \frac{n^2}{2n^2 + 1} = ?$	4.0	1.00
		A1 2 :		
		A2 1/2		
		A3 0		
		A4		
Object	ctive Question			
	84	In a metric space (X,d),	4.0	1.00
		A1 Every infinite set E has a limit point in E		

	A2 Every closed subset of a compact set is compact :		
	A3 Every closed and bounded set is compact		
	A4 Every subset of a compact set is closed:		
Objective Questio	n		
85 85	Let $f: X \to Y$ be any function between metric spaces, f is continuous if and only if for any open set $U \subseteq Y$,	4.0	1.00
	$ \stackrel{\text{A1}}{:} f(U) \subseteq Y $		
	$\stackrel{\text{A2}}{:} f'(U) \subseteq Y$		
	$ \begin{array}{ccc} A3 & f'(U) \subseteq X \\ \vdots & & \end{array} $		
	A4 none of these		
Objective Questio	n		
86 86	The analytic function which maps the angular region $0 \leq \theta \leq \pi / 4$	4.0	1.00
	$\begin{bmatrix} A1 \\ \vdots \end{bmatrix}$ Z^2		
	A2 4z		
	$\begin{bmatrix} A3 \\ \vdots \end{bmatrix} Z^4$		
	A4 2 θ		
Objective Questio	n		
87	The integral of $\oint (z-z_0)^m dz$ is equal to	4.0	1.00
	A1 : 0 for m = -1		
	$^{A2}_{:}$ $2\pi i$ for $m = -1$		
	A3 : 2 for m = -1		

88 88	If an entire function $f(z)$ is bounded in absolute value for all z , then –	4.0	1.00
	f(z) = constant		
	f(z) = zero		
	$f(z) = \infty$		
	A4 none of these		
Objective Questi	on		
89 89	If $f(z)$ is analytic in domain D , then	4.0	1.00
	$f^{(n)}(z)$ exist in D		
	$f^{(n)}(z)$ does not exist in D		
	A3 $f^{(\eta)}(z) = 0$ for all in D		
	A4 none of these		
Objective Questi			
90 90	If $f(z)$ is continuous in a simple connected domain D and if $\oint f(z)dz = 0$ for every closed contour in D , then $-$	4.0	1.00
	$f = \int_{\mathbb{R}}^{A_1} f (z)$ is non – analytic in D		
	f(z) is analytic in D		
	f(z) is constant		
	f(z) is bounded		
Objective Questi	on		
91 91	If $f(z)$ is entire function the Taylor series is	4.0	1.00
	A1 Convergent for all z		
	A2 Divergent for all z		

		A4 Constant :		
Object	ctive Question			
92	92	The residue of the function $f(z) = \frac{z^2}{(z-1)^2(z-2)}$ at $z=-2$	4.0	1.00
		A1 9/4 :		
		A2 3/2		
		A3 _{4/9}		
		A4 2/3		
Objec	ctive Question			
93	93	If ω be an imaginary cube root of unity then $(1 - \omega + \omega^2)^5 + (1 + \omega - \omega^2)^5$ is	4.0	1.00
		A1 64		
		A2 32		
		A3 16		
		A4 8 :		
Obiec	ctive Question			
94	94	The value of $arg(z)+arg(\bar{z})$, where z is not equal to zero is	4.0	1.00
		A1 0		
		A2 π		
		$\begin{array}{ccc} A3 & \frac{\pi}{2} \\ \vdots & 2 \end{array}$		
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
Objec	ctive Question			
95	95	If G is a region and f is non constant analytic function on G. The open mapping theorem state for any open set U in G	4.0	1.00
		Al f(U) is closed:		

96 96	If z=a is an isolated singularity of f and $f(z) = \sum_{n=-\infty}^{\infty} a_n (z-a)^n$ is its Laurent series expansion in annulus (a;0;R) then if $a_n = 0$ for n<-1, we say	4.0	1.00
	Z=a is		
	Al A pole of order n		
	A2 A simple pole		
	A3 A removable singularity:		
	A4 An essential singularity		
Objective Question		4.0	1.00
97	If $z_1 \neq z_2 \neq z_3 \neq z_4$ in C_{∞} the cross ratio (z_1, z_2, z_3, z_4) is a real number if z_1, z_2, z_3, z_4 lies on	4.0	1.00
	A1 Triangle		
	A2 Parabola		
	A3 Circle		
	A4 Hyperbola		
Objective Question	1		
98 98	The real part of $\exp(\exp(i\theta))$ is	4.0	1.00
	$e^{\cos \theta}$		
	$\stackrel{A2}{:} e^{\cos\theta} \sin(\sin\theta)$		
	$\stackrel{A3}{:} e^{\cos\theta} \cos(\sin\theta)$		

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4.0	1.00
A open set G is simply connected if G is connected and	4.0	1.00
Al Every curve in G is homotopic to zero		
A2 Every closed curve in G homotopic to zero		
A3 Every curve in G is non homotopic to zero		
A4 Every closed curve in G, G is non homotopic to zero		
Question		
If $f(z) = z^6 - 5z^4 + 10$, find the number of zeros in the annulus region $2 < z < 3$.	4.0	1.00
A1 3		
A2 6		
A3 ₂		
A4 ₀		
	A2 Every closed curve in G homotopic to zero A3 Every curve in G is non homotopic to zero A4 Every closed curve in G, G is non homotopic to zero If $f(z) = z^6 - 5z^4 + 10$, find the number of zeros in the annulus region $2 < z < 3$. A1 3 A2 6 A3 2	A1 Every curve in G is homotopic to zero A2 Every closed curve in G homotopic to zero A3 Every curve in G is non homotopic to zero A4 Every closed curve in G, G is non homotopic to zero If $f(z) = z^6 - 5z^4 + 10$, find the number of zeros in the annulus region $2 < z < 3$. A1 3 A2 6 A3 2