ENTRANCE EXAMINATION FOR ADMISSION, MAY 2013.

M.Sc. (MEDICAL BIOCHEMISTRY)

COURSE CODE: 502

Register Number	r:		
		- · · · · · · · · · · · · · · · · · · ·	
			Signature of the Invigilator (with date)
			(wun acte)
			<u>.</u>
			•

COURSE CODE: 502

Time: 2 Hours

Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each of the question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you -1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given,
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	Basi	ic amino acids a	re	•	•							
	(A)	Aspartate and	glutan	nate	(B)	Serine and glyci	ine					
	(C)	Lysine and arg	ginie		(D)	None of the above						
2.	Ami	no acid with dis	sociati	on constant cl	osest to	physiological pH	is					
	(A)	Serine	(B)	Histidine	(C)	Threonine	(D)	Proline				
3.	Sou	rces of the nitrog	gen in 1	urea cycle are			·					
	(A)	Aspartate and	ammo	nia	(B)	Glutamate and	ammo	nia				
	(C)	Arginine and a	mmon	ia	(D)	Uric acid						
4.	If w	If urine sample darkens on standing: the most likely condition is										
	(A)	Phenylketonur	ia .		(B)	Alkaptonuria						
	(C)	Maple syrup d	isease		(D)	Tyrosinemia						
5.		aby presents wi e with normal a				ons, seizures ket	osis o	rganic acids i	n			
	(A)	Proprionic aci	duria		(B)	Multiple carbox	ylase	deficiency				
	(C)	Maple syrup u	ırine d	isease	(D)	Urea cycle enzy	me de	ficiency				
6.	Ford	e not acting in a	ın enzy	/me substrate	comopl	ex						
	(A)	Electostatic	(B)	Covalent	(C)	Van der waals	(D)	Hydrogen				
7.	Cell	ular oxidation is	inhibi	ited by				·				
	(A)	Cyanide			(B)	Carbon dioxide						
	(C)	Chocolate			(D)	Carbonated bev	erage	8				
8.	Trip	le bonds are fou	nd bet	ween which ba	ase pair	·s		,				
	(A)	A - T	(B)	C - G	(C)	A – G	(D)	C - T				
9.	Whi	ch of the followi	ng RN	A has abnorm	al purir	ne bases?		•				
	(A)	tRNA	(B)	mRNA	(C)	rRNA	(D)	16S RNA				
10.	Fals	e regarding gou	t is									
	(A)	Due to increas	ed met	abolism of pyr	rimidin	es						
	(B)	Due to increas	ed met	abolism of pu	rines							
	(C)	Uric acid level	s may :	not be elevate	d							
	(D)	Has a predilec	tion for	r the great toe	!							
502				2	2	•						

11.	An of the following statements are true regarding inpoproteins except										
	(A) VLDL transports endogenous lipids										
	(B) LDL transports lipids to the tissues										
	(C) Increased blood cholesterol is associated with increased LDL receptors										
	(D) Increased HDL is associated with decreased risk of coronary disease.										
12.	A destitute woman is admitted to the hospital with altered sensorium and dehydration; urine analysis shows mild proteinuria and no sugar; what other test would be desirable										
	(A) Fouchet (B) Rothera (C) Hays (D) Benedicts										
13.	Which of these fatty acids is found exclusively in breast milk?										
	(A) Linolaete (B) Linolenic										
	(C) Palmitic (D) Dicosahexanoic acid										
14.	Blood is not a Newtonian fluid because										
	(A) Viscosity does not changing with velocity										
	(B) Viscosity changes with velocity										
	(C) Density does not change with velocity										
	(D) Density changes with velocity										
15.	Most non polar Amino Acid is										
	(A) Leucine (B) Glycine (C) Arginine (D) Lysine										
16.	Aminoacyl t-RNA is required for all except										
	(A) Hydroxyproline (B) Methionine										
	(C) Cystine (D) Lysine										
17.	The Similarity between Vit. C and Vit. K is										
	(A) Both help in conversion of proline to hydroxyproline										
	(B) Both help in post-translational modification										
	(C) Both have anti infective acitivity										
	(D) Both are involved in coagulation cascade										
18.	The primary defect in Xeroderma pigmentosa is										
	(A) Formation of thymidine dimmers										
	(B) Poly ADP ribose polymerase is defective										
	(C) Exonuclease I defective										

(D) Formation of adenine dimmers

19.	Null mutation is											
	(A)) Mutation occurring in Non Coding region.										
	(B)	Mutation that	does 1	not change the	amino	acid or end prod	ucț					
	(C)	Mutation that codes for a change inprogeny without any chromosomal change										
	(D)	Mutation that l	leads	to no functional	gene	product		•				
20	ть.	harmara naina a		······································		ottom.						
20.		hormone using a					(D)	m				
	(A)	Insulin	(B)	Steroid	(C)	Oestrogen	(D)	Thyroxine				
21.	In c	In chymotrypsine molecule, if serine – 195 is substituted for alanine then										
	(A)	Chymotrypsin	will n	ot bind to subst	rate b	ut will cleave the	subst	rate				
	(B)	Chymotrypsin	will bi	ind but will not	cleave	9						
	(C)	Chymotrypsin	will n	either bind to s	ubstra	te nor cleave						
	(D)			ind and cleave l				•				
22.	Pyruvate can be converted directly into all the following except											
22.	(A)	Phosphoenol py		•	(B)	Alanine						
	(C)	Acetyl CoA	y Luva	ue .	(D)	Lactate		-				
-	(0)	Acetyl CoA		•	(D)	Lactate		•				
23.	The	rate-limiting en	zyme	in Glycolysis is								
	(A)	Phosphofructol	cinase		(B)	Glucose-6-dehy	droge	nase				
	(C)	Glucokinase			(D)	Pyruvate kinas	se					
24.	All a	are actions of ins	ulin e	except								
	(A)	Gluconeogenes			(B)	Glycolysis	•	•				
	(C)	Glycogenesis		·	(D)	Lipogenesis						
0.5	T	-1: 3 A C:	7:4 - 4 -	_1	43	£-11	•					
25.						following except	(D)	TZ: 3				
	(A)	Liver	(B)	Heart	(C)	RBC	(D)	Kidney				
26.	Whi	ch helps in the t	ransp	ort of chylomic	rons fr	om intestine to l	iver?					
	(A)	Apoprotein B	(B)	Apoprotein A	· (C)	Apoprotein C	(D)	Apoprotein E				
27.	Med	hanism of action	ı of Ni	tric oxide is thr	ou ð h							
	(A)	cGMP	(B)	cAMP	_	Ca++	(D)	Tyrosine				
28.	DN	A fragments forn	ned by	v the action of R	lestric	tion Endonucleas	ses. ar	e separated by				
•	(A)	Gel electropho	-				•	•				
	(B)	Agarose gel ele		horesis								
	(C)	-	_									
	(D)	-		chromatograpl	hv							
	(2)	TIPIT PLOBUIC	4 010		·-J							
502				4								

29.	Regarding a crystal, the true statement is											
	(A)	Molecules are	arrang	ed in same ori	entatio	n with differen	t confirm	nation				
	(B)	Molecules are arranged in different orientation with different confirmation										
	(C)	Molecules are arranged in same orientation and same confirmation										
	(D)	Molecules are	arrang	ed in different	orient	ation but with s	same coi	nfirmation				
30.	Rega	garding Newtonian force, true is										
	(A)	Viscosity is di	rectly p	roportional to	velocit	у		•				
	(B)	Viscosity is in	versely	proportional t	o veloc	ity		•				
	(C)	Viscosity is eq										
٠.	(D)	There is no re	lation b	etween the tw	o							
31.	Opt	ically inactive A	mino A	cid is	•							
	(A)	Proline	(B)	Glycine	(C)	Lysine	(D)	Leucine				
32 .	True	True statement regarding Nitric oxide is										
	(A)	NO is synthes										
	(B)	NO is spontar		•								
-	(C)	NO causes va		•								
	(D)	NO is release	d from	mitochondria								
33.	Thia	amine acts as a										
	(A)	Conversion of										
	(B)	Transaminati	on reac	tions								
	(C)	Oxidation in 1	espirat	ory chain				•				
	(D)	Conversion of	pyrido	kal to pyridoxa	l phosp	ohate						
34.	Foll	owing constitut	e dietai	ry fibres excep	t			,				
	(A)	Pectin	(B)	Cellulose	(C)	Hemicellulose	(D)	Riboflavin				
35.	Whi	ch of the follow	ing ami	inoacid is exre	ated in	urine in maple	syrup u	rine disease?				
	(A)	Tryptophan	(B)	Phenylalanir	ne (C)	Leucine	(D)	Arginine				
36.	Am	monia is detoxi	ied in b	rain to								
	(A)	Urea	(B)	Glutamine	(C)	GABA	(D)	Uric acid				
37.	Gau	icher's disease i	n due t	o deficiency of	enzym	e						
	(A)	Sphingomyeli										
	(C)	Hexosaminida	se									

38.	Glucose can be synthesized from all of the following except											
	(A)	Acetoacetate	(B)	Lactic Acid	(C)	Glycerol	(D)	Amino Acid				
39.	True	e about polymera	se cha	ain reaction is								
	(A)	Enzymatic DNA	A amp	lification								
	(B)	(B) Recombinent DNA amplification										
	(C)	Seperation of p	rotein	fragments is se	rum			-				
	(D)	None				•						
40.	Tra	nslation occurs in	.					-				
	(A)	Ribosomes	(B)	Mitochondria	(C)	Nucleus	(D)	Cytoplasm				
41.	Gou	t is a disorder of					,					
	(A)	Purine metabol	ism		(B)	Pyrimidine met	abolis	m				
	(C)	Oxalate metabo	lism	a.	(D)	Protein metabo	lism					
42.	Best	t enzyme marker	for cl	ronic alcoholist	n is							
	(A)	Gamma glutam	yl-tra	nsferase	(B)	SGOT						
	(C)	SGPT		·	(D)	Aldolase						
43.	In c	ytochrom P – 450	, P st	ands for								
	(A)	Structural prot	ein		(B)	Polymer						
	(C)	Substrate prote	in	•	(D)	Pigment						
44.	Diet	tery cholesterol is	deliv	vered transporte	d to e	xtra hepatic tiss	ue by					
	(A)	VLDL	(B)	LDL	(C)	Chylomicrons	(D)	IDL				
45 .	Leu	cine is a aminoac	id wi	th a			•					
•	(A)	Nonpolar side o	hain		(B)	Polar side chair	n					
	(C)	Negatively char	rged s	ide chain	(D)	Postively charg	ed sid	e chain				
46.	Mos	st basic amino aci	d out	of the following	is			•				
	(A)	Alanine	(B)	Arginine	(C)	Histidine	(D)	Lysine				
47.	Tra	nsmination of pyr	ruvat	e with glutamat	e proc	luces						
	(A)	Oxaloacetate aı	nd ası	partate	(B)	Alanine and as	pirate					
	(C)	Oxaloacetate ar	$ad \alpha$	ketoglutarate	(D)	Alanine and α	-ketog	lutarate				

48.	Sele	nium is co-factor	for									
	(A)	Glutathione per	oxida	ıse	(B)	Glutathione redu	ıctas	e				
	(C)	Glutathione syr	theta	ase	(D)	Glutathione deh	ydrog	enase				
49.	Mallate shuttle is seen to occur in											
	(A)	Glycolysis			(B)	Glycogenolysis		-				
	(C)	HMP shunt	,		(D)	Gluconeogenesis	r	•				
50.	Glucose may be synthesized from											
	(A)	Glycerol	(B)	Adenine	(C)	Guanine	(D)	Palmitic acid				
51.	NADPH is required for											
	(A)	Gluconeogenesi	8	•	(B)	Glycolysis						
	(C)	Fatty acids syn	thesis		(D)	Glycogenolysis						
52.	If ch	If chymotrypsin molecule undergoes a ser-195-alamutation then										
	(A)	A) Chymotrypsin will not bind the substrate										
•	(B)	Chymotrypsin v	vill bi	nd the substrate	e as w	vell as cause cleav	age	•				
	(C)	Chymotrypsin v	vill bi	nd the substrate	e but	will not cause clea	ıvage					
	(D)	No affect will be	e obse	erved	•							
53.	Apo	Apoprotein A is found in										
	(A)	Chylomicrons	(B)	VLDL	(C)	HDL	(D)	LDL				
54.	Endogenous triglycerides in plasma are maximally carried in											
	(A)	VLDL	(B)	Chylomicrons	(C)	LDL	(D)	HDL				
55.	All of the following statements are correct about metabolism in brain except											
	(A)	Fatty acids are	utiliz	ed in starvation				•				
	(B)	,		s utilized during		ng stage						
	(C)	Ketone bodies a	re us	ed in starvation								
	(D)	Has no stored e	nergy	,								
56 .	Whi	ch enzyme involv	ed in	translation is o	ften r	eferred to as "Fide	elity e	enzyme"?				
	(A)	DNA polymeras	se		(B)	RNA polymerase	•					
	(C)	Amino acyl-tRN	IA syı	nthetase	(D)	Amino acyl-redu	ctase					
57.	Oka	zaki segments ar	e req	uired for		• .						
	(A)	DNA synthesis		•	(B)	RNA synthesis						
	(C)	Protein synthes	is	and the second second	(D)	None of the abov	re.	ė.				

58.	DNA restriction is done by the following method										
	(A)	Paper chromat	tograpl	ny	(B)	Electrophoresis agargel method					
	(C)	Spectrophotom	neter		(D)	Spectrometry					
59.	Strongest bond out of the following is										
	(A)	Electostatic	(B)	Hydrogen	(C)	Hydrophobic	(D) Vanderwall's				
60.		ch of the follow uration of antib	-	-	omenon	in Is genes is re	esponsible for affinity				
	(A)	Chain shufflin	g		(B)	Junctional dive	ersity				
	(C)	Somatic hyper	mutati	ion	(D)	Altered RAA s	olicing				
61.	Cyc	lic GMP act on									
	(A)	Insulin			(B)	Thyroxin	•				
	(C)	A trial natriur	etic pe	ptide	(D)	Growth harmo	ne				
62.	True statement regarding covalent bonds is										
	(A)	Electrons have	e same	spin	(B)	Electrons have	opposide spin				
	(C)	They are weak	bonds	•	(D)	None of the ab	ove				
63.	Vitamin required for post translational modification of coagulants is										
	(A)	Vitamin A			(B)	Vitamin C					
	(C)	Vitamin B ₆			(D)	Vitamin K					
64.	Enzyme to both common in gluconegenesis and glycolysis pathway is										
	(A)	Phosphofructo	kinase		(B)	Fructose 2, 6 – biphosphatase					
	(C)	Hexokinase			(D)	Glucose 6 phos	phatase				
65.	The major fate of glucose-6 Phosphate in tissue in a well fed state is										
	(A)	Hydrolysis to	glucose	•	(B)	Conversion to	glycogen				
	(C)	Isomerization	to fruc	tose 6 phosph	nate (D)	Conversion to	ribulose 5 phosphate				
66.	Glu	coneogensis affe	ct A/E								
	(A)	Lactate			(B)	Glycerol	•				
	(C)	Alanine			(D)	Growth hormo	ne				
67.	Pro	perty of photoch	romosi	ty is seen am	ongst th	e following amir	no acids				
	(A)	Unsaturated a	aminoa	cid	(B)	Aromatic amin	oacid				
	(C)	Monocarboxyl	ic acid		(D)	Dicarboxylic ac	eid				

68.	All of the following are required for hydroxylation of proline in collagen synthesis except												
	(A)	O ₂	ē		(B)	Vitamin C							
	(C)	Dioxygenases			(D)	Pyridoxal phosp	hate	•					
69.	The	cellular compone	ent for	protein synt	hesis is								
	(A)	Smooth endopl	asmic	reticulum	(B)	Rough endoplas	mic re	eticulum					
-	(C)	Ribosomes			(D)	Mitochondria							
70.	Bine	Binding of proteins to DNA is regulated by											
٠	(A)	Copper	(B)	Zinc	(C)	Selenium	(D)	Nickle					
71.	RNA	A seen in											
	(A)	Spinal muscula	ır dyst	rophy	(B)	Sickle cell disease							
	(C)	Hutchinson cho	orea		(D)	α Thallasemia							
72.	Rest	triction endonucl	ease i	S ·									
,	(A)	Break single st	rande	d DNA	(B)	Break dou b le st	rande	d DNA					
	(C)	Break peptide	chain	٠.	(D)	Break RNA							
73.	The most important carrier of cholesterol in plasma is												
	(A)	Chylomicrons	(B)	HDL	(C)	VLDL	(D)	LDL					
74.	A Pı	A Protein estimation test is confused with											
	(A)	Phosphates	(B)	Nitrates	(C)	Sulphates	(D)	Bile salts					
75.	Fur	asol DA is			•								
	(A)	Free radical											
	(B)	Artificial blood						•					
	(C)	CO antagonist											
	(D)	Used to increas	se O ₂ c	lelivery to tisa	sue								
76.	Diet	tary fibre contair	18		. •								
	(A)	Colalgen	(B)	Pectin	(C)	Proteoglycans	(D)	Starch					
77.	Biot	tins act on						•					
	(A)	Carboxylation			(B)	Oxidative phosp	horyl	ation					
	(C)	Oxidative dean	ninati	on ·	(D)	Transmethylati	on						

78.	Vita	min B ₁₂ is absorb	ed in	the				
	(A)	Stomach	(B)	Duodenum	(C)	Ileum	(D)	Colon
79.	Cofa	ctor associated w	rith tl	ne enzyme Gluta	athion	e peroxidase is		
•	(A)	Zinc	(B)	Cadmium	(C)	Molybdenum	(D)	Selenium
80.	Stro	ngest bond amon	gst th	ne following is				.•
	(A)	Hydrophobic			(B)	Elctrostatic		· ·
	(C)	Hydrogen bond			(D)	Wan der wall's		
81.	Gluc	coneogenesis occu	ırs in	all except				
	(A)	Glycerol	(B)	Amino acid	(C)	Lactic acid	(D)	Palmitate
82.	Apo	protein A is found	d in					
	(A)	Chylomicrons	(B)	VLDL	(C)	HDL	(D)	LDL
83.	Ami	no acid which lac	ks ch	irality is				
	(A)	Lysine	(B)	Leucine	(C)	Histidine	(D)	Glycine
84.	An a	mino acid which	does	not participate	by 🛭 h	elix formation is		
	(A)	Leucine	(B)	Glycine	(C)	Proline	(D)	Lysine
85.	Trai	ns-amination of p	yruva	ate and glutami	c acid	leads to the form	ation	of
	(A)	Oxaloacetate			(B)	lpha -ketoglutarate	•	•
	(C)	Aspartate			(D)	Malate		
86.	Whi	ch form of DNA i	s pre	dominantly seer	ı?	•		
	(A)	A	(B)	C	(C)	В	(D)	Z
87.	The	rmo-stability in I	ONA i	s contributed m	ostly	by		•
	(A)	A = T			(B)			• .
	(C)	Molecular base			(D)	Parallel arrange	ment	
88.	Oka	zaki fragment he	lps ir	1				
	(A)	DNA replication	-	•	(B)	Translation		
	(C)	Protein synthes		i .	(D)	Transcription	•	
89.	Bro	modeoxyuridine i	s rela	ted to DNA in				
	(A)	Uracil	(B)	Adenosine	(C)	Cytosine	(D)	Thymidine
502	• 7		\ - <i>/</i>	10	\ · /	•	-	•

90.	The first step in fatty acid synthesis involves										
	(A)	Acetyl CoA carboxylase	(B)	$oldsymbol{eta}$ Hydroxyl CoA dehydrogenase							
	(C)	Acetyl dehydrogenase	(D)	Pyruvate kinase							
91.	Whi	ch of the following is a denaturing sub	stanc	· e?							
	(A)	Guanosine (B) Guanidine	(C)	Glutamate (D) Glycine							
92.	A m	arker of Golgi apparatus is									
	(A)	Galactosyl transferase	(B)	Acetyl CoA synthetase							
	(C)	Pyruvate kinase	(D)	Malonyl CoA							
93.	In h	emoglobin, iron is bound to	-								
	(A)	Histidine (B) Leucine	(C)	Isoleucine (D) Vaine							
94.	Fluo	oride inhibits which enzyme									
	(A)	Pyruvate kinase	(B)	Succinyl dehydrogenase							
	(C)	Enolase	(D)	Aldolase							
95.	Met	abolites in HMP shunt are all except									
	(A)	Glycerol-3 phosphate	(B)	Sedoheptulose-7 phosphate							
	(C)	Glyceraldehyde-3 phosphate	(D)	Xylulose-5 phosphate							
96.	NAI	PH is used in	-								
	(A)	Fatty acid synthesis	(B)	Ketone synthesis							
	(C)	Gluconeogenesis	(D)	Glycolysis							
97.	The	most essential fatty acid is	÷								
	(A)	Linoleic acid (B) Linolenic acid	(C)	Arachidonic acid (D) Palmitic acid							
98.	Rate limiting enzyme in the synthesis of cholesterol is										
	(A)	HmG CoA reductase	(B)	HmG CoA synthetase							
	(C)	Acetyl CoA synthetase	(D)	Acetyl CoA carboxylase							
99.	If st	arvation exceeds 7 days, the major nut	rition	nal supply of the brain comes from							
	(A)	Fatty acids	(B)	Ketone bodies							
	(C)	Protein breakdown	(D)	Carbohydrate breakdown							
100.	Cell	shape and motility are provided by									
	(A)	Microfilaments	(B)	Microtubules							
	(C)	Golgi apparatus	(D)	Mitochondria							