308 PU M Sc Microbiology

144	F 100 PU_2016_308_E shillis is caused by:- Treponema pallidum Streptococcus syphilitic Yersinia psdtis Staphylococcus aureuss
125	F 100 PU_2016_308_E ich of the following diseases is communicable? Cancer Rickets Diabetes Amoebiasis
108	PU_2016_308_E ich of the following is currently considered as the leading cause of extinction? Competition from introduced species Habitat loss Over exploitation of spaces Pollution
183	F 100 PU_2016_308_E virus which does cause hemagglutination of human erythrocytes is:- Rubella Reovirus Enterovirus Myxovirus
165	f 100 PU_2016_308_E class of immunoglobulin present in highest concentration in the blood of a human newborn is:- IgA IgD IgM

0	IgG
146	F 100 PU_2016_308_E t genetically engineered and biotechnologically produced vaccine was against:-
	Herpes simplex
0	AIDS
0	Small pox
0	Hepatitis B
122 'F' p	F 100 PU_2016_308_E lasmids:-
0	carry some chromosomal genes
0	are those plasmids that have never been incorporated into a bacterial chromosome
0	are responsible for high frequency recombination
0	Antibiotic resistance
164 Idio	F 100 PU_2016_308_E typic determinants are located within:-
0	constant regions of light chains
0	the hinge region
0	hypervariable regions of heavy and light chains
0	constant regions of heavy chains
184 An e	F 100 PU_2016_308_E example of an artificial virus is:-
0	Reovirus
0	Mumps virus
	Rabies virus
0	Vaccinia virus
210	of 100 PU_2016_308_E ycorrhizal association is found to occur between:-
О	fungi and plant roots
0	Mycoplasma and roots
0	bacteria and plant roots

0	viruses and plant roots
148 The	of 100 PU_2016_308_E raw material for citric acid production is:-
0	Vinegar
0	Corn
0	Molasses
0	Starch
110 A lir	of 100 PU_2016_308_E nkage map:-
0	orders genes on a chromosome based on their location with respect to a stained band
0	shows the actual ordering and spacing of genes on a chromosome
0	orders genes on a chromosome based on recombination frequencies
0	can only be constructed for sex chromosomes
149	of 100 PU_2016_308_E ner of microbiology is:-
0	Louis Pasteur
0	A.V. Leeuwenhock
0	Lister
	Robert Koch
189 If th	of 100 PU_2016_308_E e position one of the functional group is changed from one carbon to the other in the same molecule an enzyme, the enzyme is called:-
0	Epimerase
0	Mutase
0	Transferase
0	Isomerase
15 of 100 143 PU_2016_308_E Nitrites are oxidized to nitrates by a microorganism:-	
0	Nitrobacter
0	Azatobacter

0	Nitrosomonas
0	Nitrosococcus
109	PU_2016_308_E molar basis if DNA has 20% cytosine, then % of adenine would be:- 40% 30%
0	20% 60%
126	PU_2016_308_E 8 vaccine is useful against:- Diptheria Typhoid Pertussis Polio
208	PU_2016_308_E teria differ from Fungi in that the former:- are eukaryotic contain both DNA and RNA contain cell walls can reproduce sexually
169	PU_2016_308_E y many microliters of 20% SDS are required to bring 1.5 mL of solution to 0.5%? 3.8 μL 385 μL 38.5 μL 380 μL
162	PU_2016_308_E condition in which there is one too many or one too few chromosomes is called:- Polyploidy Monoploidy

0	Polytene
0	Aneuploidy
24.4	of 100
150 Ligh	PU_2016_308_E t gathering capacity of Microscope is called:-
0	Numerical aperture
0	Angular aperture
0	Both of the above
0	Objective distance
124 The	of 100 PU_2016_308_E maximum biodiversity in India occur at:-
0	Eastern Himalayas
0	Western Himalayas
0	Western Ghats
0	North-east Himalayas
206	of 100 PU_2016_308_E teria spores:-
0	allow the bacteria to multiple in adverse condition
0	can be identified with Gram stains
0	are killed by temperature of 120° for 20 minutes
0	are usually formed by Gram-negative bacteria
142 Whi	of 100 PU_2016_308_E ch of the following is a neutral stain?
0	Malachite green
0	Picric acid
0	Neutral red
0	Gmiemsa
141 The	of 100 PU_2016_308_E dengue fever virus is:-
0	Orthomyxo virus
0	Entero virus

0	Arbo virus
0	Echo virus
105 Rhi	of 100 5 PU_2016_308_E zofiltration is used to:-
0	Reduce pesticide accumulation
0	Reduce contamination of natural wetland
0	Reduce mobility of contaminated soil
0	Prevent leaching contaminants from the disposal site
207	of 100 PU_2016_308_E e following substances are not used in Gram staining:- congo red iodine alcohol crystal violet
104	of 100 PU_2016_308_E augmemtation involves:- Use insects for bioremediation Use of genetically modified DNA for bioremediation Use of compost for bioremediation Use of microbes for bioremediation
	of 100 2 PU_2016_308_E
Some bacteria can use CO_2 as the sole carbon source and obtaining energy by oxidation & reduction of inorganic substances. These bacteria are classified as:-	
0000	Photoautotrophs Chemolithotrophs Photoheterotrophs Chemoheterotrophs
185	of 100 5 PU_2016_308_E .1g % solution is μg/μl.

0	10
0	0.01
0	1.0
0	0.1
188	PU_2016_308_E Ich of the following does <i>not</i> participate in the formation of antigen-antibody complexes? Van der Waals forces Hydrophobic bonds Hydrogen bonds Covalent bonds
168 If th	of 100 PU_2016_308_E e genetic code consisted of four bases per codon rather than three, the maximum number of unique no acids that could be encoded would be:-
0	16
0	256
0	64
	128
201	of 100 PU_2016_308_E ich of the following is a form of sexual reproduction?
0	Hermaphroditism
0	Budding
0	Regeneration
	Fission
130 Who	of 100 PU_2016_308_E o provide the evidence that bacteriophage nucleic acid but not protein enters the host cell during ction?
0	Hershey & Chase in 1952.
0	Hershey & Macleod in 1952
0	Hershey & Lederberg in 1951.
0	Hershev &Tatum in 1951.

	PU_2016_308_E ch is the chief nitrogenous waste in humans?
0	Urea
0	Ammonia
0	Ammonium nitrate
0	Uric acid
103 Hold	of 100 PU_2016_308_E ogenome theory states:-
0	Host independent evolution
0	Host-symbiont co-evolution
0	Evolution of bacteria
0	Symbiont independent evolution
163	of 100 PU_2016_308_E atitis B is not transmitted by:-
0	Blood transfusion
0	Sexual contact
0	Feco-oral route
0	Congenital transmission
204	of 100 PU_2016_308_E atitis B:-
0	is a RNA virus
0	is a bacterium
0	is a DNA virus
0	is a viroid
106	PU_2016_308_E ch of the following is not a vector used in gene therapy? HIV
Ö	AAV
0	Herpes
	Retro virus

40 of 100

	PU_2016_308_E ch of the following enzyme of TCA cycle is also a part of Electron Transport chain?
0	Succinate Dehydrogenase
	Pyruvate Dehydrogenase
0	Glutamate Dehhydrogenase
0	Malate Dehydrogenase
170 In w	of 100 PU_2016_308_E hich of the following systems is the entropy the greatest?
0	Water vapour
0	Ice
0	Liquid water at pH 7.0, 37°C
0	Water with sufficient acid added to lower the pH to 2.0
167 Her	of 100 PU_2016_308_E nolytic disease of the newborn caused by Rh blood group incompatibility requires maternal antibody to er the fetal bloodstream. Therefore, the mediator of this disease is:-
0	IgM antibody
0	IgE antibody
0	IgA antibody
0	IgG antibody
186 To v	of 100 PU_2016_308_E which of the following organelles co-translational transport of proteins takes place?
0	Mitochondria
0	Endoplasimc Reticulum
0	Nucleus
	Lysosome
166 The	of 100 PU_2016_308_E main advantage of passive immunization over active immunization is that:-
0	antibody persists for a longer period
0	it provides antibody more rapidly
0	it contains primarily IgM
0	it can be administered orally

181	of 100 PU_2016_308_E
	nophilus needs:-
0	LPS
	X and V factor
0	V factor
0	X factor
147 Pen	of 100 PU_2016_308_E icilin is commercially produced by:-
0	P.notatum
0	P.citrinum P.citrinum
0	P.chrysogenum
0	P.roquefortii
203 To C C C C 48 (145 Shice	PU_2016_308_E digest cellulose in its environment, a microorganism produces a/an Endoenzyme Catalase Exoenzyme Polymerase of 100 PU_2016_308_E ck test is used for the detection of:- Cholera
	Typhoid
0	T.B.
0	Diphtheria
100 Mar	of 100 PU_2016_308_E ngroves are highly productive eco system but they are poor in bird diversity because:-
0	Lack of breeding place
0	Lack of food diversity
0	More number of predators that feed on birds
0	Lack of structural diversity

107 An I	of 100 PU_2016_308_E Hfr strain of <i>E. col</i> contains:-
000	A bacterial chromosomes with a human gene inserted
	A vector of yeast or bacterial origin which is used to make many copies of particular DNA sequence
	Human chromosome with a transposable element inserted
0	Bacterial chromosomes with a F factor inserted
129 The	of 100 PU_2016_308_E mitochondria of eukaryotic cells most likely arose as a result of endosymbiosis between a eukaryotic and a:-
0	Red algae
0	Non- sulphur purple bacterium
0	Cyanobacterium
0	Blue- green alga
161	of 100 PU_2016_308_E reaction of soluble antigen with antibody is known as:-
0	Flocculation
0	Precipitation
0	Complement fixation
0	Agglutination
121	of 100 PU_2016_308_E A viruses are more complex to treat because:-
0	Lack of restriction endonucleases
0	Lack of ATP-dependent activity of RecA
0	Lack of proof reading activity
0	Environmental niche
205 Whi	of 100 PU_2016_308_E ich of the following is false about <i>Pseudomonas aeruginosa</i> ?
0	It is sensitive to chloramphenicol
0	It can cause osteomyelitis
0	It is the most common cause of contact lens acquired infection
0	It is a Gram negative bacterium

182 Whi	of 100 PU_2016_308_E ch of the following is not pathogenic mycobacterium?
0	M cheoleni
0	M scrofulaceum
0	M kansasii
0	M smegmatis
128 A ta	of 100 PU_2016_308_E xon is:-
0	Herbal taxonomist
О	A group of related families
0	New taxonomist
0	Modern taxonomist
123 A m	of 100 PU_2016_308_E icrobiologist analysed the DNA of <i>E. coli</i> before and after conjugation. She found that:-
0	Both cells gained genes but lost none of their original genes
0	One cell lost genes and the other gained genes
0	Both cells lost some genes and gained others
0	One cell gain genes and the genes of the other were unchanged
101	of 100 PU_2016_308_E Iusive fitness" theory was originally put forward by:-
~	Hamilton
О 6	Darwin
0	JBS Haldane
O	RA Fisher
127	of 100 PU_2016_308_E niasis by <i>Taeniasaginata</i> is caused by consumption of:-
0	Wild boars
0	Beef
0	Pork
0	Salmon

60 of 100 209 PU_2016_308_E Stains useful for identifying fungus include:-		
0	Gram stain	
0	Giemsa	
0	Methylene blue	
0	Cotton blue	
243 Nitro	of 100 PU_2016_308_M ogen is required by microorganisms for the production of which type of compounds?	
0	Phospholipids	
0	Cellulose	
0	Nucleotides	
0	Fatty acids	
229	PU_2016_308_M principal function of complement is to:- cross link allergens	
0	-	
0	bind antibodies attached to cell surfaces and to lyse these cells	
0	inactivate perforins	
	phagocytize antigens	
227 A cu	of 100 PU_2016_308_M Ilture of an E.coli strain that is lysogenic for phage lambda is grown at 32°C. Induction of the phage from the host chromosome will occur when the culture is exposed to:-	
0	Wild type E.coli culture	
0	40°C	
0	Infra-red radiation	
0	Ultra-violet radiation	
64 of 100 223 PU_2016_308_M The nature of bacterial capsules:-		
0	Causes widespread blood clotting	
О	Has no effect on the virulence of the bacteria	
0	Allows phagocytes to readily engulf these bacteria	

0	Affects the virulence of these bacteria
247 The	of 100 PU_2016_308_M experiments using <i>Diplococcus</i> to study bacterial transformation were performed by:-
0	Joshua Lederberg
0	Beadle and Tatum
0	Griffith
0	Iwanowsky
224	of 100 PU_2016_308_M terial cell wall is made-up of:-
0	A. N-Acetyl glucosamine
0	B. N-Acetyl muramic acid
0	C. N-Acetyl glucosamine, N-Acetyl muramic acid and amino acids
0	D. Both A and B
244	of 100 PU_2016_308_M at is not a role of hydrogen within cells?
0	It is a major element in all organic compounds
0	It determines the shape and stability of proteins by forming disulfide bonds.
0	It maintains pH within the cell.
0	It forms hydrogen bonds between molecules.
242	of 100 PU_2016_308_M gi are identified by which of the following characteristics?
0	rRNA sequences
0	Biochemical analysis
0	Serological analysis
0	Asexual spore forming structures and spores
228	of 100 PU_2016_308_M at is "ALZHEIMER'S" disease?
0	It is a disorder of the brain
0	It affects liver
0	It affects human immune system

0	It affects Kidney
230 Is n	of 100 PU_2016_308_M ot an AB type toxin:-
0	shiga toxin
0	S.aureus α toxin
0	cholera toxin
0	botulinum toxin
245 Wha	of 100 PU_2016_308_M at nutritional category of microorganisms plays an important part in recycling inorganic nutrients?
0	Chemoheterotrophs
0	Chemoautotrophs
0	Photoautotrophs
0	Saprobes
225	of 100 PU_2016_308_M ich of the following bacteria cannot fix atmospheric nitrogen non-symbiotically?
0	Rhizobium
0	Klebsiella
0	Azotobacter
0	Pseudomonas
221 In a	of 100 PU_2016_308_M flowering plants megaspore undergoes mitosis and develops into a:-
0	Anther
0	Seed
0	Embryo sac
0	Petal
74 of 100 220 PU_2016_308_M Which is the only colourless animal parasite among dinoflagellates?	
0	Notiluca
0	Blastodium
0	Gonyaulux

0	Ceraium
222 Wh	of 100 PU_2016_308_M en pathogenic bacterial cells lose the ability to make adhesion, they:-
0	Absorb endotoxin
0	Increase in virulence
0	Produce endotoxin
0	Become avirulent
241 Wh	of 100 PU_2016_308_M y are encapsulated bacteria generally more pathogenic than non-encapsulated strains?
0	Because the capsule helps prevent phagocyte attachment to the organism
0	Because the capsule stimulates a potent immune response in the host
0	Because phagocytes do not recognize a capsule as foreign
0	Because the capsule causes the phagocyte to mutate
77 of 100 226 PU_2016_308_M Which of the following coenzymes act as an "electronic sink"?	
0	TPP
0	FAD
\circ	NAD^{+}
0	PLP
78 of 100 246 PU_2016_308_M What form of Oxygen is not toxic to microorganisms?	
0	O_2
0	$^{1}O_{2}$
0	OH.
0	O_2^-
248	of 100 PU_2016_308_M sease that can be transmitted by an infectious agent from one individual to another is called: Coma
0	Epidemic
0	Pandemic

0	Communicable
249 The	of 100 PU_2016_308_M proteinaceous compounds are converted to ammonia by:-
0	Ammonification bacteria
0	Denitrification bacteria
0	Nitrification bacteria
0	Putrifying bacteria
296	of 100 5 PU_2016_308_D 6 pug the following which would lead into new species formation?
0	Niche specialization
0	Increased resources
0	Niche overlapping tolerance
0	Lack of competition
82 of 100 294 PU_2016_308_D Choose the correct sequence of evolutionary events in one form of allopatric speciation, using the codes given below:-	
I. Geographical isolation II. Ecological isolation III. Increased pre- mating reproductive isolation IV. Increased genetic divergence V. Selection completed.	
Cod	des
0	III II IV V
0	III IV II V
0	I IV III V
0	I II III V
295 Pla	of 100 5 PU_2016_308_D nts die in winter by frost because:-
0	Of desiccation and mechanical damage to tissues
0	No photosynthesis takes place at such low temperatures
0	There is no transpiration
0	Respiration ceases at such low temperatures

84 of 100 276 PU_2016_308_D Whose invention permitted microbiologists to visually identify microbes?		
0	Louis Pasteur	
0	John Snow	
0	John Tyndall	
0	Anton van Leeuwenhoek	
291 Men	PU_2016_308_D nber of the same species which are capable of interbreeding is best describe as:-	
0	Eco system	
0	Biosphere	
0	Community	
0	Population	
273	of 100 PU_2016_308_D rong reducing agent readily electron and undergoes	
0	Accepts, oxidation	
0	Accepts, reduction	
0	Donates, oxidation	
0	Donates, reduction	
87 of 100 299 PU_2016_308_D Consider the following statement.		
II. K III. (eciprocal altruism health or sacrifice repaid later in selection present when self-sacrifice relatives lead to altruism Courtship ritual minimizes agonistic behaviour before mating Cognition is the ability to store, process and use sensory information	
Whi	ch of the above statement are correct regarding animal behaviour?	
Codes		
0	II, III, and IV	
0	I, II, and III	
0	I, II, III, and IV	
0	I, III, and IV	
	of 100 PU_2016_308_D	

Ace	ellular, non-living agents consisting of a protein coat that surrounds a nucleic acid core are called:-
0	Viruses
0	Bacteria
0	Viroids
0	Amoebae
275 All (of 100 PU_2016_308_D of the following are true with regard to fungi EXCEPT:-
0	Yeasts, moulds and mushrooms are examples of fungi
0	They are eukaryotes
0	Some are single-celled and others are multicellular
0	Most are photosynthetic and derive their energy from sunlight
298 Altr	of 100 PU_2016_308_D uistic behaviour is not seen in:-
0	Termite
0	Silk Worm
0	Ant
0	Bee
292	of 100 PU_2016_308_D ich of the following would cause deviation from the Hardy - Weinberg equilibrium?
0	Lack of selection pressure
0	Small population
0	Random mating
0	Isolation
271	of 100 PU_2016_308_D on exchange chromatography with anion exchanger, the protein with negative charge:-
0	will be eluted only after applying gradient elution
000	will be eluted first
	will be eluted in washing step
	will not bind to the ion exchange resin
	of 100 PU_2016_308_D

If 16% of the persons in a population show a recessive trait, what is the allelic frequency for the dominant allele?
° 16%
© _{84%}
° 96%
C 4%
94 of 100 277 PU_2016_308_D Proteinacious agents that cause a number of neurodegenerative diseases such as Creutzfeld-Jacob disease and Mad Cow disease are called: Viroids
Virusoids
6
Bacteria Decreased to the second sec
Prions
95 of 100 270 PU_2016_308_D The advantage of the Edman's reagent (phenyl isothiocyanate-PTH) over Sanger's reagent (fluorodinotrobenzene-FDNB) in peptide analysis is:-
that the process can be repeated on the remaining peptide
complete denaturation
complete hydrolysis
complete oxidation of all disulfides
96 of 100 279 PU_2016_308_D Which of these is not a living fossil?
Archaeopteryx
C Lung fish
Duck-billed platypus
Frog
97 of 100 280 PU_2016_308_D If your microscope has a 10X ocular lens and you are using the 100X objective lens, what is the total magnification?
C 1000
1100
° 10

0	100
274 The enti mol	of 100 PU_2016_308_D pH of blood of a healthy person is maintained at 7.40 ± 0.05 . Assuming that this pH is maintained rely by the bicarbonate buffer (pKa1 and pKa2 of carbonic acid are 6.1 and 10.3 respectively), the ar ratio of [bicarbonate] / [carbonic acid] in the blood is:-
0	10 1
0	20 0.05
272	of 100 PU_2016_308_D rations often occur as a result of base substitutions. The most common cause of base substitutions is:- Meiotic errors Tautomeric shifts Base insertions Base deletions
297 "Ac	of 100 PU_2016_308_D etylsalicylic Acid" is commonly known as:-
0	Salsalate Aspirin
0	Wintergreen
O	Paracetamol