Module Name : MSc Physics-E Exam Date : 19-Sep-2020 Batch : 16:00-18:00

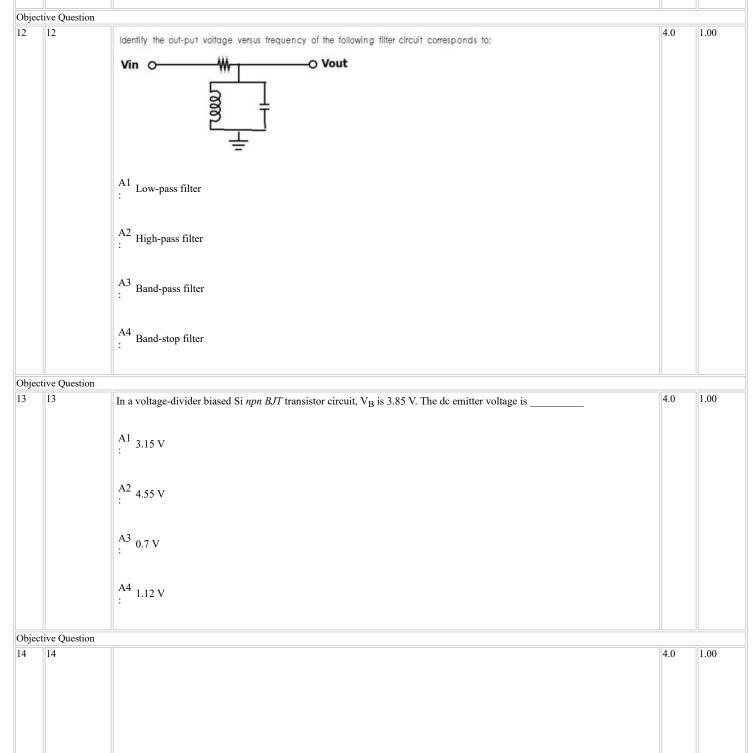
Sr. No.	Client Question ID	Question Body and Alternatives	Marks	Negative Marks
Object	tive Question			
I	1	Consider the fringe pattern obtained on a screen due to diffraction at a single Slit. At the position of the first minimum, the phase difference between the Wavelets from the opposite edges of the slit is $ \begin{array}{c} A1 \\ \pi/2 \\ A2 \\ \vdots \\ \pi \\ A3 \\ \vdots \\ 2\pi \\ \begin{array}{c} A4 \\ \vdots \\ 0 \end{array} $	4.0	1.00
Object 2	tive Question		4.0	1.00
		Silicon (Z = 14) has two electrons in the unfilled 3p shells. According to Hund's rule the ground state of Si is $A_{1}^{A_{1}}{}_{3}P_{0}$ $A_{2}^{A_{2}}{}_{3}S_{1}$ $A_{3}^{A_{3}}{}_{3}D_{3}$ $A_{4}^{A_{3}}{}_{3}D_{1}$		
Object	tive Question			
3	3	The intensity of electronic O-O band of a diatomic molecule is very intense when the minimum of the potential curve for the upper electronic state lies (here r is the internuclear destance) A1 at the same value of r as that of the lower potential curve A2 at a smaller value of r then that of the lower potential curve	4.0	1.00
		 A3 at a large value of r than that of the lower potential curve A4 above the dissociation level of the lower potential curve 		
Dbject	tive Question		4.0	1.00

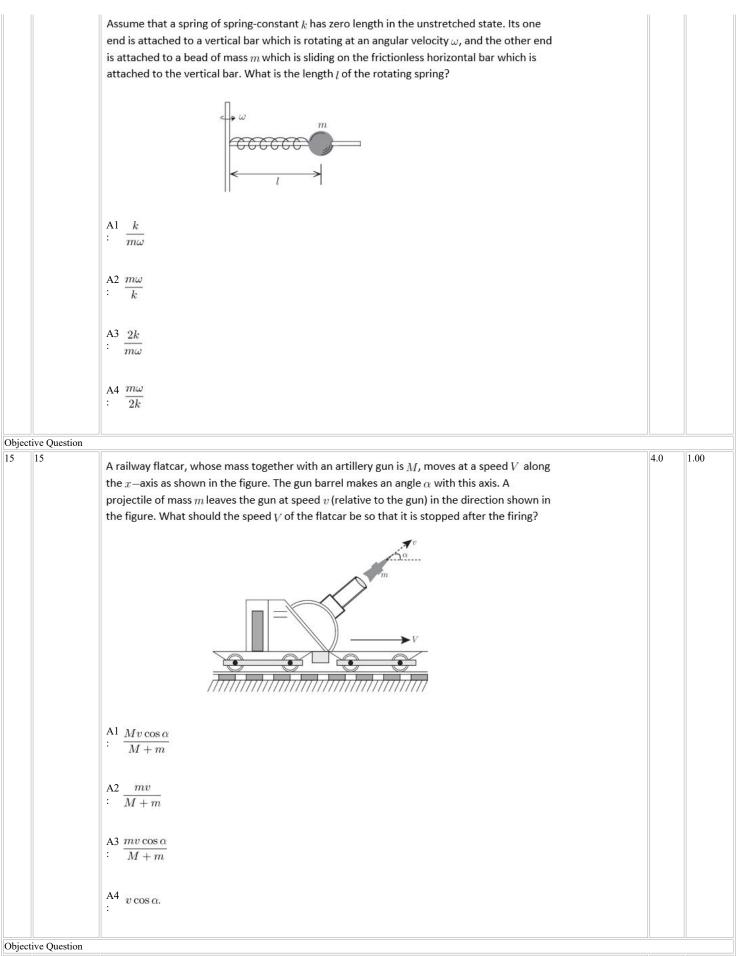
	:		
	A2 : nuclear spin		
	A3 : electron spin		
	A4 : Doppler effect		

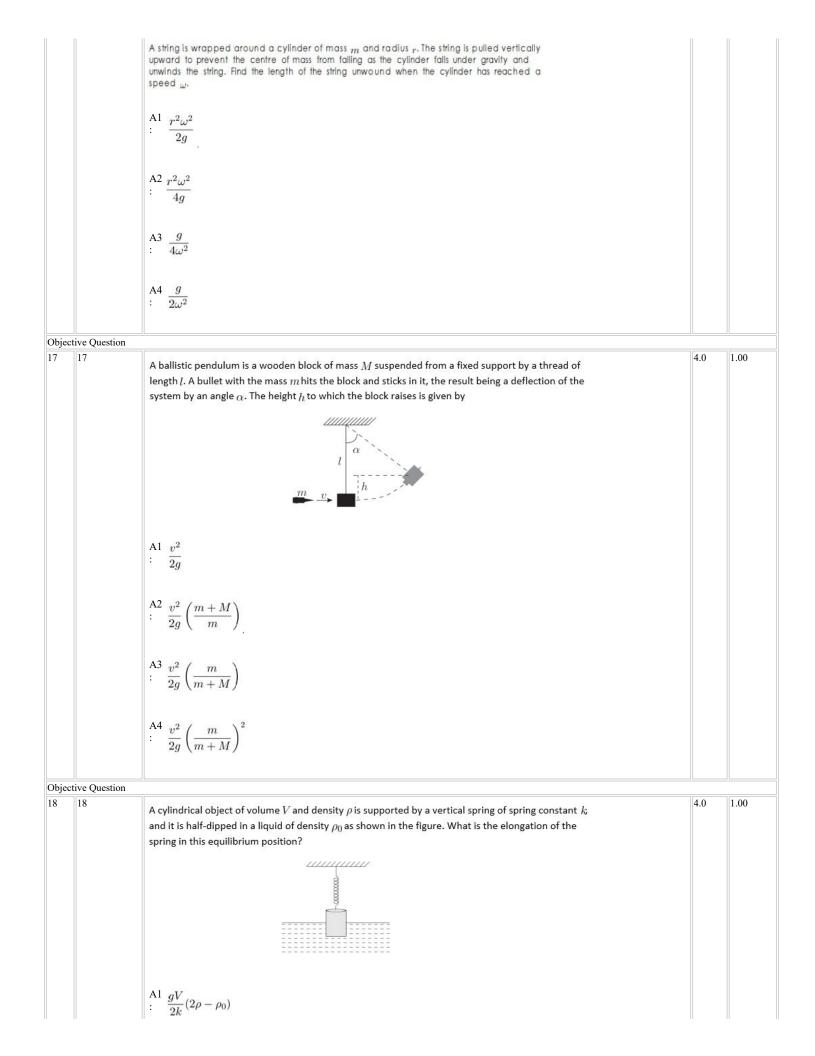
1.00

Object	tive Question		
5	5	The ratio of ground state energy of Hydrogen atom and Helium atom, according to Bohr model, is	4.0
		A1 : 1:2	
		A2 : 2:1	
		A3 1:4	
		A4 : 4:1	


Objective Question


6	6	The wave length of electrons having kinetic energy 100 eV is	4.0	1.00
		A1 0.228 A ⁰		
		A2 : 1.228 A ^a		
		A3 2.228 A ⁰		
		A4 3.228 A ⁰		


Objective Question


Objec	live Question			
7	7	Selection rule for Raman spectrum is	4.0	1.00
		$\sum_{i=1}^{A1} \Delta J = 0$		
		$\stackrel{A2}{:} \Delta J = \pm 1$		
		$ \overset{A3}{:} \Delta \mathbf{J} = \pm 2 $		
		$\overset{A4}{:} \Delta \mathbf{J} = \pm 3$		
	ti o ti a			

		nA. Determine the applied voltage V _D of the diode.		
		$\frac{A1}{2} \sim 0.4 \text{ V}$		
		$\frac{A2}{2} \sim 0.7 \text{ V}$		
		$\stackrel{A3}{\cdot}$ ~1.4 V		
		$\frac{A4}{2} \sim 0 V$		
hiao	tive Question			
5,00	9	Calculate the magnetic field that is required to obtain the following electrical parameters in a Silicon Hall device. (d = 5 × 10^{-3} cm, W = 5× 10^{-2} cm, L = 0.5 cm, I _x = 0.5 mA, n = 5 × 10^{15} cm ⁻³ , V _x = 1.25 V and V _H = -0.825 mV).	4.0	1.00
		A1 10050 Gauss		
		A2 1050 Gauss		
		A3 650 Gauss		
		A4 : 2050 Gauss		
hiec	tive Question			
)	10	Determine the voltage gain A, of the following circuit (assume $\alpha = 1$). 400 mV Ri Ri Ro 10 ohm row 10 ohm row 1 k ohm Ri Ro Ri Ri Ro Ri Ro Ri Ro Ri Ri Ro Ri Ro Ri Ro Ri Ri Ri Ro Ri Ri Ri Ri Ri Ri Ri Ri	4.0	1.00
		$\begin{array}{c} A1\\ \vdots\\ A_v \sim 200 \end{array}$		
		A2 : $A_v \sim 300$		
		A3 : A, ~100		
		A4 : A _v ~ 400		
bjec	tive Question			
	11	Determine the magnitude and phase of A, at f = f_o/3 of a high-pass filter circuit with $~R$ = 40 k Ω and C = 1000 pF.	4.0	1.00
		A1 : 0.32 ∠71.56°		

$$\begin{array}{c} \mathbf{A2} \quad \frac{gV}{2k}(\rho-2\rho_0) \\ \mathbf{A3} \quad \frac{gV}{k}(\rho-2\rho_0) \\ \mathbf{A4} \quad \frac{gV}{k}(2\rho-\rho_0) \\ \mathbf{A4} \quad \frac{gV}{k}(2\rho-\rho_0) \end{array}$$

	ctive Question		4.0	1.00
		A particle is moving under the influence of a two-dimensional potential $V(x,y)$. It starts moving		1.00
		from the point P taking the path as indicated by the arrows in the figure, and comes back to the same point after travelling the distance l along this closed path that encloses the area A . What is		
		the amount of energy spent by the particle in this process?		
		are unounced energy spent by the particle in this process.		
		A y		
		$\left(\begin{array}{c} \mathbf{P} \end{array} \right)$		
		Al $A(\partial V = \partial V)$		
		$\begin{array}{c} A1 \\ \vdots \\ \frac{A}{l} \left(\frac{\partial V}{\partial x} + \frac{\partial V}{\partial y} \right) \end{array}$		
		$\stackrel{A2}{:} A^2 \left(\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} \right)$		
		$\left(\frac{\partial x^2}{\partial y^2} \right)$		
		A3 0		
		$\begin{vmatrix} A4 \\ \vdots \\ l\left(\frac{\partial V}{\partial x} + \frac{\partial V}{\partial y}\right) \end{vmatrix}$		
		$(\partial x + \partial y)$		
jec	ctive Question			
	20	A rocket is going around a planet of mass M in a circular orbit with the speed v .	4.0	1.00
		The mass of a man on-board the rocket is m . If the radius of the orbit is r , then		
		the weight of the man measured in the rocket is equal to		
		M		
		Al mg		
		A1 mg		
		A1 mg		

 $\frac{A4}{mv^2/r}$

Objective Question 21 21 21 21 Let f(x, y) and g(x, y) be two homogeneous functions of degree m and n respectively, where $m \neq 0$. Let h = f + g and $x \frac{\partial h}{\partial x} + y \frac{\partial h}{\partial y} = 0$. Then, A1 $f = \alpha g$ where α is a scalar. \therefore f is not proportional to g. \therefore $f = \frac{n}{m}$ \therefore $\frac{A4}{g} = \frac{n}{m}$

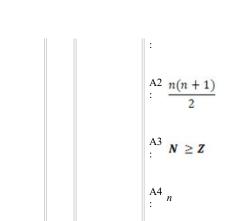
Objective Question

5	· ·			
22	22	Consider the matrix $A = \begin{pmatrix} \mu & -1 & 0 & 0 \\ 0 & \mu & -1 & 0 \\ 0 & 0 & \mu & -1 \\ -6 & 11 & -6 & 1 \end{pmatrix}$, where μ is a scalar, not necessarily an integer. Determine the possible values of μ such that the rank of the matrix is 3. $A^{1} 0 < \mu < 4$ $A^{2} 1 < \mu < 3$ $A^{3} \mu \text{ can have values 1, 2, or 3 only.}$ $A^{4} \mu = 3 \text{ only.}$	4.0	1.00
Objec	ctive Question			
23	23	0.3	4.0	1.00
		The area bounded by the parabola $x^2 = 4ay$ and the curve $y = \frac{8a^3}{x^2 + 4a^2}$ is		

$$\begin{array}{c}
\text{A1} \\
\vdots \\
\left(2\pi - \frac{4}{3}\right)a^2 \\
\begin{array}{c}
\text{A2} \\
\vdots \\
\left(2\pi\right)a^2 \\
\begin{array}{c}
\text{A3} \\
\vdots \\
\left(\frac{4}{3}\right)a^2
\end{array}$$

 $\begin{array}{c} A4\\ \vdots \\ \left(2\pi+\frac{4}{3}\right)a^2 \end{array}$

Obiec	tive Question			
24	24	A function $f(x)$ is defined by $f(x) = x^2 \sin \frac{1}{x}$ for $x \neq 0$ and $f(0) = 0$. Then,	4.0	1.00
		A1 f(x) is continuous at $x = 0$ and differentiable at $x = 0$		
		A2 f(x) is continuous at $x = 0$ and not differentiable at $x = 0$		
		$ \overset{A3}{:} f(x) \text{ is discontinuous at } x = 0 $		
		$ \overset{A4}{:} f(x) \text{ is continuous everywhere except at } x = 0 $		
Objec	tive Question			
25	25	The graph of the function $y = f(x)$ is symmetrical about the line $x = 2$, then	4.0	1.00
		$ \stackrel{A1}{:} f(x+2) = f(x-2) $		
		A2 : f(2+x) = f(2-x)		
		$A_{3}^{A_{3}} f(x) = f(-x)$		
		$A4_{:}$ f(x) = - f(-x)		
01.	<u> </u>			
Object 26	26	A focus of an ellipse is at the origin. The directrix is the line $x = 4$ and the eccentricity is $\frac{1}{2}$. Then the length of the semi- major axis is	4.0	1.00
		A1 4/3		
		A2 5/3		
		A3 7/3		
		A4 8/3		
Objec	tive Question			
27	27	Find the volume of the solid in the first octant bounded by the paraboloid. $z = 36 - 4x^2 - 9y^2$	4.0	1.00
		$\stackrel{A1}{:} V = 27 \pi$		
		$\begin{array}{c} A2\\ \vdots \\ V = \frac{16}{9} \end{array}$		
		A3 $V = 27$		


$$\overset{\text{A4}}{:} V = \frac{16}{9}\pi$$

01.

28	Let $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$. Then $exp(A)$ is	4.0	1.00
	$ \begin{array}{ccc} A1 & e & e \\ \vdots & e & e \end{array} $		
	$\begin{array}{ccc} A2 & \begin{bmatrix} e & 0 \\ 0 & 2 \end{bmatrix}$		
	$ \begin{array}{c} A3 \\ \vdots \\ e^2 \\ e^2 \end{array} \begin{bmatrix} 0 \\ e^2 \end{bmatrix} $		
	$ \begin{array}{c} A4 \begin{bmatrix} e & 0 \\ 0 & e^2 \end{bmatrix} $		

Objective Question

Object	tive Question			
9	29	What is the angle between x-axis and a force represented by $\hat{F} = 2\hat{i} + 3\hat{j} + 4\hat{k}$? A1 $\cos^{-1}\frac{3}{\sqrt{29}}$	4.0	1.00
		$ \begin{array}{c} A2 \\ \vdots \\ \cos^{-1} \frac{4}{\sqrt{29}} \end{array} $		
		$ \overset{A3}{:} \cos^{-1} \frac{5}{\sqrt{29}} $		
		$^{A4} \cos^{-1} \frac{2}{\sqrt{29}}$		
bject	tive Question			
0	30	Radius of the second Bohr orbit of a singly ionised helium atom in A° is	4.0	1.00
		A1 1.06		
		A2 0.53		
		A3 0.265		
		A4 0.132		
hiar	tive Question			
1	31		4.0	1.00
1	51	In a stable nuclei, the number of neutron (N) is related to the atomic number (Z) in neutral atom is	4.0	1.00

		A4: n		
Objec	tive Question			
32	32	Consider an electron, a proton, and an alpha particle (a helium nucleus), each trapped separately in identical boxes. Which particle corresponds to the highest ground-state energy?	4.0	1.00
		A1 proton :		
		A2 electron		
		A3 alpha particle :		
		A4 The ground-state energy is the same in all three cases :		
Objec	tive Question			
33	33	When the principal quantum number is $n = 5$, how many different values of <i>l</i> and m_l , are possible?	4.0	1.00
		A1 5,7		
		A2 5,9		
		A3 4,9 :		
		A4 4,7		
Objec	tive Question			
34	34	A gas of identical diatomic molecules absorbs electromagnetic radiation over a wide range of frequencies. Molecule 1 is in the $J = 0$ rotation state and makes a transition to the $J = 1$ state. Molecule 2 is in the $J = 2$ state and makes a transition to the $J = 3$ state. The ratio of the frequency of the photon that excited molecule 2 to that of the photon that excited molecule 1 equal to	4.0	1.00
		A1 1 :		
		A2 2 :		
		A3 3		

Objective Que	estion		
35 35	Which of the following is the correct daughter nucleus associated with the alpha decay of ¹⁵⁷ Hf ₇₂ ?	4.0	1.00
	A1 153Hf ₇₂ :		
	A2 153Yb70		
	A3 157 _{Yb70}		
	A4 157 _{Hf70}		
Objective Que			
36 36	An electron and a proton both moving at nonrelativistic speeds have the same de Broglie wavelength. Which of the following quantities are also the same for the two particles?	4.0	1.00
	A1 momentum		
	A2 : Kinetic energy		
	A3 frequency		
	A4 speed		
Objective Que 37 37	The minimum energy 6E needed to separate a proton from a nucleus with Z protons and N neutrons is (M _* is the mass of a hydrogen atom)	4.0	1.00
	$\stackrel{A1}{:} (M_{Z-1,N} + 2M_H - 2M_{Z,N}) c^2$		
	$\stackrel{A2}{:} (M_{Z-1,N} - M_H + M_{Z,N}) c^2$		
	$\stackrel{A3}{:} (M_{Z+1,N} + M_H - M_{Z,N}) c^2$		
	$\stackrel{A4}{:} (M_{Z-1,N} + M_H - M_{Z,N}) c^2$		
Objective Que	In the decay scheme : ^Pz>^Dz + the blanks should contain (P and D represent the parent and daughter nuclei respectively)	4.0	1.00
	Al β+ and n		

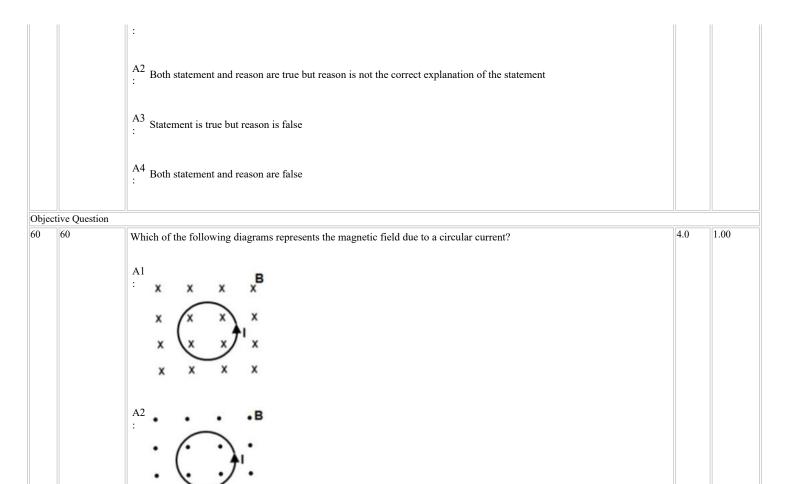
	β and π		
	A3 β- and p :		
	A4 ; β+ and v		
ve Question			
39	The reaction : $p \rightarrow \pi^0 + e^{-\pi^0}$	4.0	1.00
	A1 violates lepton number and baryon number conservation and hence does not occur :		
	re Question	$A^{3}_{i} \beta \text{- and } p$ $A^{4}_{i} \beta \text{+ and } v$ $Pe \text{ Question}$ $PP \qquad \qquad Pe \text{ The reaction : } p \longrightarrow \pi^{0} + e^{\frac{1}{2}}$ $A^{1}_{i} \text{ violates lepton number and baryon number conservation and hence does not occur.}$	A3 β - and p A4 β + and v re Question 9 The reaction : p $\rightarrow \pi^{0} + e^{-1}$ A1 violates lepton number and baryon number conservation and hence does not occur

Objec	tive Question			
39	39	The reaction : $p \rightarrow \pi^0 + e^+$	4.0	1.00
		A1 violates lepton number and baryon number conservation and hence does not occur :		
		A2 conserves energy, mass and linear momentum and hence occurs		
		A3 violates charge conservation and hence does not occur		
		A4 : conserves lepton, baryon numbers, charge, energy, mass and linear momentum and hence occurs		
bjec	tive Question			
0	40	The total spin of three particles with spins 1/2, 1 and 1 is	4.0	1.00
		A1 an integer		
		A2 : a half-integer		
		A3 Zero		

A4 : Three spins cannot be added

Objective Question If a process can occur via weak and electromagnetic interactions, it would end up being a 4.0 1.00 41 41 A1 weak interaction A2 an electromagnetic interaction A2 an electromagnetic interaction A3 cannot determine A4 both weak interaction and an electromagnetic interaction Objective Question Objective Question Objective Question Discription Discription

	For a nucleus of size $\sim 10^{-13}$ cm the energy of the electron incident on the nucleus must be \sim in order for the electron to probe the nucleus.		
	must be \sim in order for the electron to probe the nucleus.		
	A1 1 MeV		
	A2 : 0.5 MeV		
	$\stackrel{A3}{:}$ 0.2 GeV		
	A4 100 GeV		
Dijective Question			
43	For the nuclear β - decay process : n> p + e-, apart from the lepton number violation, which of the following is violated ?	4.0	1.00
	A1 : Linear momentum		
	A2 energy		
	A3 baryon number		
	A4 : angular momentum		
Dbjective Question			
4 44	Eigen function of the operator $\frac{d^2 y}{dx^2}$ is $\psi = 4e^{4x}$. Eigen value is	4.0	1.00
	A1 16		
	A2 4		
	A3 64		
	A4 1 :		
Objective Question			
5 45	Petzval condition to remove the "curvature of field" aberration for two equi-curved lenses separated by a distance would be $(n = refractive index, f = focal length of the lens)$	4.0	1.00
	$\begin{array}{c} A1 \\ \vdots \\ n_1 f_1 + n_2 f_2 = 0 \\ \vdots \end{array}$		
	$ \overset{A2}{:} n_1 f_1 - n_2 f_2 = 0 $		


A3 $n_1f_2 + n_2f_1 = 0$: A4 $n_1f_2 - n_2f_1 = 0$:

bject	tive Question			
5	46	Visibility of interference pattern when two monochromatic coherent light sources with amplitude of one being five times that of the other will be	4.0	1.00
		A1 1/5		
		A2 1/25		
		A3 5/13		
		A4 2/5		
biect	tive Question			
	47	At certain time of the day, it is found that sunlight reflected from the freshwater lake (n=1.33) is completely polarized. What could be the angle of polarization?	4.0	1.00
		A1 56.3°		
		A2 33.7°		
		A3 53.1°		
		A4 : 38.9°		
biect	tive Question			
•	48	A left circularly polarised beam (λ_0 = 500nm) is incident normally on a calcite crystal (optic axis is cut parallel to surface) such that it introduces a phase shift of 3π . The emergent beam will be	4.0	1.00
		A1 Right circularly polarized		
		A2 No change in the state of polarization		
		A3 Vertical linear polarization		
		A4 Horizontal linear polarization		
bject	tive Question			
9	49	Randomly polarised light is incident on two crossed polarisers with 90° between their transmission axes. A half-wave plate is inserted between the two polarisers such that its fast axis is 90° to the transmission axis of the intensity I_0 first polariser. The intensity of emergent light after second polarizer would be fraction of the incident	4.0	1.00

			11	
		A1 1/2		
		A2 3/4		
		A3 0 :		
		A4 1/4		
biect	ive Question			
	50	If the screen is kept at a distance of 2m with light source emitting at 500nm wavelength, illuminates the circular aperture of 10 mm radius, we observe diffraction due to the object on the screen	4.0	1.00
		A1 Fresnel		
		A2 Fraunhoffer		
		A3 Far-field		
		A4 No		
)h:	ing Onesting			
	ive Question 51	Consider a rotating spherical planet. The velocity of a point on its equator is V. The effect of rotation of the planet is to make g at the equator $\frac{1}{2}$ of g at the pole. What is the escape velocity for a polar particle on the planet expressed as a multiple of V?	4.0	1.00
		A1 V :		
		A2 2V :		
		A3 _{3V}		
		A4 V/2		
<u> </u>				
	ive Question 52		4.0	1.00
		A simple classical model of the CO ₂ molecule would be a linear structure of three masses with the electrical forces between the ions represented by two identical springs of equilibrium length I and force of constant k, as shown in Fig.2. Assume that only motion along the original equilibrium line is possible, i.e., ignore rotations. How many vibrational degrees of freedom does this system have?		
		$ \begin{array}{c} m \\ k \\ - \\ \hline \\ 0 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$		

		A1 1 :		
		A2 2		
		A3 4 :		
		A4 No vibrational degrees of freedom		
Objectiv	ve Question			
	53	A particle of mass m released from a height h falls under a gravity. Assuming that the resistance offered by the atmosphere is mkv^2 , where k is a constant and v is the speed of the particle. The terminal speed of the particle is	4.0	1.00
		A1 g/k		
		$\frac{A2}{2}$ (gk) ^{1/2}		
		$\frac{A3}{2} (g/k)^{1/2}$		
		$\frac{A4}{2}$ (k/g) ^{1/2}		
	ve Question 54	$\nabla \log \mathbf{r} $ will be equal to	4.0	1.00
		A1 r :		
		$\frac{A2}{2}$ r/r ³		
		$\stackrel{A3}{:}$ r/r ²		
		$\frac{A4}{2}$ r/r ⁴		
Objectiv	ve Question			
	55	A 3×3 matrix has eigen values 0, 2+i and 2-i. Which of the following is a correct statement?	4.0	1.00
		A1 : The matrix is Hermitian		
		A2 : The matrix is unitary		
		A3 : The inverse of the matrix exists		
		A4 1		
		$\frac{A4}{2} \det A = 0$		

	tive Question		4.0	1.00
56	56	List 1 List 2	4.0	1.00
		equation $\frac{\partial t}{\partial t} = \alpha^2 \frac{\partial x^2}{\partial x^2}$		
		2 Two dimensional heat equation B $\frac{\partial u}{\partial t} = \alpha^2 \left[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right]$		
		3 Laplace equation C $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$		
		4 Poisson's equation $D \nabla^2 \varphi = -\frac{\rho}{\varepsilon_0}$		
		εο		
		^{A1} . 1-A, 2-B, 3-C, 4-D		
		: ^{1-A, 2-D} , ^{3-C} , ^{3-D}		
		^{A2} 1-B, 2-A, 3-D, 4-C		
		1-B, 2-A, 3-D, 4-C		
		A3		
		A3 1-C, 2-D, 3-A, 4-B		
		A4		
		A4 1-D, 2-C, 3-B, 4-A		
01.				
	tive Question		4.0	1.00
57	57	Which of the following waves can be transmitted through solids, liquids and gases?	4.0	1.00
		A1 Transverse waves		
		A2 Electromagnetic waves		
		:		
		A3 Mechanical waves		
		:		
		A4 x x x x		
		A4 Longitudinal waves		
Ohiaa	tive Question			
58	58		4.0	1.00
50	30	A cinema theatre has a volume of 750 m ² . What should be the total absorption in the theatre if the reverberation time of 1.5 $\frac{1}{2}$	4.0	1.00
		seconds is to be maintained?		
		A1 835 open window units		
		A2 1125 open window units		
		:		
		A3 500 open window units		
		: 500 open window duits		
		A4 750 open window units		
		A4 750 open window units		
.	time O the			
	tive Question		4.0	1.00
59	59	Statement: Sound wave cannot propagate through vacuum but light can	4.0	1.00
		Reason: Sound wave cannot be polarised but light can		
		A1 Both statement and reason are true and reason is the correct explanation of the statement		

A3 :

A4

x

х

х

х

X

B

61

4.0 1.00 A 200 turn coil having an axial length of 30 mm and a radius of 10 mm is pivoted in a magnetic field having a flux density of 0.8 T. If the coil carries a current of 0.5 A, the torque acting on the coil will be A1 8 Nm A2 0.48 Nm A3 0.048 Nm

Obje	ctive Question			
62	62	When sunlight is focused on a paper using a bi-convex lens, it starts to burn in the shortest time if the lens is kept 0.5m above it. If the radius of curvature of the lens is 0.75m then, the refractive index of the material is R_1 R_2 R_2 R_2 R_2 R_2	4.0	1.00
		A1 1.75		
		A2 1.25		
		A3 1.00		
		A4 0.5		
Obje	ctive Question	JI		
63	63	The malting of ice at 1 atmospheric pressure is	4.0	1.00

objec	live Question			
63	63	The melting of ice at 1 atmospheric pressure is	4.0	1.00
		A1 : 273.2 °K		
		A2 : 0 °K		
		A3 173.2 °K		
	A4 : 373 °K	A4 : 373 °K		
Object	tive Question			
54	64	Which one of the following statement is correct for an ideal gas	4.0	1.00
		A1 Adiabatic compressibility is larger than the isothermal compressibility :		
		A2 : The isothermal compressibility is directly proportional to pressure		

A3 Adiabatic compressibility is smaller than the isothermal compressibility

A4 Adiabatic compressibility is directly proportional to pressure

	tive Question		4.0	1.00
65	65	The moment of inertia of a disc about one of its diameters is I_M . The mass per unit area of the disc is proportional to the distance from its centre. If the radius of the disc is R and its mass is M, the value of I_M is	4.0	1.00
		$^{A1}_{:}$ 1/2 MR ²		
		$^{A2}_{:}$ 2/5 MR ²		
		$^{A3}_{:}$ 3/10 MR ²		
		$^{A4}_{:}$ 3/5 MR ²		
Objec	tive Question			
66	66	In terms of the basic units of mass (M), length (L), time (T) and charge (Q), the dimensions of magnetic permeability of vacuum ($\mu 0$) are	4.0	1.00
		A1 MLQ ⁻²		
		$\stackrel{A2}{:}$ ML ² T ⁻¹		
		A3 LTQ ⁻¹		
		A4 : LT ⁻¹ Q ⁻¹		
Objec	tive Question			
67	67	The rest energy of proton is 0.938 GeV. The kinetic energy of proton whose de Broglie wavelength of 1.0×10^{-15} m is	4.0	1.00
		A1 617 MeV		
		A2 : 1.24 GeV		
		A3 1.555 GeV		
		A4 124 MeV		
Objec	tive Question			
68	68	Solar energy reaches the earth at the rate of about 1.4 KW per square meter of surface perpendicular to the direction of the sun (The mean radius of the earth's orbit is 1.5×10^{11} m). The mass of the sun decrease per second owing to this energy loss is	4.0	1.00
		$^{A1}_{:}$ 2.0 x 10 ³⁰ Kg		
		$^{A2}_{\cdot}$ 4.4 x 10 ²⁶ Kg		

 $\begin{array}{c} A3 & 4.4 \times 10^9 \text{ Kg} \\ \vdots \\ A4 \\ \vdots \\ 2.0 \times 10^{19} \text{ Kg} \end{array}$

bjective Questi		4.0	1.00
09	The half-life of a radioactive nuclear source is 9 days. The fraction of nuclei which are left undecayed after 3 days is	4.0	1.00
	A1 7/8		
	A2 1/3		
	A3 _{2/3}		
	$A4 = 1/2^{1/3}$		

Objective Question

70	Which of the following excited states of a hydrogen atom has the highest lifetime?	4.0	1.00
	A1 2 p		
	$\stackrel{A2}{:}_{:}$ 2s		
	$\stackrel{A3}{:}$ 3s		
	A4 3p		
tive Question			
71	The voltage resolution of a 12-bit digital to analog converter (DAC), whose output varies from -10 V to +10 V is, approximately	4.0	1.00
	Al 1 mV :		
	$\stackrel{A2}{:}$ 5 mV		
	$\stackrel{A3}{:}$ 20 mV		
	A4 100 mV		
tive Question			
72	The Miller indices of a plane passing through the three points having coordinates $(0, 0, 1)$, $(0,0,1)$ and $(1/2,1/2,1/4)$ are	4.0	1.00
	A1 (212)		
	ctive Question	$A^1 \ge p$ $A^2 \ge s$ $A^2 \ge s$ $A^3 = s$ $A^3 = s$ $A^4 = s^2$ $A^2 \ge s$ $A^3 = s^2$ $A^4 = s^2$ $A^2 = s = s^2$ $A^3 = s^2 = s^2$ $A^4 = 100 \text{ mV}$ The Willer indices of a plane passing through the three points having coordinates (0, 0, 1), (0, 0, 1) and (1/2, 1/2, 1/4) are	Image: A constraint of a const

		A2 (111) :		
		A3 (121)		
		A4 (211)		
	tive Question			
73	73	The electrical power output of a photodiode is maximum when a	4.0	1.00
		A1 Small forward current flows through it, irrespective of the bias		
		A2 Small forward bias exists across it		

A3 Large reverse bias exists across it

> A4 Small reverse bias exists across it

Objective Question

74	74	The efficiency of a full-wave rectifier is	4.0	1.00
		Al Same as half-wave rectifier		
		A2 double the half-wave rectifier		
		A3 one-half of half-wave rectifier		
		A4 : one-third of half-wave rectifier		

Objective Question

Objec	live Question			
75	75	A transistor has a collector current of 5 mA, when the emitter voltage is 20 mV. At 30 mV, the current is 30 mA. At 50 mV, it is	4.0	1.00
		A1 80 mA		
		A2 280 mA		
		A3 480 mA		
		A4 1080 mA		
Objec	tive Question			

76 76

	A1 Laser :		
	A2 Quartz		
	A3 Maser		
	A4 : Helium		
Objective Question			

Object	tive Question			
77	77	Which planet can never be seen on the meridian at midnight	4.0	1.00
		A1 Jupiter		
		A2 Hercury		
		A3 Saturn		
		A4 : Mars		
Dbiect	tive Question			
78	78	The lattice parameter and density for an fcc lattice of copper are 3.60 Å and 9055 kg/m ³ respectively. If the atomic weight of copper is 63.6, the number atoms per unit cell is	4.0	1.00
		A1 4 :		
		A2 6 :		
		A3 8 :		
		A4 12 :		
Object	tive Question			
'9	79	The degeneracy of the quantum states with $(n_x^2 + n_y^2 + n_z^2) = 6$ is	4.0	1.00
		A1 12		
		A2 24		
		A3 48		

Objective Question			
80 80	At 0 K, the probability of finding an electron at energy level E is unity, when	4.0	1.00
	$\begin{array}{c} A1 \\ \vdots \\ E = E_F \end{array}$		
	$\stackrel{A2}{\cdot} E > E_F$		
	$A_{3} E < E_{F}$		
	A4 $E > E$		
	$ \stackrel{A4}{:} E \gg E_F $		
Objective Question 81 81		4.0	1.00
	The net magnetic moment of Fe atom in BCC crystal (a = 2.857 Å) is 2.2 μ B. The saturation magnetization of Fe at 0 K is		
	$^{A1}_{.}$ 100 kA m ⁻¹		
	: 100 kA m ⁻¹		
	$^{A2}_{:}$ 1750 kA m ⁻¹		
	1750 kA m ⁻¹		
	$^{A3}_{:}$ 2500 kA m ⁻¹		
	$^{A4}_{:}$ 3520 kA m ⁻¹		
Objective Question			1.00
82 82	The phase difference between the input and output voltages of a transistor connected in common emitter arrangement is	4.0	1.00
	A1 : 360°		
	: 360°		
	42		
	A2 : 180°		
	A3 : 90°		
	A4 270°		
Objective Question			
83 83	In the triode region, the I_D - V_{DS} characteristics of a MOSFET are	4.0	1.00
	A1		
	A1 Hyperbolic		
	A2 linear		
	A3 quadratic		

		A4 exponential :		
Objec	tive Question			
84	84	The wavelength of radiation emitted by an LED made up of a semiconducting material with band gap energy 2.8 eV	4.0	1.00
		^{A1} 2.8 Å		
		^{A2} 4.3308 Å		
		^{A3} 5548.4 Å		
		^{A4} 4430.8 Å		
Objec	tive Question			
85	85	In ionic solid if the radius of anion is r_a and of cation is r_c , then bond length is	4.0	1.00
		$\stackrel{A1}{:} r_c + r_a$		
		$\frac{A2}{2} \sqrt{3}(r_c + r_a)$		
		$\frac{A3}{2} \sqrt{3/2(r_c+r_a)}$		
		$\frac{A4}{a} r_c - r_a$		
Objec	tive Question			
36	86	Calculate the energy difference between the two levels for which $n_x=n_y=n_z=1$ and the next higher level for the free electron in a solid cube of side 10 mm	4.0	1.00
		$ \stackrel{A1}{:} 1.13 \ge 10^{-14} \text{ eV} $		
		$\frac{A2}{2}$ 4.46 x 10 ⁻¹⁵ eV		
		$ \stackrel{A3}{:} 5.86 \ge 10^{-14} \text{ eV} $		
		$ \stackrel{A4}{:} 9.04 \text{ x } 10^{-13} \text{ eV} $		
)biec	tive Question			
37	87	The fraction of electrons excited across the energy gap in Germanium ($E_g = 0.7 \text{ eV}$) at room temperature (300 K) is	4.0	1.00
		$\stackrel{A1}{:}$ 7 x 10 ⁻¹⁸		

		A2 1.7 x 10 ⁻¹²		
		$ \stackrel{A3}{:} 4 \times 10^{-12} $		
		$^{A4}: 1.3 \times 10^{-6}$		
Objec	tive Question	JI		
88	88	A half-wave rectifier is supplied with an AC supply of 120 V at 60 Hz through a step-down transformer having a turn ratio of 10:1. By assuming an ideal diode is used, the output DC voltage of diode is	4.0	1.00
		A1 5.40 V		
		A2 7.8 V		
		A3 8.5 V		
		A4 3.3 V		
Obiec	ctive Question			
89	89	A differential amplifier has an open-circuit voltage gain of 100. This amplifier has a common input signal of 3.2 V to both terminals and it results in an output signal of 26 mV, the CMRR is	4.0	1.00
		A1 81.8 dB		
		A2 55.4 dB		
		A3 23.4 dB		
		A4 36.7 dB		
Objec	ctive Question			
90	90	Laser-produced plasma consisting of a 50 µm diameter ball of radiates very strongly at a wavelength of 5 nm. At a distance of 0.75 m from the source, the spatial coherence resulting from light emitted from opposite sides of the plasma is	4.0	1.00
		$ \stackrel{A1}{:} {}^{5} x 10^{-5} m $		
		$ \stackrel{A2}{:} 0.55 \ge 10^{-5} \text{ m} $		
		A3 : 1.2 x 10 ⁻⁵ m		
		$^{A4}: 7.5 \times 10^{-5} m$		

91 91		Consider the two-level system with $E_1 = -13.6$ eV, $E_2 = -3.4$ eV and the co-efficient $A_{21} = 6 \times 10^8$ s ⁻¹ . The frequency of light emitted due to transition from E_2 and E_1 is	4.0	1.00
		$ \stackrel{A1}{:} 8.2 \times 10^{17} \text{Hz} $		
		$^{A2}_{:}$ 4.5 x 10 ¹⁶ Hz		
		$^{A3}_{:}$ 2.5 x10 ¹⁵ Hz		
		$\frac{A4}{2}$ 6.5 x 10 ¹⁴ Hz		
hiective	Question			
2 92		The ratio of spontaneous emission to stimulation emission for a cavity of temperature 50 K and wavelength of 10 ⁻⁵ m is	4.0	1.00
		$\frac{A1}{2}$ 3.218 x 10 ¹⁰		
		$\stackrel{A2}{:} 3.218 \ge 10^{12}$		
		$\frac{A3}{2}$ 3.218 x 10 ¹⁴		
		$\frac{A4}{2}$ 3.218 x 10 ¹⁶		
biective	Question			
3 93		A Michelson interferometer is used to determine the apparent diameter of a star. The fringe pattern disappears when the adjustable mirrors are at a separation of 10 m and wavelength of light used is 7×10^{-4} mm. The angular diameter of the star is	4.0	1.00
		$\frac{A1}{2}$ 8.54 x10 ⁻⁸ radians		
		$\stackrel{A2}{:} 3.54 \times 10^{-9} \text{ radians}$		
		$^{A3}_{:}$ 1.34 x10 ⁻⁸ radians		
		$^{A4}_{:}$ 1.22 x10 ⁻⁸ radians		
	Question			
hiective		The proton proton chain reaction	4.0	1.00
		F F		
bjective 4 94		A1 produces chains of protons which are then broken apart to produce the Sun's energy		

		$\stackrel{A4}{:}$ adds protons together until a massive carbon nucleus is produced at the core of the Sun		
Objec 95	tive Question 95	Which of the following is not included in the internal energy of a macroscopic system made up many particles?	4.0	1.00
		A1 Kinetic energy of particles		
		A2 : Interaction between the particles		
		A3 Potential energy of the particles		
		A4 Kinetic energy of the centre of mass of the system		
Objec	tive Question			
96	96	The energy value printed in food products such as chocolates correspond to which of the following thermodynamic potential?	4.0	1.00
		A1 Internal energy		
		A2 Helmholtz free energy		
		A3 Enthalpy		
		A4 Gibbs free energy		
Objec	tive Question			
97	97	Two identical vessels, one containing one kilogram of ice and the other one kilogram of water both at 0°C, are placed in a room. If the temperature of the water raised by 10°C in one hour, how much time does it take for the total ice to melt?	4.0	1.00
		Al 2 hours		
		A2 4 hours		
		A3 8 hours		
		A4 10 hours		
Obiec	tive Question			
98	98	A gaseous system obeys van der Waal's equation of state $\left(P + \frac{a}{v^2}\right)(V - b) = RT$. The temperature corresponding to critical point is	4.0	1.00

		$ \begin{array}{c} A2 \\ \vdots \\ A3 \\ \vdots \\ T_{C} = 4a/9b \end{array} $		
		$^{A4}_{:}$ T _C = 4a/27b		
Obiect	tive Question			
99	99	Thermodynamic state of a magnetic system is described by magnetization (M), magnetic field (H) and temperature (T) and the equation of state is $M = k H/T$, where k is a constant. In an isothermal process, if magnetization is increased from M to 2M, the work done by the gas is proportional to	4.0	1.00
		$\stackrel{A1}{:}$ M ²		
		$^{A2}_{:}$ 1.5 M ²		
		$\stackrel{A3}{:} 2M^2$		
		A4 : $^{4M^2}$		
	tive Question			
100	100	A Carnot engine works between 1000 K and T and another Carnot engine works between T and 500 K. If both engines do the same work, the value of T is	4.0	1.00
		A1 800 K		
		A2 1250 K		
		A3 750 K		
		A4 1150 K		