ENTRANCE EXAMINATION FOR ADMISSION, MAY 2013.

M.Sc. (STATISTICS)
COURSE CODE: 375

Register Number:			
			•
		Signature of the (with date)	Invigilator

COURSE CODE: 375

Time: 2 Hours

Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each of the question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you -1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.		en there are a la resenting the se			es in an i	an individual series, the preferred way of			
,	(A)	Bar diagram			(B)	column chart			
•	(C)	line chart		• •	(D)	scatter diagrar	n		
2.	For	a symmetrical o	listribu	ıtion, mediar	ı ± quartil	e deviation cov	ers		
	(A)	25% of the obs	ervatio	ons	(B)	50% of the ob	servatio	ns	
	(C)	75% of the obs	ervatio	ons	(D)	100% of the o	bservat	ions	
3.		ne coefficient of nent,	skewn	ess based or	n moment	s is negative,	then th	e third cen	tral
	(A)	$\mu_3 > 0$			(B)	$\mu_3 < 0$			
	(C)	$\mu_3 = 0$			(D)	μ ₃ does not ex	dst.		
4.		random variable $y = 2x$	le X ha Y — 5 i		d standar	d deviation 5,	then th	e variance	of a
	(A)	45	(B)	100	(C)	15	(D)	40	
5.	If $ ho$ aX+	is the correlation is:	on coefi	ficient betwe	en X and	Y, the correlat	ion coef	ficient betw	veen
	(A)	αρ	(B)	$a\rho + b$	· (C)	$a^2\rho$	(D)	P :	
6.		the two lines $4X = 16$, th	of reg en $\sigma_{\!_{\scriptstyle X}}$: α		a bivaria	te distribution	n are	X + 9Y = 7	and
	(A)	3:2	(B)	2:3	· (C)	9:4	(D)	4:9	
7.		arithmetic and		etric mean	of two ob	servations are	5 and	4 respectiv	vely.
	(A)	2, 8	(B)	4, 1	(C)	6,4	(D)	3,7	
8.		rithmetic mean variance of y=			ariation of	f x are 20 and 2	20 respe	ctively, wh	at is
	(A)	64	(B)	16	(C)	36	(D)	84	
9.	If P	$(A) = p_1, P(B) =$	p ₂ P(A	\cap B) = p ₃ with	th p ₁ , p ₂ , p	$p_3 > 0$ then $P(A)$	∩ <i>B</i>) is	equal to	
	(A)	$\mathbf{p_1} + \mathbf{p_2} - \mathbf{p_3}$			(B)	$1 - p_1 - p_2 + p_3$)3		
	(C)	$p_1 - p_2 - p_3$	-			$1 - p_1 - p_2 - p$			
			-	•				· .	

					•		•
l 0 .	Given that P(A U B)	$= 5/6, P(A \cap B) = 1/8$	3 and P(5) = ½. Then tl	ne event	ts A and B	are
	(A) Dependent		(B)	Independent			-
	(C) Mutually Exch	ısive	(D)	Conditional e	vents		
11.	Let X be a random v	ariable (r.v.) then y	7 = 1/X is	also a			
•	(A) Random varial						
	(B) Random varial	ole provided P(X =0)) = 0				
	(C) Random variab	ole provided P(X =0)) = 1	•			
	(D) Not a Random	•					
12.	It is given that the f	unction					
	$F(x) = 0 ; x \le 3$						
	= 1 : x > 3						
	is not a distribution	function because					
	(A) It is not bound		(B)	$F(-\infty) \neq 0$			
	(C) $F(+\infty) \neq 1$		(D)	Not Right cor	ntinuou	8	
13.	A random variable $(x+1)(\frac{1}{5})^x$.	X takes values 0,	1, 2, 3,	with prob	ability	proportion	al to
	Then $P(X \le 1)$ is equ	ıal to					
	(A) 112/125 .	(B) 110/125	(C)	113/125	(D)	109/125	
14.	Let $P(x) = x/5$; $x = 1$ = 0; elsewhore					·	•
	Then $P(X = 1 \text{ or } 2)$ is	s equal to	,				
	(A) 1/6	(B) 1/7	(C)	1/5	(D)	1/9	
15.	The cumulative dist	ribution function of	a randor	n variable X is			
	$F(x) = \begin{cases} \frac{1}{2} & 0 \le 3 \\ \frac{5}{6} & 2 \le 3 \end{cases}$	x < 2					
	$\left \frac{5}{2}\right \leq 2 \leq 2$	r < 3					
	(6 1 x	≥ 3					
	then P (2) is equal to	0		,			
	(A) 1/3	(B) 1/4	(C)	1/7	(D)	1/6	
		.	3				375

		•							
16.				l.f. of (X, Y) . If b, $c < Y \le d$ is e			real numb	ers with	a < b
	(A)	F(b, d) + F(a,	c) – F(b, c) + F(a,d)	•				
	(B)	F(b, d) + F(a,	c) + F(b, c) + F(a,d)					
	(C)	F (b, d) - F (a,c	:) - F(t	(c, c) + F(a,d)		,	4		
	(D)	F(b, d) + F(a, d)	c) – F(b, c) - F(a,d)			4 - 4		
17.	Let	X ~ Binomial (2	, 1/2) a	and $Y = X^2$ then	E(Y) is				
	(A)2	•	(B)	3/2	(C)	4	(D)	1/9	
18.		screte r.v. X as value of P(X =4)		three values -3	, 0, 4 a	and $P(X = 0)$	= ½ and]	E(X) = 9/8	then
	(A)	1/8	(B)	2/8	(C)	3/8	(D)	1/2	
19.		e number of level as	els of e	each factor in a	n exper	iment is sar	me then th	e experim	ent is
	(A)	Simple factori	al expe	eriment	(B)	Incomplete	e factorial	experime	nt
	(C)	Asymmetrical	factor	ial experiment	(D)	Symmetric	cal factoria	l experim	ent
20.		ompare several copriate design		ments, when th	e expe	rimental un	its are ho	nogeneou	s, the
	(A)	Randomized B	lock D	esign	(B)	Latin Squ	are Design		
	(C)	Split Plot Desi	ign		(D)	Completel	y Randomi	zed Desig	n
21.				e of design D_1 nental material,					$\operatorname{gn} D_i$
	(A)	$\frac{\frac{1}{\sigma_1^2}}{\frac{1}{\sigma_2^2}}$	(B)	$\frac{\frac{1}{\sigma_2^2}}{\frac{1}{\sigma_1^2}}$	(C)	$\sigma_1^2\sigma_2^2$	(D)	$\frac{1}{\sigma_1^2\sigma_2^2}$	٠.
22.	The	maximum poss	ible nu	mber of orthogo	onal coi	ntrasts amo	ng v treatr	nents is	
	(A)	v	(B)	v-1	(C)	v-2	(D)	v^2	
23.		l the effects of t	he sam	ne order are con	founde	d with incon	nplete bloc	k differen	ces, it
	(A)	Complete Con	foundi	ng	(B)	Partial Co	nfounding		
	(C)	Balanced Conf	foundi	ng	(D)	Unbalance	ed Confoun	ding	
375				4					

24.		ch one of the sau ulation of size 100	-	given below is	s not a	SRSWO	R sample	of size 5	from a
	(A)	21, 26, 76, 41, 28	3		(B)	23, 42, 7	4, 33, 54		
	(C)	17, 61, 47, 56, 4	7		(D)	19, 37, 6	3, 42, 26		
25.		andom sample cance100. What is						h mean	50 and
	(A)	20	(B)	2	(C)	10	(I) 100	
26.		ratio of the varia			nd SR	SWR sam	ple means	of size 10) drawn
	(A)	9/10	(B)	10/9	(C)	11/10	(I) 10/11	
27.	The	stratified random	samp	ling is useful v	vhen			•	
	(A)	The population	is hom	ogeneous	(B)	The popu	ulation is l	neterogen	eous
	(C)	The population	size is	less than 500	(D)	The popu	ılation size	is more th	nan 500
28.		Systematic samp	ling is	very much use	eful for	the selec	tion of the	e sample f	rom the
	(A)	The population	is an ir	nfinite populat	ion			**	
	(B)	The population	is an e	xponential					
	(C)	The population	with a	linear trend					
	(D)	The population	with a	non-linear tre	nd				
29.	valu	vstematic sample nes 101, 102, 103 ple mean?							
	(A)	20	(B)	2	(C)	10	(I) 100	
30.	CM	I in Indian Statist	ical Sy	ystems is refer	red as				
	(A)	Central Manufa	cturin	g Industries					
	(B)	Census of Manu	al Ind	ustries				. ,	
	(C)	Census of Manu	factur	ing Industries		•			
	(D)	Central Mechan	ics Inf	ormation					

31.	NB	FIS in the context of Forest Survey of	India :	stands for
	(A)	National Basic Forest Inventory Sys	tem	
	(B)	National Bureau of Forest Index Sur	rvey	
	(C)	National Bank of Forest Investment	Stock	•
	(D)	Net Bounded Forest Inventory Stock	:	
32.	The	Body working for Agricultural Statist	ics of	India is
	(A)	Indian Agricultural Statistical Resea	arch Ir	nstitute
	(B)	Indian Aquaculture Board of investi	gation	
	(C)	International Agriculture Studies		•
	(D)	Indian Agro Products Processing Cer	nter	
33.	Belo	ow Poverty Line Survey is related to		
	(A)	Agriculture Statistics	(B)	Industrial Statistics
	(C)	Economic Census	(D)	Forest Statistics
34.	Gro	ss Domestic Product will be calculated	by us	ing the data through
	(A)	Agriculture Statistics	(B)	Industrial Statistics
	(C)	Economic Census	(D)	Forest Statistics
35.	A ti	me series consists of	-	
	(A)	Two components	(B)	Three components
	(C)	Four components	(D)	Five components
36.	Inde	x numbers reveal the state of		
	(A)	Inflation	(B)	Deflation
	(C)	Both (A) and (B)	(D)	Neither (A) nor (B)
37,	One	of the limitations in the construction of	of inde	x numbers is
	(A)	Choice of type of average	(B)	Choice of investigators
	(C)	Choice of variables to be studied	(D)	All the above

3- sigma control limits of defectives having a given value of fraction defectives p' are

(A)
$$UCL = p' + \sqrt{\frac{3p'q'}{n}}, CL = p' & LCL = p' - \sqrt{\frac{3p'q'}{n}}$$

(B)
$$UCL = p' + \sqrt{\frac{3p'q'}{n}}, CL = p' & LCL = p' - \frac{1}{3}\sqrt{\frac{p'q'}{n}}$$

(C)
$$UCL = p' + \sqrt{\frac{3p'q'}{n}}, CL = p' \& LCL = p' - 3\sqrt{\frac{p'q'}{n}}$$

(D)
$$UCL = p' + \sqrt{\frac{1}{n}}, CL = p' & LCL = p' - 3\sqrt{\frac{p'q'}{n}}$$

39. In a sequential probability ratio test, the criterion for acceptance of the lot with usual notations is

$$(A) \quad \lambda_m \leq \frac{\beta}{1-\alpha}$$

(B)
$$\lambda_m \ge \frac{\beta}{1-\alpha}$$
 (C) $\lambda_m \ge \frac{1-\beta}{\alpha}$ (D) $\lambda_m \le \frac{1-\beta}{\alpha}$

(C)
$$\lambda_m \geq \frac{1-\beta}{\alpha}$$

- A sequential sampling plan is
 - Infinite process (A)
 - Process requiring much more sampling units than a fixed sample size **(B)**
 - A process in which sampling terminates with probability one (C)
 - **(D)** All the above
- Number of defects follows 41.
 - **Exponential distribution**
- Poisson distribution **(B)**

Normal distribution

- Binomial distribution **(D)**
- If X is a random variate such that E(X)=3, $E(X^2)=13$, then P[-2 < X < 8] is greater 42. than or equal to
 - 21/25 (A)
- 4/25 **(B)**
- 1/25(C)
- **(D)** 2/25
- $f(x) = \frac{3}{4}x(2-x) \ ; 0 \le x \le 2$ The p.d.f of a random variable X is 43.

then the median of the distribution is

- (A)
- **(B)** 2/3
- (C) 3/4
- **(D)**

	(i)	$M_X(0)=1$						
	(ii)	$M_{aX+b}(t)=e$	at M _X	(bt)				
	(iii)	for $X > 0, M_{\lambda}'$	$_{c}^{\prime}(t)\geq$	0				
	(iv)	$M_{X+Y}(t)=M$	$_{\chi}(t)$. I	$A_{\gamma}(t)$, if X and	Y are	independent		
	(A)	(ii)	(B)	(i)	(C)	(iii)	(D)	(iv)
45 .	For	a geometric dist	ributi	on with p=1/4, tl	he mgf	is equal to		
	(A)	$1/(4-3e^t)$	(B)	$1/(3e^t-4)$	(C)	1/3e ^t	(D)	$(3e^t-4)$
46.	For	a certain quadr	atic e	quation, it is giv	en the	at one of the re	oot is 2	$+ i\sqrt{3}$ then the
	equa	ation is						
	(A)	$x^2-4x+7=$	Ó		(B)	x^2-2x+7	= 0	
	(C)	$x^2-4x+6=$	0		(D)	x^2-4x-7	= 0	
47.		statistical funct	tion u	sed to count the	numk	per of cells tha	t are n	ot empty in the
	(A)	COUNT()	(B)	COUNTA()	(C)	COUNTIF ()	(D)	COUNTIFS ()
48.		excel option w	hich l	helps in display	ring th	ie records whi	ich mee	ts a particular
	(A)	Advanced Filte	er		<u>(</u> B)	Auto Filter		
	(C)	Select Cases			(D)	Pivot table		
4 9.	The	Process of veri	fying	the data which	is acc	eptable by ap	plying (certain rules is
	(A)	— Data Validatio	n .	·	(B)	Data Consoli	dation	
	(C)	Custom Valida	tion		(D)	Pivot table		
50.	Whi	ch command wil	l you	choose to conver	t a col	umn of data in	to row?	
	(A)	Cut and Paste			(B)	Edit >> Paste	e Specia	ıl >> Transpose
	(C)	Both of above		:	(D)	Paste link		
055								

Which one of the following is not a property of $mgf M_X(t)$ of a random variable X.

51.	Each excel file is a workbook that contact to a sheet in workbook?	ains diff	erent sheets. Which of the follo	wing
	(A) work sheet	(B)	chart sheet	
	(C) module sheet	(D)	data sheet	
52.	The series $1 + r + r^2 + \infty$ is convergent in	f		
	(A) $r \le 1$ (B) $ r < 1$	(C)	$r \ge 1$ (D) $ r > 1$	ı
53.	An series $u_1 - u_2 + u_3 - u_4 + \dots$ is said to be	e oscilla	tory if	
	(A) $\lim_{n\to\infty} u_n = 0$	(B)	$\lim_{n\to\infty} u_n =1$	
	(C) $\lim_{n\to\infty} u_n \neq 0$	(D)	$\lim_{n\to\infty} \mathbf{u}_n =0$	
54.	If the series of arbitrary terms $u_1 + u_2$ convergent, then the series $\sum u_n$ is said t			ies is
	(A) Absolutely convergent	(B)	Conditional Convergent	
	(C) Oscillatory	(D)	Divergent	
55.	Find the coefficient of xn in the expansion	of (2+3	3 x)·1	
	(A) $\left(\frac{1}{2}\right)\left(\frac{3}{2}\right)^n$ (B) $\left(\frac{-3}{2}\right)^n$	(C)	$\left(\frac{1}{2}\right)\left(\frac{\cdot 3}{2}\right)^n$ (D) $\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)^n$	
56.	If A is a square matrix of type (n x n), the	en det (A	Adj A) is	
	(A) $(\text{Det }A)^n$	(B)	(Det A) n	
	(C) $(\text{Det }A)^{n-1}$	(D)	(Det A) ^{1/n}	
57 .	The value of the determinant $\begin{vmatrix} 1 & \omega \\ \omega & \omega^2 \\ \omega^2 & 1 \end{vmatrix}$	$\begin{bmatrix} \omega^2 \\ 1 \\ \omega \end{bmatrix}$ is		
	(A) 0 (B) 1	(C)	ω (D) ω^2	
58.	If a, b, c are all different and $\begin{vmatrix} a & a^2 & 1 \\ b & b^2 & 1 \\ c & c^2 & 1 \end{vmatrix}$	$\begin{vmatrix} +a^3 \\ +b^3 \\ +c^3 \end{vmatrix} =$	0, then abc =	
	(A) 0 (B) 1	(C)	-1 (D) a+b+c	٠
59.	The matrix $\begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$ is a			
	(A) Hermitian matrix	(B)	Skew Hermitian matrix	-
	(C) Skew Symmetric matrix	(D)	Symmetric matrix	
	9	V.		375

60.	The dimension of $V = \{a_0 + a_1 x + a_2 x^2 + a_3 x \}$	3, x € R	} is		
	(A) 1 (B) 2	(C)	3	(D)	4
61.	Two complex numbers z ₁ =x+iy and z ₂ =a+	ib are e	equal if		
02.	(A) x=a, y=b	· (B)	x=b, y=a		
	(C) x=i, y=a	(D)	x=b, y=i		
62.	The rank of the matrix of order n x n, who	ose eve	ry element is un	ity is	
	(A) Greater than 1	(B)	Equal to 1		
	(C) Equal to 0	(D)	Equal to n		•
63.	If $\lambda_1, \lambda_2, \ldots, \lambda_n$ are eigen values of matr	ix A, th	en trace of A is		
•	(A) $\lambda_1, \lambda_2, \ldots, \lambda_n$	(B)	$\lambda_1 + \lambda_2 + \ldots + \lambda_n$	n	
	(C) $1/(\lambda_1 + \lambda_2 + + \lambda_n)$	(D)	$1/(\lambda_1\lambda_2\lambda_n)$		
64.	The Cramer rule on system of equations A	AX=B, 2	X≠0, does not ap	ply wł	ien
	(A) A is singular matrix	(B)	B is singular n	atrix	
	(C) A is non-singular matrix	(D)	B is non-singu	lar ma	trix
65.	If $A = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$, then $A(adj A)$ is				
			f 1 31		ſ3 − 1
	(A) $\begin{bmatrix} 10 & 0 \\ 10 & 0 \end{bmatrix}$ (B) $\begin{bmatrix} 0 & 10 \\ 10 & 0 \end{bmatrix}$	(C)	$\begin{bmatrix} 1 & 3 \\ -2 & 1 \end{bmatrix}$	(D)	4 -2
	[1 -1 2]	•			
66.	The rank of the matrix $\begin{bmatrix} 1 & -1 & 2 \\ 2 & -2 & 4 \\ 4 & -4 & 8 \end{bmatrix}$ is			•	,
	(A) 1 (B) 2	(C)	3	(D)	4
67	If $\begin{bmatrix} x & 1 \\ -1 & -y \end{bmatrix} + \begin{bmatrix} y & 1 \\ 3 & x \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$, then the	e solut	ion of (x, y) are		
•				(D)	(0 1)
	(A) (1, 0) (B) (0, 1)	(0)	(-1, 0)	(D)	(0, -1)
68.	The solution of the matrix equation [1	_{r 11}	1 2 3 [1]	= 0 is	
00.	The second of the second secon		15 3 2 x		
. •	(A) x = 11	(B)	x = -14		
	(C) $x = -11$	(D)	x = 14		

- 69. If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ is a symmetric matrix, find the symmetric matrix (A + A')
 - $(A) \begin{bmatrix} 5 & 2 \\ 9 & 5 \end{bmatrix} \qquad (B) \begin{bmatrix} 2 & 5 \\ 5 & 9 \end{bmatrix}$
- (C) $\begin{bmatrix} -2 & 5 \\ 5 & -8 \end{bmatrix}$ (D) $\begin{bmatrix} 2 & -5 \\ -5 & 8 \end{bmatrix}$
- In a nxn upper triangular matrix, the minimum number of zeroes is:
 - (A) n(n-1)/2

(B) n(n+1)/2

(C) 3n(n-1)/2

- (D) 2n(n-1)/3
- 71. If $e^x + e^y = e^{x+y}$ then $\frac{dy}{dx}$ is
- (A) $\frac{\sigma^{\chi}(\sigma^{y}-1)}{\sigma^{y}(\sigma^{\chi}-1)}$ (B) $\frac{\sigma^{y}(\sigma^{y}-1)}{\sigma^{\chi}(\sigma^{\chi}-1)}$ (C) $\frac{\sigma^{y}(\sigma^{\chi}-1)}{\sigma^{\chi}(\sigma^{y}-1)}$ (D) $\frac{\sigma^{\chi}(1-\sigma^{y})}{\sigma^{y}(\sigma^{\chi}-1)}$

- 72. If $y = \log stnx$ then $\frac{dy}{dx}$ is
 - (A)
- (B) $\cot x$
- **(C)** tan x
- **(D)** sec x

- 73. If $x\sqrt{1+y} + y\sqrt{1+x} = 0$ then $\frac{dy}{dx}$ is

- (A) $-\frac{1}{1+x}$ (B) $-\frac{1}{1+y}$ (C) $-\frac{1}{(1+x)^2}$ (D) $-\frac{1}{(1+y)^2}$
- 74. If $x = at^2$, y = 2at then $\frac{dy}{dx}$ is
- (B) t^2
- (C) $\frac{1}{12}$
- 75. If $A = \begin{bmatrix} 0 & 5 & -3 \\ -5 & 0 & 1 \\ 3 & -1 & x \end{bmatrix}$ and $A^{T} = -A$ then the value of x is
- **(B)**
- **(D)**
- 76. If $\begin{vmatrix} 1 & 2 & x \\ 4 & -1 & 7 \\ 2 & 4 & -6 \end{vmatrix}$ is a singular matrix, then the value of x?
 - (A) 0
- (B) 1
- (C) -3
- (D) 3

77.	The ball		ways of di	istributi	ng 4 ball	s in 2	2 urns su	ch that e	ach urr	n receives 2
	(A)	24	(B)	6		(C)	4	(D) 8	
78.	The	probability	of having a	53 Sunda	ays in a l	eap y	ear is			
,	(A)	1/7	(B)	1/2		(C)	2/7	(D) 0	
79.	The	mean and	variance of	a degen	erate ran	dom v	variable X	with deg	generac	y at 'a' are
	(A)	0,0	(B)	a,1		(C)	a,a	. (D) a,	O
80.		en the exp pectively, th					random	variable	X are	3 and 25
	(A)	Less than	or equal to	14		(B)	Less tha	n or equa	l to ¾	•
	(C)	Greater th	ıan or equa	l to ¾		(D)	Greater	than or e	qual to	1/4
81.		the joint pr						oles X and	Y be	f(x,y) = 4xy;
	(A)	0.5	(B)	1		(C)	-1	C	D) 0	
82.	hitti		et in each	trial is	0.5 and ().5 re				obability of y of hitting
	(A)	$(0.5)^8$	(B)	0.5		(C)	$(0.5)^7$	(D) 1	
83.		sider the ex l number of					l dice and	a coin si	multan	eously. The
	(A)	62	(B)	12		(C)	2 ⁶	(1	D) 72	
84.		X_1, X_2 be i.i X_1, X_2) = $2X_1$								
	(A)	Both T ₁ ar	nd T2 are w	nbiased (estimato	rs.				
	(B)	T ₁ is biase	d estimato	r and T2	is unbias	sed es	timator	•		
	(C)	T ₁ is unbia	ased estima	tor and	T2 is bias	sed es	timator			
	(D)	Both T _i ar	nd T2 are bi	ased est	imators					•
375	•				12					·

85.	Based on a random sample of size n=9 from a normal population with unknown mean and variance σ^2 =36, an estimate of the population mean is obtained as 23. Then a 95% confidence interval for the population mean is									
	(A)	(19.08,26.92)	(B)	(19.71,26.29)						
	(C)	(18.34,27.66)	(D)	(17.84,28.16)						
86.	Let	$X_1,,X_n$ be i.i.d observations:	from $U(0,\theta),\theta$	> 0. Which of the following statemen	t					
	is co	orrect?								
	(A)	X _(n) is an unbiased estimator	of θ							
	(B)	X _(n) is the maximum likelihoo	od estimator of	ϵ						
	(C)	$X_{(1)}$ is the maximum likelihoo								
	(D)	$X_{(n)}$ *(n+1) is an unbiased esti								
87.	If va	ariance of an estimator equals	the Cramer-Ra	ao lower bound, then the estimator is	3					
	(A)	Uniformly Minimum Varian	ce Unbiased es	timator						
	(B)	(B) Minimum Variance Unbiased estimator								
	(C)	Maximum likelihood estimat	or							
	(D)	None of the above	:							
88.	In h	ypothesis testing, the objective	e is to							
	(A)	Maximize both type I and type	pe II errors							
	(B)	Minimize type I error only								
	(C)	(C) Maximize Power only								
	(D)	Minimize both type I and typ	e II errors							
89.	The	family of Cauchy distribution	8							
	(A)	Posses monotone likelihood r	ratio in sample	mean						
	(B)	Posses monotone likelihood i	atio in sample	variance						
	(C)	Posses monotone likelihood r	atio in sample	median						
	(D)	Does not possess monotone l	ikelihood ratio							
90.	Like	elihood ratio test is								
	(A)	Consistent	(B)	most powerful						
	(C)	unbiased	(D)	similar						
91.	The	process of building new class	es from existin	g one is called						
	(A)	Polymorphism	(B)	Structure						
	(C)	Inheritance	(D)	Cascading						

92.	Whi	ch statement get	ts affec	cted when i+	+ is chang	ged to ++i	
	(A)	i = 20; i++;			(B)	for (i=0;i<	20;i++) { }
	(C)	a = i++;			(D)	while (i++	= 20) cout << i;
93.	Whi	ch of the followin	ng is n	ot a logical o	perator in	C	
	(A)	&	(B)	&&	(C)	11	(D) !
94.	Wha	at is stderr?					
	(A)	standard error		•	(B)	standard e	error types
	(C)	standard error	strear	ns	(D)	standard e	error definitions
95.	The	command to dis	play p	rint \n on th	e monitor	18	
	(A)	printf ("\n");			(B)	echo "\n";	•
	(C)	printf ('\n');			(D)	printf ("\\	n");
96.	If w	$= x + 2y + z^2 $ an	d x = 0	cos t, y = sin	t, z = t, t	hen dw/dt	is
		sin t + cost t +		·	,	-sint - cos	
	(C)	sint + 2cos t	+ 2t		(D)	sint + 2 c	os t + 2t
97.	The	value of $\int x^{16} (1+$	$+x^{17})^4$	dx is equal t	50		
	(A)	$\frac{1}{85}(1+x^{17})^5+c$		•	(B)	$\frac{1}{85} \frac{(1+x^{16})}{5}$) ⁶ +c
	(C)	$\frac{x^{17}}{85}$ +c			(D)	$\frac{1}{85} \frac{(1+x^{17})}{5}$) ⁶ +c
	whe	re c is a constant	of inte	gration.			-
98.	A sı	afficient condition	n for a	n estimator '	T _n to be co	nsistent for	au $ heta$ is that
		$\operatorname{Var}(T_n) \to 0$ as				$E(T_n) \to \theta$	•
					• •		& $Var(T_n) \rightarrow 0$ as $n \rightarrow$
	1			•			
99.	\int_{0}^{∞}	$\frac{1}{t^2}dt$ is equal to				-	
	(A)	π	(B)	0	(C)	$\frac{\pi}{4}$	(D) $-\frac{\pi}{2}$
100.	Fino	i the value of n s	uch tha	at $\lim_{n \to \infty} \frac{x^n - 3^n}{n}$	=108		
e.	(A)	3	(B)	$x \rightarrow 3$ $x - 3$	(C)	4	(D) 2
	\-* <i>y</i>	-		-	····	<u>-</u>	(- / . -
							k *