PU M Sc Statistics

1 of 100

194 PU_2015_375

The population census period in India is for every:-

- C guarterly
- C Quinqennial year
- biannual
- Decennial year

2 of 100

105 PU_2015_375

Which of the following measures is more flexible when compared to other measures?

- C Geometric Mean
- Arithmetic Mean
- Harmonic Mean
- Mode

3 of 100

106 PU_2015_375

In case of two attributes A and B, the class frequency (a B) in terms of other class frequencies can be expressed as:-

- (B) (AB)
- N (AB)
- (AB) (B)
- (B) + (AB)

4 of 100

148 PU_2015_375

The relationship between μ 2 and μ 3 in gamma distribution is:-

 $2\mu_3 = 3\mu_2$ $3\mu_3 = 2\mu_2$ $\mu_3 = 2\mu_2$ $2\mu_3 = \mu_2$

5 of 100

153 PU_2015_375

which of the following distributions are considered to non similar with respect to the range of its random variable of Fisher's Z distribution:-

C Beta -2 Distribution

Student's - t distribution

O

O

Gamma distribution

Double Exponential distribution

6 of 100

101 PU_2015_375

Five measures summary can be represented with the following diagram:-

Bar Diagram

C Scattered Plot

Box-diagram

O Box-Whisker Plot

7 of 100

210 PU_2015_375 If A is a square matrix, then:-

$$\begin{array}{c} AdjA = |A|A^{-1} \\ C & AdjA = I \text{ if } A = I \end{array}$$

$$\begin{array}{c} \det \left(A^{-1} \right) = \left(\det A \right) \\ \left(A \operatorname{dj} A \right)^{-1} = \frac{1}{|A|} A \end{array}$$

8 of 100

119 PU_2015_375

Four students from a composition of 3 college boys, 2 high school boys and 4 middle school boys are selected. The probability that there will be exactly 2 middle school boys is:-

° 2/16

- ° 5/6
- ° 10/21
- ° 1/6

9 of 100

199 PU_2015_375

If
$$x = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$$
, $y = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$, then $x^2 + xy + y^2 = \frac{99}{97}$
97
100
98
10 of 100

163 PU_2015_375

Which type of estimator does the Neyman factorization theorem provides?

- Sufficient
- C consistent
- C Efficient
- O unbiased

11 of 100

173 PU_2015_375 Non parametric methods are based on:-

- Order statistics
- C Sufficient statistics
- C Efficient estimates
- C Unbiased estimates

12 of 100

174 PU_2015_375 If population size is infinite, then sample size is:-

- Un restricted
- onot necessarily finite
- necessarily finite
- uncountable.

13 of 100

149 PU_2015_375 B(m,n) is beta function having the following expression:-

- $\Gamma(m+1)\Gamma(n+1)/\Gamma(m+n)$
- $\Gamma(m)\Gamma(n)/\Gamma(m-n)$
- Γ(m+n)/Γ(m)Γ(n)
- $\Gamma(m)\Gamma(n)/\Gamma(m+n)$

14 of 100 180 PU_2015_375

$$s_c^2 = \frac{\text{C.S.S}}{m-1}, s_{\mathbf{E}}^2 = \frac{\text{E.S.S}}{(m-1)(m-2)}$$

When taken as block is:-

the relative efficiency (E) of L.S.D. over R.B.D. when rows are

$$C = \frac{s_c^2 + (m+1)s_g^2}{(m-1)s_g^2} .$$

15 of 100 204 PU_2015_375

The series $\frac{\sum_{n=1}^{\infty} \frac{(-1)^n (x+1)^n}{2^n n^2}}{2^n n^2}$ is convergent if:-

 $\begin{array}{c} \bigcirc -2 \le x \le 1 \\ \bigcirc -1 \le x \le 1 \end{array}$

- $\bigcirc -3 \le x \le 1$
- $\bigcirc \quad 0 \le x \le 1$

16 of 100

102 PU_2015_375 Which of the following is not a descriptive statistic?

- Pearson's Mean Square Contingency
- Coefficient of Variation
- C Inter quartile Range

C Standard Deviation

17 of 100

206 PU_2015_375

$$\sum_{n=0}^{\infty} \frac{(n^2 - n + 1)}{n!}$$
 is:-

The sum of the series *-0

- ° e
- ° (3/2)e
- _{2e}
- о _{Зе}

18 of 100 107 PU_2015_375

If in case of two attributes α and β , $(\alpha\beta) \leq \frac{(\alpha)(\beta)}{N}$, then the attributes are:-

- Independent
- No conclusion
- Positively associated
- Negatively associated

19 of 100

142 PU_2015_375

Mean and standard deviations are equal for the following probability distribution:-

- Poisson
- Exponential
- C Rectangular
- Normal

20 of 100

123 PU_2015_375

If F is the cumulative distribution function of a discrete random variable, then F(- \propto) and F(+ \propto) are equal to:-

- 1 and 1
- 0 and 0
- O . . .
- ¹ 1 and 0
- C 0 and 1

21 of 100

147 PU_2015_375

$lt \ r = \sqrt{2\pi e^{-r}} r^{r+\frac{1}{2}}$

The stirling's approximation $\xrightarrow{r \to \infty}$ is used to get a p.d.f. of a continuous distribution from a particular discrete distribution. what are those discrete and continuous distributions?

Hyper geometric and half normal distributions

Geometric and Normal distributions

Binomial and Normal distributions

Poisson and Exponential distributions

22 of 100

О

109 PU_2015_375

Let $Y = X^2$ and X is a standard normal variate with Mean 0 and variance 1, the Pearson's correlation coefficient between X,Y is:-

100% positive

- 50% both positive and negative
- C 100% Negative
- No relation

171 PU_2015_375

Which of the following distribution is considered for median test with small sample sizes?

• Geometric distribution

C Poisson distribution

Hyper geometric distribution

C Binomial Distribution

24 of 100 203 PU_2015_375

The series $\frac{1}{2} + \frac{1.3}{2.5} + \frac{1.3.5}{2.5.8} + \dots$ converges to:-

- ° ,
- _{3/2}

0 0

2/3

° 1

25 of 100

143 PU_2015_375

Which of the following distribution is non similar regarding the range of their variable?

Poisson

Chi-square

Normal

Exponential

26 of 100 200 PU_2015_375

 $7^{2n}+3^{n-1}2^{3n-3} \\ \text{ is divisible by:-} \\$

о₉

° ₂₅

O 13

° ₂₄

```
27 of 100
207 PU_2015_375
The sum of the series 1 + \log_e x + (\log_e x)^2/2! + (\log_e x)^3/3! + _____ is
O
    x-1
O
    log x
O
    х
O
    2x
```

28 of 100

108 PU_2015_375

If the change in X & Y is in the same direction. (i.e. $X \uparrow$ implies that $Y\uparrow$; $X\downarrow$ implies that $Y\downarrow$ and vice versa), then Correlation between X and Y is:-

- O No relation
- О Negative
- O Positive
- O Spurious

29 of 100 202 PU_2015_375

Let
$$a_n = \frac{4n-7}{3n+2}$$
 then $\lim_{n \to \infty} a_n = \frac{1}{n \to \infty}$
 0
 0
 $4/3$
 1
 $7/2$

30 of 100

164 PU_2015_375

For an independent random sample drawn from normal population N(μ , σ^2), to test the significance of mean and variances, the following is considered to be a simple statistical hypothesis:-2

$$\mu = \mu_0, \sigma > \sigma_0^2$$

- $\mu < \mu_0, \sigma = \sigma_0^2$
- $\begin{array}{c} \circ \quad \mu = \mu_0, \ \sigma = \sigma_0^2 \\ \circ \quad \mu > \mu_0, \ \sigma \neq \sigma_0^2 \end{array}$

172 PU_2015_375

The non parametric test under the assumptions of (i) Measurements are such that the deviations $d_i = x_i - y_i$, can be expressed in terms of the +ve (or) –ve sign; (ii) Variables have continuous distributions; (iii) d_i 's are independent is:-

is:-

C chi-square test

C Sign Test

Run Test

Median Test

32 of 100

154 PU_2015_375

The cumulant generating function of x² - distribution is:-

$$C = \frac{n}{2} \log(1 - 2t).$$

$$C = -\frac{n}{2} \log(1 - 2t).$$

$$C = \frac{n}{2} \log(2t).$$

$$C = \frac{n}{2} \log(1 + 2t).$$

33 of 100 198 PU_2015_375

The domain of the real valued function

$$\begin{array}{l} \bigcirc & (-\infty,-a)\cup(a,\infty) \\ \bigcirc & (-\infty,-a]\cup[a,\infty) \end{array} \end{array}$$

34 of 100

152 PU_2015_375

Square of Standard Normal variate follows which probability distribution:-

- C Gamma
- Normal
- Chi-square

C Standard Normal

35 of 100 196 PU_2015_375

36 of 100

185 PU_2015_375 Process capability is equal to:-

ο _{4σ}

Ο _{6σ}

ο _{2σ}

Ο _{3σ}

37 of 100

141 PU_2015_375

The probability of getting r^{th} success at k^{th} trial can be obtained by applying the probability distribution namely:-

- Binomial
- Negative binomial
- C Geometric
- Hypergeometric

38 of 100 128 PU_2015_375

Which of the following is not true?

- M.G.F. may not exists, moments may exists
- second central moment provide variance
- M.G.F. may exist, but moments may not exist
- moments must be obtained from M.G.F.

120 PU_2015_375

If C₁, C₂ are two constants, X_1, X_2 are two random variables then C₁ X_1 +C₂ X_2 is:-

- Indicator variable
- Non Changing variable
- Complex Variable
- C Random variable

40 of 100 208 PU_2015_375

If the system of equations 3x - 2y + Z = 0, $\lambda x - 14y + 15z = 0$ and x + 2y + 3z = 0 has a strivial solution, then $\lambda =$

- O 13
- о ₋₉
- о ₂₉
- O _2

41 of 100

182 PU_2015_375

A stable pattern of variation (or) a constant cause system which is inherent in the scheme of production and inspection is called:-

- Chance cause
- C Dependable cause
- man made cause
- Assignable cause

42 of 100

121 PU_2015_375

With usual notation of univariate random variables, the relation P ($a < x \le b$) = P ($a \le x \le b$) =

- Continuous case
- Discrete case
- Both the cases

• either of the cases

43 of 100

104 PU_2015_375

The grading of students based on their score in examinations is more suitable with the following format scaling:-

- Interval Scale
- C Ratio Scale
- Nominal scale
- Ordinal Scale

205 PU_2015_375

$$a_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$$
 limit lies between:-

The limits of convergent seque

- 0 and 1/2
- 1/4 and 1
- 1/2 and 1
- 0 and 1

45 of 100

161 PU 2015 375

Let T_n be an estimator for θ . If $E(T_n)$ tends to θ and $V(T_n)$ tends to zero then the estimator is:-

- Efficient
- Sufficient
- C Unbiased.
- Consistent

46 of 100

162 PU_2015_375

Let 'X' be a Binomial variate such that $X \sim B$ (n, p), further given (i) E (p)=P, (ii) E(X) = nP; for which,

- (i) is true but (ii) is false
- (i) is false but (ii) is true
- O Both (i) and (ii) are true
- both (i) and (ii) are false

47 of 100

118 PU_2015_375

If a coin is tossed three times then the probability of getting the head and tail are in alternative times is:-

- O 1/4
- ° _{2/5}
- _{1/5}
- O 1/8

48 of 100 197 PU_2015_375

The function
$$f(x) = \frac{3^x + 3^{-x}}{3^x - 3^{-x}}$$
 is:-

O an even function

C neither even or nor odd

O an odd function

О both even and odd

49 of 100

201 PU 2015 375 The number of ways that 7 teachers and 6 students can sit around a table so that no two students are together is:-

- O (7!)²
- О 7!.6!
- O (6!)2
- O 7!5!

50 of 100

170 PU_2015_375

The test hypothesis dealt with the Wald-Wolfowitz Run Test is:-

- O Equality of two population medians
- O Equality of two population variances
- O Equality of p.d.f. of two populations
- \bigcirc Equality of two population means

51 of 100

195 PU_2015_375

ISS in Indian administrative services is the acronym for:-

- O Indian Service Systems
- O Indian Statistical Services
- О Indian Social Systems
- O Indian Statistical Societies

52 of 100

184 PU_2015_375 Sampling inspection plans were pioneered by:-

O Pascal & Fermat

- C Dodge & Romig
- Neyman & Pearson
- Cramer & Rao

145 PU_2015_375

Which pair of the following probability distributions will satisfy the memory less property?

C Exponential & Normal distribution

Geometric & Hypergeometric distributions

C Gamma & Beta distributions

Geometric and Exponential distributions

54 of 100

146 PU_2015_375

Which of the following single parameter probability distribution will satisfy the below mentioned properties i) Mean<Variance as θ >1; ii) Mean>Variance as θ <1; iii) Mean=Variance as θ = 1

- O Beta
- C Geometric
- Exponential
- C Gamma

55 of 100 209 PU_2015_375

	8	-1	-2	-3]	
	A =	3	4	5	
The rank of the matrix	2	_ 4	5	6	is:-

0₀ 0₁

° 2

о_з

56 of 100

150 PU_2015_375

The ranges of Beta-1, Beta-2 and Gamma distributions are respectively:-

C (0,1), (0,n),(0,∞)

57 of 100 211 PU_2015_375

The equations x + 2y - z = 3, 3x - y + 2z = 1, 2x - 2y + 3z = 2 and x - y + z = -1, have

Infinitely many solutions

more than one but finite number of solutions

• Unique solution

no solution

58 of 100

151 PU_2015_375

If X and y are two gamma variates with parameters a,b respectively, then X/(X+Y) is:-

β₂(a,b)
 β₂(a,b)
 δ₂(a,b)
 δ₂(a,b)

γ(a,b)

β₁(a,b)

[©] β₁(a+b,a-b)

59 of 100 124 PU_2015_375

The value of 'k' in the joint p.d.f. f(x,y) = k(a-x-y); $0 \le x \le 2$, $2 \le y \le 4$; a=6 is:-

° 1/4

° 1/16

O 1/8

O 1/2

60 of 100

144 PU_2015_375

The probability distribution function of negative exponential distribution with parameter '4' is:-

- 1 4.e^{-4x}
- 4 e^{-4x}
- 4.e^{-4x}
- 1 e^{-4x}

61 of 100 230 PU_2015_375 If a₁,b₁,a₂,b₂ are real numbers such that $P\left[\left(a_1 < X \le b_1\right) \cap \left(a_2 < Y \le b_2\right)\right] =$

- $\bigcirc F(a_1a_2) F(b_1b_2) + F(a_1,b_2) F(b_1,a_2)$
- $= F(a_1b_2) F(b_1b_2) + F(a_1,b_2) F(b_1,a_2)$
- $C = F(a_1a_2) F(b_1b_2) + F(a_1,b_1) F(b_2,a_2)$
- $C = F(a_1a_2) + F(b_1b_2) F(a_1,b_2) F(b_1,a_2)$

62 of 100 235 PU_2015_375

If X₁,X₂ are two independent & identical geometric variates such that $P(X_1=K)=q^kp=p(x_2=k)$ then the conditional distribution of X1/(X1+X2) is:-

- C Geometric variate
- Ō Uniform variate
- С Poisson Variate
- O Bernoulli variate

63 of 100

247 PU 2015 375 Which of the following shall be considered as fertility rate?

- C Crude Death Rate
- C Crude Birth Rate
- Ō Life expectation
- О Gender replacement rate

64 of 100

245 PU 2015 375

If the periodicity is an odd number say m=2k+1 then the moving average can be placed against:-

- C at Kth position
- С (k-1)th position

О at (k+1)th position

65 of 100

236 PU 2015 375

If X and Y are two independent standard normal variates then the continuous distribution of X/Y and X/ |Y|are:-

- С
 - standard cauchy variates
- O Cauchy variates

C Gamma Variates

Normal Variates

66 of 100

O

238 PU_2015_375

For t-distribution the values of pearson's coefficients are:-

$$\beta_{1} = 0, \beta_{2} = \frac{5}{n-4}$$

$$\beta_{1} = 0, \beta_{2} = \frac{3(n-2)}{n-4}$$

$$\beta_{1} = 0, \beta_{2} = \frac{3n}{n-4}$$

$$\beta_{1} = 0, \beta_{2} = \frac{3n}{n-4}$$

$$\beta_{1} = 0, \beta_{2} = \frac{3n}{n+4}$$

67 of 100

248 PU_2015_375

The possible number of five digited numbers that can be divided by 5 with using the digits 0,1,2,3,4 without repetition, are:-

° 120

- ° 24
- ο "
- 96

• ₇₂

68 of 100 239 PU_2015_375

If 'X' is a Bernoulli variate assuming values 1,0 with probabilities θ , 1- θ respectively then

 $\frac{1}{n(n-1)}\sum_{i=1}^{n}x_{i}\sum_{i=1}^{n}\left(x_{i}-1\right)$ is an unbiased estimator of:-

 $\begin{array}{c} \bullet \\ (1-\theta)^2 \\ \bullet \\ \theta^2 \\ \bullet \\ \bullet \\ \bullet \\ \theta \end{array}$

69 of 100

231 PU_2015_375 The joint cumulative probability distribution function $F(a,b) = P(X \le a, Y \le b)$ is defined as:-

$$\bigcap_{-\infty} \int_{-\infty}^{\delta} \left[\int_{\delta}^{a} f(x,y) d_{y} \right] d_{x}$$

70 of 100 237 PU_2015_375

If X ~ N(
$$\mu$$
, σ^2) then $\frac{1}{2} \left(\frac{X-\mu}{\sigma}\right)^2$
c $\beta_1\left(\frac{1}{2}, \frac{1}{2}\right)$
c $\beta_2\left(\frac{1}{2}, \frac{1}{2}\right)$
c $\gamma\left(1+\frac{1}{2}\right)$
c $\gamma\left(\frac{1}{2}\right)$

 \sim

71 of 100

249 PU_2015_375

In a set of 'n' things, 'r' things are similar and the remaining are different. Then the number of circular arrangements of those 'n' things are:-

- \cap (n-1)|r|
- $C = \frac{(n-1)!}{r!}$
- $\cap r(n-1)!$
- $\bigcirc \frac{(n-1)!}{r}$

72 of 100

232 PU_2015_375 A box contain 2ⁿ tickets among which n_{ci} tickets bares the number 'l' ; I=0, 1,2,_____, n. A group of 'm' tickets is drawn. Then the expectation of sum of the number is:-

mn

0 2

mIn \bigcirc 2 m+nŌ. 2 m-n

73 of 100

241 PU_2015_375

In order to test the randomness among sample observations, we may use the following test as most suitable option

O Run Test

O Median Test

O Sign Test

О chi-square test

74 of 100

233 PU_2015_375

The fourth central moment in terms of cumulants is:-

O $\mu_4 = k_4 + 3k_3^2$

Ο $\mu_4 = k_4 - k_2^2$

 \odot $\mu_4 = k_4 + 3k_2^2$

 \odot

 $\mu_4 = k_4 - 3k_2^2$

75 of 100 243 PU_2015_375

What are the values of x, y and z from the following ANOVA table :-

Source of variation	D.F.	S.S.	M.S.	
Blocks x-1		90	30	
Treatments	4	У	25	
Total	19		1000	

Ο

x=4; y=100; z=10 O

x =3,y=100; z=12

О x=4; y=100; z=12

О x=4; y=90; z=12

76 of 100 242 PU_2015_375 Regarding the comparison of efficiencies of sampling methods, the following relation holds good:-

- $\bigcirc \quad V\left(\overline{y}_{sys}\right) \leq V(\overline{y}_{sys}) \leq V(\overline{y}_{st})$
- $\bigcirc \quad V\left(\overline{y}_{sys}\right) \ge V(\overline{y}_{sys}) \ge V(\overline{y}_{st})$
- $\mathbb{C} \quad V(\overline{\mathcal{Y}}_{sys}) \leq V(\overline{\mathcal{Y}}_{st})_{\Pr op} \leq V(\overline{\mathcal{Y}}_{st})_{Opt}$

77 of 100 240 PU_2015_375

The lemma is based on H₀: $\theta = \theta_0$ against H1 : $\theta = \theta_1$, if Wand W₁ are 2 critical regions with sizes α and α_1 respectively such that $\alpha_1 \leq \alpha$ then:-

78 of 100

246 PU_2015_375

Value of money will be calculated with the following index numbers (i) Cost of Living index, (ii) Whole sale price Index, (iii) Laspeyre's Price Index Number:-

- only (ii),(ii)
- all (i),(ii),(iii)
- only (i),(iii)
- only (i),(ii),

79 of 100

244 PU_2015_375

In quality control charts, the level of standard and the level of variability can be studied with the charts respectively are:-

- C Range and number defectives
- Average and Range charts
- Range and fraction defectives
- C Range and Average charts

80 of 100 234 PU_2015_375

Let A₁, A₂, A₃..... be a sequence of events on the probability space (Ω , B, P) and let $A = \lim_{n \to \infty} Sup\{A_n\}$, if $\sum_{n=1}^{\infty} P(A_n) < \infty$, then P(A) =0 is zero-one law due to

Cauchy – Schwartz Lemma

Neyman –Pearson Lemma

O Borel –Cantelli Lemma

Chebychev's Bienayme Lemma

81 of 100

267 PU_2015_375

The odds in favour of a certain event are 5:4 and odds against another event are 4:3. the chance that at least one of them will happen by assuming the events are independent is:-

- ° 47/63
- © 51/63
- ° 15/63
- ° _{7/63}

82 of 100

277 PU_2015_375

If X1,X2,-----,Xn is an independent random sample drawn from a Cauchy population with p.d.f. f(x)

 $= \overline{\prod^{1} [1 + (x - \theta)^{2}]}$ then the sufficient estimator of '\theta' is:-

83 of 100

275 PU_2015_375

Let X~ $\overline{\beta_1}(m,n)$ and Y ~ γ (λ , m+n), be independent random variables such that m,n, λ >0 Then X*Y ~

ິ β₂(m,n)

β₁(m-n,m=n)

^Ο γ (λ ,m)

Ο _{γ (m,n)}

84 of 100 268 PU_2015_375

Let F denote bivariate probability distribution functions, then $F(-\infty, -\infty)$; $F(+\infty, +\infty)$

```
F(-\infty,+\infty) and F(+\infty,-\infty) are equal to
```

• 0,1,0 and 0

- 0,0,0 and 1
- 1,0,0 and 0
- 0,0,1 and 0

85 of 100 291 PU_2015_375

The sequence $\{S_n\}$ of real numbers, is said to be non-decreasing if:-

- $\circ s_n \leq s_{n+1} \forall n$
- $\bigcirc s_n > s_{n+1} \forall n$
- $\bigcirc s_n \ge s_{n+1} \forall n$
- $\bigcirc s_n < s_{n+1} \forall n$

86 of 100

279 PU_2015_375

When there are two samples for testing the randomness, Wald-Wolfowitz test is to test whether 2 samples being drawn from the same population or not; Let U be the number of runs then the values of mean: E(U) and variance: V(U) are equal to:-

$$\frac{n+1}{n}, \frac{n(n+2)}{4(n-1)}$$

$$\frac{n-2}{2}, \frac{n(n+2)}{4(n+1)}$$

$$\frac{n+2}{2}, \frac{n(n-2)}{4(n-1)}$$

$$\frac{n-1}{2}, \frac{n(n+2)}{4(n+5)}$$

292 PU_2015_375 $1 + \frac{1}{1.2} + \frac{1}{1.2.3} + \frac{1}{1.2.3.4} + \dots$ C converges to 1 C converges to 0 C converges to -1

C converges to 1/2

88 of 100

297 PU_2015_375

If
$$\int_{0}^{\infty} e^{-x^{2}} dx = \frac{\sqrt{\pi}}{2}$$
 then $\int_{0}^{\infty} e^{-ax^{2}} dx =$
 $\circ \sqrt{\frac{\pi}{2a}}$
 $\circ \frac{\sqrt{\pi}}{2a}$
 $\circ \frac{\sqrt{\pi}}{2}$
 $\circ \frac{1}{2}\sqrt{\frac{\pi}{a}}$

89 of 100 294 PU_2015_375

$$\begin{vmatrix} a & a^2 & a^3 - 1 \\ b & b^2 & b^3 - 1 \\ c & c^2 & c^3 - 1 \end{vmatrix} = 0,$$

If a,b,c are different and
$$\begin{vmatrix} a & a^2 & a^3 - 1 \\ b & b^2 & b^3 - 1 \\ c & c^2 & c^3 - 1 \end{vmatrix}$$
 then

- C ab+bc+ac=0
- C abc=1
- C a+b+c=1
- a+b+c=0

90 of 100

290 PU_2015_375

The geometric series
$$\sum_{n=1}^{\infty} a r^{n-1}$$
 converges to $\frac{a}{1-r}$ if :-

0 <r <1 -1 <r <0 -1 <r <1 r <1 r <1 r <1 r <1 r <1 r <0 &r >1

299 PU_2015_375

If
$$\frac{d}{dx} f(x) = g(x)$$
 then $\int_{a}^{b} f(x)g(x) dx =$
 $\circ \frac{f(b)-f(a)}{2}$
 $\circ \frac{f^{2}(b)-f^{2}(a)}{2}$
 $\circ \frac{f^{2}(a)-f^{2}(b)}{2}$
 $\circ \frac{f(a)-f(b)}{2}$

92 of 100

278 PU_2015_375

In an experiment of Bernoulli population with 5 coins tossing problem with parameter P, and H_0 :P = $\frac{1}{2}$ Vs H_1 : $\frac{3}{4}$, then H_0 is rejected if more than 3 heads obtained, then values of α , β are respectively:-

- **•** 5/16, 27/128
- 10/15, 19/128
- 11/16, 81/128
- ^O 3/16, 47/128

93 of 100

266 PU_2015_375

If E1,E2, ... En are mutually disjoint events such that P(Ei) are not equal to zeros and let A be any arbitrary event such that P(A) > 0, Then the Bayes theorem is defined as:-

$$P(A / E_{i}) = \frac{\sum_{i=1}^{n} P(A) \cdot P(E_{i} / A)}{P(A) \cdot P(E_{i} / A)}$$

$$P(E_{i} / A) = \frac{P(A) \cdot P(E_{i} / A)}{\sum_{i=1}^{n} P(A) \cdot P(E_{i})}$$

$$P(A / E_{i}) = \frac{P(A) \cdot P(E_{i} / A)}{\sum_{i=1}^{n} P(A) \cdot P(E_{i} / A)}$$

$$P(E_{i} / A) = \frac{P(E_{i}) \cdot P(A / E_{i})}{\sum_{i=1}^{n} P(E_{i}) \cdot P(A / E_{i})}$$

$$P(E_{i} / A) = \frac{P(E_{i}) \cdot P(A / E_{i})}{\sum_{i=1}^{n} P(E_{i}) \cdot P(A / E_{i})}$$

265 PU_2015_375

If the correlation coefficient of 20 observations is 0.685 and later a constant 6 is added to all the numbers of series X, all the numbers of series Y are multiplied with a constant 5; then the new correlation coefficient is:-

O 0.685

• _{5*0.685}

0.685 + 0.30

0.685 - 0.30

95 of 100

296 PU_2015_375

$$\Delta_1 = \begin{vmatrix} 1 & a & bc \\ 1 & b & ca \\ 1 & c & ab \end{vmatrix}, \Delta_2 = \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix}$$
If then:-

- $\bigcirc \quad \bigtriangleup_1=\bigtriangleup_2^2$
- $\bigcirc \quad \Delta_1 = 2 \Delta_2$
- $\bigcirc 2\Delta_1 = \Delta_2$
- $\bigcirc \quad \Delta_1 = \Delta_2$

96 of 100

276 PU_2015_375

If $_{\chi 1^2}$ and $_{\chi 2^2}$ are two independent χ^2 variate with (n₁,n₂) d.f respectively then,

97 of 100 295 PU_2015_375 If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ then $I + A^2 + A^3 + \dots \infty =$ [-1 -2] \circ -3 -4 $-\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{2}$ 0 \overline{O} $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\frac{1}{2}$ $-\frac{1}{3}$ 1 0 2

98 of 100

O

269 PU_2015_375

If X and Y are two random variables then they are said to be stochastically independent when, (i) $P_{x,y}(x,y)$ = $P_x(x) P_y(y)$; (ii). $P_{X/Y}(x/y) = P_x(x)$ or $P_{Y/X}(y/x) = P_Y(y)$;

- O (i) is true (ii) is false
- Ō (i) is false (ii) is true
- $^{\circ}$ both (i) and (ii) are true
- О both (i) and (ii) are false

99 of 100

298 PU_2015_375

$$\int_{0}^{\frac{1}{2}} \sin^{6} x \cos^{3} x \, dx =$$

$$O = \frac{\frac{63}{2}}{\frac{2}{63}}$$

$$O = \frac{\frac{16}{63}}{\frac{16}{63}}$$

100 of 100 293 PU_2015_375

The sum of the series $\sum_{n=1}^{\infty} 5\left(\frac{-2}{7}\right)^{n-1}$ is:-

- 0 35/9
- С _{36/8}
- ° _{37/7}
- ° 38/6