375 PU M Sc Statistics

1 of 100

193 PU 2016 375 E

For the following 2x2 contingency table for two attributes the value of chi-square is:-

	A	Α	
В	20	30	
В	10	40	

 \odot 20/36

Ö 10/38

Ö 100/21

О 10/18

2 of 100

120 PU_2016_375_E If the values of the 1st and 3rd quartiles are 20 and 30 respectively, then the value of inter quartile range is:-

О 10

- O 0
- О 25

O 5

3 of 100

123 PU 2016 375 E

Which of the following distributions are involved in median test?

 $^{\circ}$ Poisson, Beta and Power series

- O Geometric, Exponential and Normal
- O Lognormal, Binomial and Normal
- O Hyper geometric, Normal and Chi square

4 of 100

127 PU 2016 375 E What is the module in Analyze, the item of menu bar for performing statistical parametric tests of hypothesis in SPSS?

- C **Compare Means**
- \odot Non - Parametric Tests
- O **General Linear Model**
- О **Data Reduction**

5 of 100

192 PU_2016_375_E

The Yule's coefficient of association assumes:-

- only negative value
- only positive value
- only zero value
- positive, negative or zero values

6 of 100

191 PU_2016_375_E

In a 2x2 contingency table it is given that (A) = 56; (b) = 48; (AB) = 35; N=100 What is the value of (aB)?

- ິ 17
- ° 27
- о ₃₅
- o "
- 21

7 of 100

217 PU_2016_375_E

A discrete random variable X takes the values 1, 2, 3 and 4 such that 3P(X=1) = 2P(X=2) = 5P(X=3) = P(X = 4). Then P(X = 3) is equal to:-

- ° 3/61
- ° 1/61
- 0
- 2/61
- ° 6/61

8 of 100

166 PU_2016_375_E

Which of the following is NOT a difference between a confidence interval and a prediction interval?

Confidence interval uses the standard error of estimate and the prediction interval does not

- Addition of "1" under the radical for the prediction interval
- Confidence interval is narrower than the prediction interval
- Prediction interval refers to a specific case

9 of 100

169 PU_2016_375_E

The coefficient of determination measures the proportion of:-

- error variation relative to total variation
- explained variation relative to total variation
- variation due to the relationship among variables
- variation due to regression

195 PU_2016_375_E

The factor reversal test is satisfied by:-

- C Paasche's index
- C Laspeyre's index
- C Simple aggregate index
- Fisher's index

11 of 100

124 PU_2016_375_E

100% inspection is possible when:-

- C Samples are easy to obtain
- C Testing is destructive
- Measurement is not possible
- More time is allotted for inspection

12 of 100

199 PU_2016_375_E

A hypothesis is rejected at the level of significance α = 5% by a test. Then which one of the following statements is true regarding the p-value of the test?

- ° p > 5%
- о. ___
- [∨] p < 5%
- ^V p = 5%

Any one of the above three can be true

13 of 100

190 PU_2016_375_E

In the usual notations, two attributes S and T at 2 levels each are said to be positively associated if:-

$$C \quad \frac{(ST) < \frac{(S)(T)}{N}}{N}$$

$$\bigcirc \quad (ST) = (st)$$

$$O^{-}(ST) = \frac{(S)(T)}{N}$$

$$C \quad \frac{(ST) > \frac{(S)(T)}{N}}{N}$$

14 of 100

125 PU_2016_375_E Double Sampling Inspection Plan for attributes, a second sample is taken:-

Always

When the number of defectives in the first sample is in between two pre-assigned numbers

When the first sample contains only one defective item

When the first sample does not contain any defective items

15 of 100

218 PU_2016_375_E

Which one of the following in a linear contrast of the treatment effects T₁, T₂, T₃, T₄?

• $T_1 + 3T_2 - 3T_3 + T_4$

16 of 100 213 PU 2016 375 E

The value of $\lim_{x \to \infty} \left(\frac{x^2 + 5x + 3}{x^2 + x + 2} \right)^x$ is e e e e e² e⁴ 17 of 100 147 PU 2016 375 E

Let $f(x) = a_0 + a_1 x^2 + a_2 x^4 + \dots + a_n x^{2n}$ be a polynomial in $x \in \mathbb{R}$ with $0 < a_0 < a_1 < \dots < a_n$ then f(x) has:-

- only one minimum
- only one maximum
- one maximum and one minimum

neither a maximum nor a minimum

18 of 100

184 PU_2016_375_E

Population census in India are undertaken at one of the given intervals:-

C Twelve years

• Fifteen years

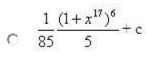
C Ten years

Eight years

19 of 100

168 PU_2016_375_E

In multiple regression analysis, when the independent variables are highly correlated, it is called:-


Autocorrelation

- Multicollinearity
- C Homoscedasticity
- Curvilinearity

20 of 100

111 PU_2016_375_E

The value of $\int x^{16} (1+x^{17})^4 dx$ is equal to:-

$$C = \frac{1}{85} (1 + x^{17})^5 + c$$

$$C = \frac{1}{85} \frac{(1+x^{16})^5}{5} + c$$

$$C = \frac{x^{17}}{85} + c$$

21 of 100

162 PU_2016_375_E

Which of the following statements regarding the coefficient of correlation is true?

- It measures the strength of the relationship between two variables
- A value of 0.00 indicates two variables are not related
- It ranges from -1.0 to +1.0 inclusive

All of the above

22 of 100

O

164 PU_2016_375_E

A hypothesis test is conducted at the .05 level of significance to test whether or not the population correlation is zero. If the sample consists of 25 observations and the correlation coefficient is 0.60, then what is the computed value of the test statistic?

° 2.94

° 3.60

° 1.96

• _{2.07}

23 of 100

197 PU_2016_375_E Algebraic sum of deviations from arithmetic mean is equal to:-

24 of 100

181 PU_2016_375_E

Let $_{n}D_{x}$ be the number of deaths in the age group (x, x+n) and $_{n}P_{x}$ be the total population of the age group x to x+n, then the age specific death rate for the age group x to x+n $(_n m_x)$ is given by:-

$$\bigcirc \frac{{}_{\mathbf{n}} {}_{\mathbf{x}}^{\mathbf{p}_{\mathbf{x}}}}{{}_{\mathbf{n}} {}_{\mathbf{x}}} X1000$$

$$\bigcirc \frac{\mathbf{n}^{P_{\mathbf{x}}}}{\mathbf{n}^{D_{\mathbf{x}}}} X100$$

$$C = \frac{\frac{n D_x}{n P_x} X100}{n P_x}$$

$$\bigcirc \frac{n^{D_x}}{n^{P_x}} X1000$$

25 of 100

165 PU_2016_375_E Which of the following is true about the standard error of estimate? \odot

It is based on squared vertical deviations between Y and \hat{Y}

 \bigcirc It is a measure of the accuracy of the prediction

O It cannot be negative

0 All of the above

26 of 100

148 PU_2016_375_E
If
$$y = \frac{7+4x}{3+2x}$$
 then $\frac{d^2y}{dx^2}$ is:-

$$C = \frac{-8}{(3+2x)^3}$$

$$C = \frac{8}{(3+2x)^3}$$

$$C = \frac{-16}{(3+2x)^3}$$

121 PU_2016_375_E

In order to test the randomness among sample observations, we may use the following test as most suitable option:-

C Run Test

Chi-Square test

O Sign Test

Median Test

28 of 100

143 PU_2016_375_E Let X_1, X_2, \dots, X_n be a random sample from B(1, p), then a consistent estimator of p(1-p) is:-

- $\bigcirc \overline{X}(1-\overline{X})$
- \circ n. \overline{X}
- $\circ \overline{X}$
- $\circ \overline{X}^2$

29 of 100

122 PU_2016_375_E

The exact distribution of the number of defectives in a single sampling plan is:-

- Hyper geometric
- Poisson
- Geometric
- Binomial

30 of 100

110 PU_2016_375_E If D=diag(d_1, d_2, d_3), where each of d_1, d_2, d_3 is non zero, then D⁻¹ is:-

C Zero matrix

```
• diag(d_1^{-1}, d_2^{-1}, d_3^{-1})
```

о _{Із}

0

⊂ D

31 of 100 149 PU_2016_375_E

If
$$X_i \sim N(\mu_i, \sigma_i^2)$$
 then the distribution of $Z_i^2 = \left(\frac{X_i - \mu_i}{\sigma_i}\right)^2$ is:-

 $^{\circ}$ Cauchy Distribution

- O Gamma Distribution
- O Chi-square Distribution

O Beta Distribution

32 of 100 113 PU 2016 375 E

Let
$$a_n = \frac{2n-7}{3n+2}$$
 then $\lim_{n \to \infty} a_n = \frac{1}{n \to \infty}$
 0
 1
 $7/2$
 $2/3$

33 of 100 160 PU_2016_375_E

Arithmetic Mean (A.M.) of 'n' numbers of a series is \overline{X} . After calculations, it was observed that two number 'a' and 'b' are misread in the place of 'c' and 'd'. What is the corrected mean value?

$$C \quad \frac{n\overline{X} - (a+b) + (c+d)}{(n-1)}$$

$$C \quad \frac{n\overline{X} - (a+b) + (c+d)}{(n+1)}$$

$$C \quad \frac{\overline{X} - (a+b) + (c+d)}{n}$$

$$C \quad \frac{n\overline{X} - (a+b) + (c+d)}{n}$$

34 of 100

183 PU_2016_375_E The central mortality rate m_x in terms of q_x is given by the formula:-

 \odot $q_x/(2+q_x)$

O $q_x/(2-q_x)$

 \odot 2q_x/(2-q_x)

 \odot $2q_x/(2+q_x)$

```
219 PU_2016_375_E
```

Probability of getting two aces when two cards are drawn from the well shuffled pack of cards is:-

- ° 219/221
- ° 11/221
- ° 1/221
- C 220/221

36 of 100

161 PU_2016_375_E If U= aX - bY, a=8, b=9, V(X)=16, V(Y) = 25, X and Y are independent data sets, then the standard deviation of U is:-

- ° ₂₅
- 77 • 16
- O 12

37 of 100

144 PU_2016_375_E

If T_1 is an UMVUE of $\gamma(\theta); \theta \in \Theta$ and T_2 is any other unbiased estimator of $\gamma(\theta)$ with efficiency e_{θ} , the correlation coefficient between $T_1 \& T_2$, say ρ_{θ} , equals:-

 $\int_{a}^{b} \frac{1}{\sqrt{e_{\theta}}}$ $\int_{a}^{b} \sqrt{e_{\theta}}$ $\int_{a}^{b} \frac{1}{e_{\theta}}$ \int_{a

• (4,1) • (7, -1)

• (-4, 1)

° (-4, -1)

39 of 100 146 PU_2016_375_E If $\begin{vmatrix} 1+x & 1-x & 1-x \\ 1-x & 1+x & 1-x \\ 1-x & 1-x & 1+x \end{vmatrix} = 0$, then the solution set is:- $\begin{pmatrix} 0 & 0, 3 \\ (1, 3) \\ -1, 3 \\ (0, 1) \end{pmatrix}$

40 of 100

167 PU_2016_375_E

In regression analysis, a transformation is used when:-

- the correlation is near zero
- C the confidence interval is wider than a prediction interval
- ^C the relationship between dependent and independent variables is not linear
- two variables are not independent

41 of 100

142 PU_2016_375_E Let a linear model be Y = X β + ϵ , where X is a n x (p + 1) matrix of rank (p + 1) < n.Then the Best Linear Unbiased Estimator (BLUE) of β is:-

$$\beta = (X^{T}X)^{-1}X^{T}Y$$

$$\widehat{\beta} = (X^{T}X)^{-1}X^{-1}Y$$

$$\bigcirc \hat{\beta} = (X^T X) X^T Y$$

 $\beta = (X^{-1}X)X^{T}Y$

42 of 100

212 PU 2016 375 E

Product control is achieved through:-

- Control Charts
- A study of assignable causes of variation in quality

C Acceptance Sampling Plans

43 of 100

129 PU_2016_375_E

From which Excel ribbon, we can place header and footer for a excel document?

O View

- Insert
- O Data

A study of tolerance limits

Page Layout

44 of 100

216 PU 2016 375 E

The fourth central moment in terms of cumulants is:-

$$\mu_4 = k_4 + 3k_2^2
\mu_4 = k_4 - k_2^2
\mu_4 = k_4 - 3k_2^2
\mu_4 = k_4 - 3k_2^2
\mu_4 = k_4 + 3k_3^2$$

45 of 100

211 PU_2016_375_E

Probabilities of Accepting true H₀, and Rejecting the false H₀ are referred as:-

- O Level of significance and size of the critical region
- Ō Confidence coefficient and size of type two error
- O Confidence coefficient and Power of the test
- 0 Size of the critical region and power of the test

46 of 100

141 PU 2016 375 E

If X is a random variable and for any real number k > 0, then the inequality denoted by

 $\mathbb{P}\{|X|^r \ge k^r\} \le \frac{\mathbb{E}|X|^r}{k^r} \text{ is called:}$

- Ö Holder's Inequality
- O Chebychev's Inequality
- О Markov's Inequality
- O Jensen's Inequality

47 of 100

180 PU_2016_375_E

In partial confounding experiment, the confounded interaction effects:-

O can never be recovered if the total number of replications is 4

O can be recovered from all the replications

- О can be recovered from those replications in which they are not confounded
- О can never be recovered

48 of 100

128 PU 2016 375 E The full form of SPSS is:-

C Software Programs for Statistical Sciences

O Statistical Programs for Systems Sciences

O

Statistical Packages for Social Sciences

Software Packages for Statistical Sciences

49 of 100

215 PU_2016_375_E

Which of the following functions is the solution of the given differential equation

$$\frac{dy}{dx} = \frac{2y^{4} + x^{4}}{xy^{3}}?$$

$$y = x^{8} \cdot x^{4}$$

$$y = (x^{8} \cdot x^{4})^{1/4}$$

$$y = \sqrt{x^{8} - x^{4}}$$

$$y = x$$

50 of 100

214 PU 2016 375 E If the roots of the equation x^2 - bx + c=0 are two consecutive integers then b^2 - 4ac is equal to:-

51 of 100

182 PU_2016_375_E

If P_1 and P_2 are the population at an interval of 10 years, the population just after five years will be:-

$$\begin{array}{c} \bigcirc & \sqrt{P_1 + P_2} \\ \bigcirc & \sqrt{(P_1 + P_2)} \\ \bigcirc & \frac{1}{2} \left(\frac{1}{P_1} + \frac{1}{P_2} \right) \\ \bigcirc & \frac{1}{2} (P_1 + P_2) \end{array}$$

52 of 100 126 PU 2016 375 E For what purpose is the 'variable view' in IBM SPSS's data editor used?

- $^{\circ}$ Writing syntax
- 0 Viewing output from data analysis
- O Defining characteristics of variables

O Entering data

 $^{\circ}$

O

198 PU_2016_375_E

If σ_1^2 and σ_2^2 are the variances of n_1 and n_2 observations respectively, then the combined variances is:-

$$n_1(\sigma_1 2 - d_1^2) + n_2(\sigma_2^2 - d_2^2)$$

 $\sigma_{(\sigma_1^2 + \sigma_2^2)/(n_1 + n_2)one}$

$$n_1\sigma_1^2 + n_2\sigma_2^2/n_1 + n_2$$

 $n_1(\sigma_1 2 + d_1^2) + n_2(\sigma_2^2 + d_2^2)/n_1 + n_2$

54 of 100

O

196 PU_2016_375_E

The mean of a random sample of 16 observations for N(μ , σ^2 = 4) distribution is 25 The 95% confidence interval for μ is approximately equal to:-

° (21,29)

(23,27)

(24,26)

55 of 100

```
145 PU_2016_375_E

\int_{0}^{\frac{\pi}{2}} \sin^{5}x \cos x dx =

\int_{0}^{1/3} \cos^{3/2} x \cos^{3/2} \cos^{3/2}
```

56 of 100

140 PU_2016_375_E

The probability of choosing a random number that is divisible by 6 or 8 from among numbers 1 to 90 is:-

- ° 1/30
- C 23/90
- ° 11/90
- ° 5/30

57 of 100

194 PU_2016_375_E

If a null hypothesis is rejected at 5% level then which one of the following is a true statement?

^C The alternate hypothesis will be accepted at 95% level

The null hypothesis will be rejected at 4% level

The null hypothesis will be rejected at 6% level

The null hypothesis was not selected properly

58 of 100

209 PU_2016_375_E If X~ N(μ , σ^2), and μ is assumed to be known, then M.L.E of σ^2 is

$$C = \frac{(1/n-1)\sum_{i=n}^{n} (x_i - \mu)}{(1/n)\sum_{i=1}^{n} (x_i - \mu)}$$

$$C = \frac{(1/n)\sum_{i=1}^{n} (x_i - \mu)}{(1/n)\sum_{i=1}^{n} (x_i - \mu)^2}$$

$$C = \frac{(1/n)\sum_{i=1}^{n} (x_i - \mu)}{(1/n)\sum_{i=1}^{n} (x_i - \mu)^2}$$

Ô.

59 of 100

210 PU_2016_375_E

If X is a random variable that has Uniform/Rectangular distribution with parameters α,β such $\alpha>\beta$, then the Maximum Likelihood Estimator of β is:-

- O Median {X_i}
- Ō Sum {X_i}
- С $Max{X_i}$
- O Min {X_i}

60 of 100

163 PU_2016_375_E

What can we conclude if the coefficient of determination is 0.94?

- О 94% of total variation of one variable is explained by variation in the other variable
- Ō Strength of relationship is 0.94
- O Direction of relationship is positive
- O All of the above are correct

61 of 100

233 PU_2016_375_M

Let A be the event of getting sum on two dice is a multiple of 3, B be the event of getting sum on two dice is a multiple of 4, when two fair dice are thrown simultaneously. Then, P(AUB) and P(A∩B) are equal to:-

- \odot 21/36,1/36
- О 21/36, 20/36
- O 20/36, 19/36
- 0 20/36, 1/36

O

O

62 of 100 248 PU_2016_375_M The value of y₀ in the p.df. $f(x) = y_0e^{-|x|} dx; -\infty < x < \infty$ is:- $\begin{array}{c} 1 \\ 1/2 \\ 1/4 \end{array}$

° 1/8

63 of 100 247 PU_2016_375_M If E(X)=2, E(Y)=3,V(X)=4,V(Y)=5, COV(X,Y)=1, Z=3X+2Y, then E(Z), V(Z)= 16,68 12,45 12,68

° 10,12

64 of 100

242 PU_2016_375_M

Two distributions with p.d.f.'s f1(.) and f2(.) to be identical is that their characteristic

functions $\phi_1(t)$ and $\phi_2(t)$ are identical is a condition of:-

Necessary & Sufficient

Necessary but not sufficient

Not Necessary but sufficient

Neither necessary nor Sufficient

65 of 100

234 PU_2016_375_M Given that P(A) =1/3, P(B) =3/4, P(A U B) = 11/12, the probability, then P(B|A) = 1/6 4/9 1/4 1/2

^U 1/2

66 of 100

245 PU_2016_375_M

Two balls are drawn from an urn consisting of 7 white and 3 red balls, and if X be a random variable denotes the number of red balls drawn, then E(X) is:-

° 21/12

° 12/21

° 21/15

15/21

67 of 100

236 PU_2016_375_M

A and B stand in a queue at random with 15 other persons. What is the probability that there will be two persons between A and B?

° 17/68

° 8/68

° 7/68

° 6/68

68 of 100

237 PU_2016_375_M Given P(AUB)=7/10, P(A \cap B) =2/5 and P(A|B) =2/3, then the values of P(A), P(B), and P(B|A) are:-

1/2, 3/5, 4/5

° 3/5, 2/5,7/8

4/5, 2/5,2/3

5/6,4/5,1/2

69 of 100

231 PU_2016_375_M

A speaks truth 2 out of 3 times and B speaks truth 4 out of 5 times. Both of them agree in the assertion that a bag contains 6 different coloured balls among which one is Red coloured. Then the probability of the statement is true, is:-

° 20/41

° 30/41

° 10/41

° 40/41

70 of 100

246 PU_2016_375_M E(X), V(X)and Cov(X,Y) based on the following bivariate probability distribution is:-

		X			
		-1	0	1	
Y	-1	0	0.1	0.1	
	0	0.2	0.2	0.2	
	1	0	0.1	0.1	

0.2, 0.6, 0.8

• 0.25, 0.50, 1

• 0.4, 0.5, 0.1

0.2, 0.56, 0

71 of 100

249 PU_2016_375_M

If the probability distribution of a discrete random variable X is as follows, then the value of constant 'a' and P(X>1) are:-

Х	1	2	3	4	5	6	7
P(x)	a	2a	2a	3a	a ²	2 a ²	$7a^2+a$

° 1/7,6/7

- 1/10, 9/10
- 1/8,7/8
- ° 1/9,8/9

72 of 100

241 PU_2016_375_M

The P.G.F. of sum of 'n' independent discrete random variables is equal to the Product of their individual P.G.F.s, this property is also referred as:-

- Probability Convolution Property
- Probability Multiplicative Property
- Probability Additive Property
- Probability complementary Property

73 of 100

243 PU_2016_375_M

Expected value of sum of numbers of points, when two dies are thrown simultaneously is:-

° 8

- ° 12 ° 7 ° 6
- 6

74 of 100

240 PU_2016_375_M The r^{th} order cumulant $K_{r}\!\!=\!$

$$\begin{array}{c} & \frac{d^{r}}{dt^{r}} [\mathbf{K}_{\mathbf{x}}(t)]_{\mathbf{t}=0} \\ \\ & \circ \quad \frac{d^{r}}{dt^{r}} [\mathbf{M}_{\mathbf{x}}(t)]_{\mathbf{t}=1} \end{array}$$

$$\begin{array}{l} \circ \quad \frac{d^{r}}{dt^{r}} \left[\mathbf{K}_{\mathbf{x}}(\mathbf{t}) \right]_{\mathbf{t}=1} \\ \\ \circ \quad \frac{d^{r}}{dt^{r}} \left[\mathbf{M}_{\mathbf{x}}(\mathbf{t}) \right]_{\mathbf{t}=0} \end{array}$$

230 PU_2016_375_M

In a city, 60% read newspaper A, 40% read newspaper B and 50% read newspaper C, 20% read A and B, 30% read A and C, 10% read B and C. Also 5% read all papers A, B and C. What is the percentage of people who do not read any of these newspapers?

- ° 45%
- о _{5%}
- _{65%}

0

15%

76 of 100

235 PU_2016_375_M

X and Y sit around a round table with another 10 persons. Assuming the seating arrangement is in random order, what is the chance that there are 3 persons between X and Y?

- ° 2/11
- ° 1/11
- I/ I
- ° 5/11
- ° 7/11

77 of 100

244 PU_2016_375 M

If X is a random variable with the following probability distribution, then $E(X^2)$ is

X=x:	-3	0	6	9 1/3
P(X=x)	1/6	0	1/2	

° 45/93

© 93/2

° 45/4

° _{90/3}

78 of 100

238 PU_2016_375_M

If (20,30) is a 90% Confidence Interval (C.I.) for a parameter θ then which one of the following is a correct statement about the confidence interval?

^C All other intervals will contain θ with probability less than 90%

 $^{\circ}$ (20,30) is a C.I. randomly selected from a collection of intervals 90% of which contain θ

^C With probability 90% θ will be in the interval (20,30)

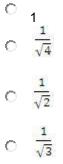
 $^{\circ}$ θ will be in the middle of the confidence interval with a longer probability (> 90%) than towards the end of C.I

79 of 100

239 PU_2016_375_M If X and Y are two random variables then V $[(aX \pm b) \pm (cY \pm d)] =$

$$a^{2}V(X) + c^{2}V(Y) \pm ac Cov(X,Y)$$

$$a^{2}V(X) + c^{2}V(Y) \pm 2ac Cov(X,Y)$$


$$a^{2}V(X) + c^{2}V(Y) + 2ac Cov(X,Y)$$

$$a^{2}V(X) - c^{2}V(Y) + ac Cov(X,Y)$$

80 of 100

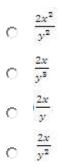
232 PU_2016_375_M

If A point P is taken at random in a line AB of length 2a, all positions of the point being equally likely. Assume that the AP and PB formed a rectangle. Then the probability of the formed rectangular is more than $a^2/2$ is:-

81 of 100

295 PU_2016_375_D

If X be the sum of the out comes when two fair dice are thrown simultaneously, then $P[|X - 6| \ge 1] = 0$


- ^U 31/36
- ° 6/36
- ° 30/36
- ° 5/36

82 of 100 293 PU_2016_375_D

Two dimensional random variable (X, Y) has the joint density

$$f(x, y) = \begin{cases} 8xy, 0 < x < y < 1 \end{cases}$$

Then the conditional distribution of X given Y is:-

269 PU_2016_375_D

Stratified random sampling is recommended where the population is:-

Non-homogeneous

Non-homogeneous but can be divided into homogeneous sub-populations

- Having a linear trend
- Homogeneous

84 of 100

266 PU_2016_375_D

If the population size is 'N' and sample size is 'n', then total number of possible samples that can be obtained through SRSWR and SRSWOR respectively are:-

$$O = N^{n+1}; \binom{N}{n+1}$$

$$N^{n+1}$$
; $\binom{N}{n}$

$$N^{n}; \binom{N}{n}$$

$$n^{N}; \binom{N}{n+1}$$

85 of 100 276 PU_2016_375_D If $x^x y^y z^z = k(constant)$ then $\frac{\partial z}{\partial x}$ is given by:-

$$C = \left(\frac{1 + \log x}{1 + \log z}\right)$$

$$\begin{array}{c} -\left(\frac{1+\log z}{1+\log x}\right) \\ x^{x} y^{y} z \\ x^{x} y^{y} \end{array}$$

291 PU_2016_375_D

Which of the following relation holds good for the following data? The values of X are 1,2,3,4,5,6,7,8 and 9; their respective frequencies are 2,18,15,13,12,9,7,4,1:-

- Mean = Mode
- Mode = Median
- Mode > Mean
- Mean > Mode

87 of 100

299 PU_2016_375_D

If X and Y are standardized variates, u = ax + by, v = bx + ay, $r_{xy} = \frac{1 + 2ab}{a^2 + b^2}$ then $r_{uv} =$

88 of 100

292 PU_2016_375_D If the values of a variate are a, ar, ar², ar³,...., arⁿ⁻¹ each with frequency 1, then Arithmetic Mean is:-

- $\circ ar^{(n-1)/2}$
- $\bigcirc \frac{a(1-r^n)}{n(1-r)}$

$$O = \frac{a(1-r)r^{(n-1)}}{(1-r^n)}$$

$$\bigcirc \frac{an(1-r)r^{(n-1)}}{(1-r^n)}$$

```
294 PU_2016_375_D
```

The Probability generating function of sum of independent random variables is equal to the product of their individual probability generating functions is propagated through the property named a:-

- Additive Property
- Convolution Property
- Multiplicative Property
- Hybrid Property

90 of 100

290 PU 2016 375 D

Which of the following statement is true regarding the shape of the frequency curve?

- (1) Poisson and Exponential Distributions;
- (2) Chi-square and Snedecor's -F Distributions;
- (3) Student's -t and Normal Distributions;
- (1), (2) and (3) are Symmetric
- (1) and (2) are positively skewed; (3) are Symmetric
- (1) and (2) are symmetric; (3) are Positively skewed
- (1) are positively skewed; (2) and (3) are Symmetric

91 of 100

279 PU_2016_375_D The solution of the equation $\int_{log2}^{x} \frac{dt}{e^{t}-1} = log\left(\frac{3}{4}\right)$ is given by x =

 $c \frac{\log\left(\frac{8}{5}\right)}{e^2} c \frac{\log\left(\frac{5}{8}\right)}{e} c \frac{\log\left(\frac{5}{8}\right)}{e} c e$

92 of 100

275 PU_2016_375_D

If T is an unbiased estimator of θ then:-

- C The average error is zero
- T has both the errors
- $^{\circ}$ the error in T will tend to 0 as the sample size tends to $^{\circ}$
- T has no error

93 of 100 277 PU_2016_375_D If [x] denotes the greatest integer function then the value of $\int_{0.5}^{4.5} [x] dx + \int_{-1}^{1} |x| dx$ is:-

- ° 6
- ° 7
- ° (
- 8
- ° 9

94 of 100

267 PU_2016_375_D

The total number of possible samples of size 2 that can be drawn from a population with 5 units without replacement is:-

- O 10
- ° 20
- о ₂₅
- ° 5

95 of 100

298 PU_2016_375_D

The Cumulant Generating Function of χ^2 - distribution is:-

96 of 100

268 PU_2016_375_D

In a sample survey, the true value of a unit is 16 and it is wrongly recorded as 61 and analysis carried out. This error comes under:-

Non-sampling Error

- C Arithmetic error
- Sampling Error
- C Experimental Error

97 of 100

296 PU_2016_375_D If X, Y are any two random variables then the conditional Expectation E[E(X/Y)] = E[X/E(Y)] • _{E(Y)}

° _{E(X)}

C E(X/Y)

98 of 100

297 PU_2016_375_D Let {X_n} be a sequence of random variables. X_n converges almost surely if and only if: $P(\lim_{n\to\infty} X_n = X) = 1$ $P(\lim_{n\to\infty} X_n \neq X) = a; 0 < a < 1$

$$\bigcirc P(\lim_{n \to \infty} X_n = X) = 0$$

 $P(\lim_{n \to \infty} X_n \neq X) = 1$

99 of 100

265 PU_2016_375_D For a Normal distribution, Quartile deviation, Mean deviation and Standard deviation are in the ratio:-

- ⁰ 1 : 4/5 : 2/3
- 1/2 : 1 : 4/5
- C 2/3 : 4/5 : 1
- 4/5 : 2/3 : 1

100 of 100

278 PU_2016_375_D The value of $\int_{\frac{1}{e}}^{e} |logx| dx$ is:- $\circ 2\left(\frac{e+1}{e}\right)$ $\circ 2\left(\frac{e-1}{e}\right)$ $\circ \frac{2}{e}$ $\circ 2\left(\frac{1-e}{e}\right)$