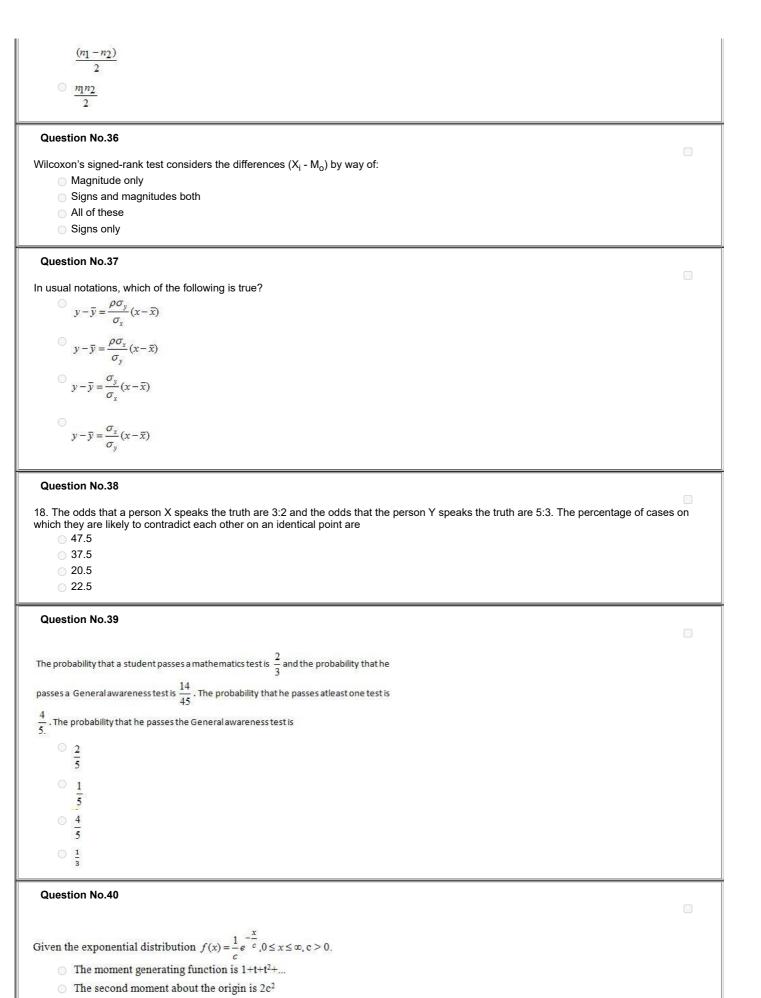
Examination: M.Sc Statistics	
SECTION 1 - SECTION 1	
Question No.1	
A set of feasible solution in linear programming problem is-	
Non-convex setConvex set	
Disconnected set	
None of these	
Question No.2	
In Stratified sampling units between strata are Homogeneous	
○ Heterogeneous	
Both Homogeneous and Heterogeneous are true	
Both Homogeneous and Heterogeneous are false	
Question No.3	
The efficiency of SRSWOR with respect to SRSWR is	
\circ_{N-1}	
\overline{N}	
$\frac{N-n}{N}$	
\circ $N-1$	
$\frac{1}{N-n}$	
\bigcirc N	
$\bigcirc \frac{N}{N-1}$	
Question No.4	
UMP test are proposed for testing a hypothesis for which level of significance specified as 0.05. Which one of the test is most appropriate	
among the following? Test with size 0.01	
Test with size 0.04	
Test with size 0.1	
Test with size 0.06	
Question No.5	
Student's t statistic was pioneered by	
W.S. GossetS.S. Karl Pearson	
R.A. Fisher	
Hotelling	
Question No.6	
Question No.0	
Given a random sample of size 'n' from $U(0, \theta)$ distribution. Which of the following	
statement is not true?	
${}^{\bigcirc}$ $2\overline{X}$ is an unbiased estimator of θ	
$\bigcirc X_{(n)}$ is an unbiased estimator of θ	
$X_{(n)}$ is maximum likelihood estimator of θ	
$\bigcirc X_{(n)}$ is minimal sufficient statistic for θ	
Question No.7	

Karl Pearson Coefficient of Skewness is given by

 σ (Mode – Median)


$\frac{Mean - Mode}{\sigma}$	
○ Mean – Median	
σ Made – Median	
$\frac{\textit{Mode} - \textit{Median}}{\sigma}$	
Question No.8	
The trial control limits for R- chart with usual constant factors are:	
U.C.L. = D_4R . C.L = R and L.C.L = D_3R	
all of these	
\bigcirc U.C.L. = $D_4 \overline{R}$. C.L = \overline{R} and L.C.L = $D_3 \overline{R}$	
U.C.L. = $D_4 \overline{R}$. C.L = \overline{R} and L.C.L = $D_4 \overline{R}$	
Question No.9	
An examination consists of two papers, paper 1 and paper2. The probability of failing in paper 1 is 0.3 and that in paper 2 is 0.2 student has failed in paper 2, the probability of failing in paper 1 is 0.6. The probability of a student in both the paper is 0.12	. Given that a
0.8	
○ 0.06○ 0.5	
Question No.10	
For testing equality of variances of two normal populations, we use	
○ Normal test ○ F-test	
Chi-square test	
○ t-test	
Question No.11	
If experimental material is homogeneous, we use	
Randomised block designCompletely Randomized Design	
 Both Randomised block design and Completely Randomized Design 	
○ Latin Square Design	
Question No.12	
For symmetrical distribution Mean=Median=Mode	
$\bigcirc \beta_1 = 0$	
\bigcirc $\beta_2 = 3$	
○ All of these	
Question No.13	
Two unbiased dice are thrown . The probability that both the dice show the same number is	
$\bigcirc \frac{1}{36}$	
\bigcirc $\frac{3}{6}$	
$\circ \frac{5}{6}$	
$\bigcirc \frac{1}{6}$	
Question No.14	

Suppose $X_1,\ X_2,\ X_3,\ X_4$ are i.i.d. random variables taking values 1 and -1 with probability ½ each. Then $E(X_1,X_2,X_3,X_4)^4$ equals

O 4
~ 70
○ 76 ○ 12
Question No.15
If the primal of linear programming problem has no solution, then dual of the problem-
Has either no solution or is unbounded Has unbounded solution
Has an optimal solution
None of these
Question No.16
A manufacturer of steel blades found 5% of its blade defective. He sells blades packets each containing 5 blades. The probability that a packet contains one defective blade is
0.25e ^{-0.25}
0.25
○ e ^{-0.25}
O 0.5
Question No.17
Given $\sum a_{ij}x_j \leq b_i$, to convert it into equality we introduce-
Artificial variable
○ Slack variable
 Unrestricted variable Surplus variable
O CALPIAG PALIAGO
The average of male employees in a firm was Rs. 52000 and that of female was Rs. 4200. Find the percentage of male employees if the mean salary of employees was Rs. 5000. 50 80 60 20
Ougstion No 10
Question No.19
Let X_1 and X_2 be independently distributed as $N(\mu_1,\sigma_1^2)$ and $N(\mu_2,\sigma_2^2)$ respectively.
Let X_1 and X_2 be independently distributed as $N(\mu_1,\sigma_1^2)$ and $N(\mu_2,\sigma_2^2)$ respectively. Then Y= X_1 - X_2 is distributed as
Let X_1 and X_2 be independently distributed as $N(\mu_1, \sigma_1^2)$ and $N(\mu_2, \sigma_2^2)$ respectively. Then Y= X_1 - X_2 is distributed as $\bigcirc N(\mu_1 + \mu_2, \sigma_1^2 - \sigma_2^2)$
Let X_1 and X_2 be independently distributed as $N(\mu_1,\sigma_1^2)$ and $N(\mu_2,\sigma_2^2)$ respectively. Then Y= X_1 - X_2 is distributed as $\bigcirc N(\mu_1 + \mu_2, \sigma_1^2 - \sigma_2^2)$ $\bigcirc N(\mu_1 - \mu_2, \sigma_1^2 - \sigma_2^2)$
Let X_1 and X_2 be independently distributed as $N(\mu_1,\sigma_1^2)$ and $N(\mu_2,\sigma_2^2)$ respectively. Then Y= X_1 - X_2 is distributed as $ \bigcirc N(\mu_1 + \mu_2, \ \sigma_1^2 - \sigma_2^2) $ $ \bigcirc N(\mu_1 - \mu_2, \ \sigma_1^2 - \sigma_2^2) $ $ \bigcirc N(\mu_1 + \mu_2, \ \sigma_1^2 + \sigma_2^2) $ $ \bigcirc N(\mu_1 + \mu_2, \ \sigma_1^2 + \sigma_2^2) $
Let X_1 and X_2 be independently distributed as $N(\mu_1,\sigma_1^2)$ and $N(\mu_2,\sigma_2^2)$ respectively. Then Y= X_1 - X_2 is distributed as $\bigcirc N(\mu_1 + \mu_2, \sigma_1^2 - \sigma_2^2)$ $\bigcirc N(\mu_1 - \mu_2, \sigma_1^2 - \sigma_2^2)$
Let X_1 and X_2 be independently distributed as $N(\mu_1,\sigma_1^2)$ and $N(\mu_2,\sigma_2^2)$ respectively. Then Y= X_1 - X_2 is distributed as $ \bigcirc N(\mu_1 + \mu_2, \ \sigma_1^2 - \sigma_2^2) $ $ \bigcirc N(\mu_1 - \mu_2, \ \sigma_1^2 - \sigma_2^2) $ $ \bigcirc N(\mu_1 + \mu_2, \ \sigma_1^2 + \sigma_2^2) $ $ \bigcirc N(\mu_1 + \mu_2, \ \sigma_1^2 + \sigma_2^2) $
Let X_1 and X_2 be independently distributed as $N(\mu_1,\sigma_1^2)$ and $N(\mu_2,\sigma_2^2)$ respectively. Then Y= X_1 - X_2 is distributed as $ \bigcirc N(\mu_1 + \mu_2, \ \sigma_1^2 - \sigma_2^2) $ $ \bigcirc N(\mu_1 - \mu_2, \ \sigma_1^2 - \sigma_2^2) $ $ \bigcirc N(\mu_1 + \mu_2, \ \sigma_1^2 + \sigma_2^2) $ $ \bigcirc N(\mu_1 - \mu_2, \ \sigma_1^2 + \sigma_2^2) $ Question No.20
Let X_1 and X_2 be independently distributed as $N(\mu_1,\sigma_1^2)$ and $N(\mu_2,\sigma_2^2)$ respectively. Then Y= X_1 - X_2 is distributed as $ \bigcirc N(\mu_1 + \mu_2, \sigma_1^2 - \sigma_2^2) $ $ \bigcirc N(\mu_1 - \mu_2, \sigma_1^2 - \sigma_2^2) $ $ \bigcirc N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2) $ $ \bigcirc N(\mu_1 - \mu_2, \sigma_1^2 + \sigma_2^2) $ Question No.20
Let X_1 and X_2 be independently distributed as $N(\mu_1,\sigma_1^2)$ and $N(\mu_2,\sigma_2^2)$ respectively. Then Y= X_1 - X_2 is distributed as $ N(\mu_1 + \mu_2, \sigma_1^2 - \sigma_2^2) $ $ N(\mu_1 - \mu_2, \sigma_1^2 - \sigma_2^2) $ $ N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2) $ $ N(\mu_1 - \mu_2, \sigma_1^2 + \sigma_2^2) $ Question No.20 $ N(\mu_1 - \mu_2, \sigma_1^2 + \sigma_2^2) $
Let X_1 and X_2 be independently distributed as $N(\mu_1,\sigma_1^2)$ and $N(\mu_2,\sigma_2^2)$ respectively. Then $Y=X_1\cdot X_2$ is distributed as $ N(\mu_1+\mu_2,\sigma_1^2-\sigma_2^2) \\ N(\mu_1+\mu_2,\sigma_1^2-\sigma_2^2) \\ N(\mu_1+\mu_2,\sigma_1^2+\sigma_2^2) \\ N(\mu_1-\mu_2,\sigma_1^2+\sigma_2^2) \\ N(\mu_1-\mu_2,\sigma_1^2+\sigma_2^2) $ Question No.20 $ S=\sum_{i=1}^n (x_i-\bar{x})^2/n $ Both $S^2=\sum_{i=1}^n (x_i-\bar{x})^2/(n-1)$ and $S^2=\sum_{i=1}^n (x_i-\bar{x})^2/n $
Let X_1 and X_2 be independently distributed as $N(\mu_1,\sigma_1^2)$ and $N(\mu_2,\sigma_2^2)$ respectively. Then Y= X_1 - X_2 is distributed as $ N(\mu_1 + \mu_2, \sigma_1^2 - \sigma_2^2) $ $ N(\mu_1 - \mu_2, \sigma_1^2 - \sigma_2^2) $ $ N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2) $ $ N(\mu_1 - \mu_2, \sigma_1^2 + \sigma_2^2) $ Question No.20 $ N(\mu_1 - \mu_2, \sigma_1^2 + \sigma_2^2) $ Which of the following is consistent estimator of population variance in $N(\mu_1, \sigma_2^2)$?

Question No.21	
Let X be a binomial random variable with parameter $\left(11, \frac{1}{3}\right)$. At which value of k is $p(X = k)$ maximizes?	
○ k = 3	
○ k = 5 ○ k = 6	
○ k = 2	
Question No.22	
For testing a simple null hypothesis against a simple alternative hypothesis, which of the following statement is most appropriate	
UMP level 'α' test exists	
Most powerful level 'a' test exists	
UMPU level 'α' test exists	
○ All of these	
Question No.23	
If X is the number of success in n independent trials with constant probability P of success of each trial, the variance of proportion of suc	
p=X/n is	
○ P/n	
nP(1-P)	
○ P(1-P)/n	
○ P(1-P)	
Question No.24	
Suppose X and Y are independent random variables where Y is symmetric about 0. Let $U = X - Y$ and $V = Y - X$. Then	
U and V have the same distribution	
○ U and Y are always independent	
○ V is always symmetric about 0	
○ U is always symmetric about 0	
Question No.25	
Which of the following is not a principle of design of experiments?	
Randomisation	
Replication	
Universal Control	
○ All of these	
Question No.26	
Mean aguare error of estimators obtained by the method of minimum Chi aguare in	
Mean square error of estimators obtained by the method of minimum Chi-square is:	
less than ML estimators	
cannot be decided	
o more than ML estimators	
Question No.27	
A system has three components and the system works if at least two of the three components work. The lifetimes of the components an independent and identically distributed exponential random variables with mean 1. If X denote the lifetime of the system, then E(X) is	5
© 5/6	
o 1/2	
0 1	
o 2/3	
Question No.28	
	om!-
The average incoming call rate is 4 per minute. The probability that there are not more than 3 calls, assuming Poisson distribution for inc call rate is-	coming
\circ e^{-6}	
$\frac{71}{3}e^{-4}$	

$-\frac{71}{3}$ $\bigcirc -e4$	
Question No.29	
Statement A: Events are called mutually exclusive if some or all events of a trial can happen simultaneously in the same trial. Statement B: Events of a trial are said to be equally likely if there is no reason to expect an outcome in preference to other.	
Then, which of the following statements are true? Statement A is true Statement B is true Both statements (A) and (B) are true Both statements are false	
Question No.30	
For testing significance of difference of proportions of an attribute in two populations in large sample theory, we use Chi-square test Z-test t-test All of these	
Question No.31	
Correlation coefficient is measured if relationship between two variables Linear Quadratic Both Linear and Quadratic	
Bilinear	
Question No.32	
Kolmogrov-Smirnov test is useful as: a test of goodness of fit a test randomness a test for median	
All of these	
Question No.33	
Let X be distributed as Binomial (n,p). Then Y=n-X is distributed as Binomial(n,p)	
○ Binomial (n,q) ○ Binomial(0,q)	
○ Binomial(0, p)	
Question No.34	
Let $X_1, X_2,, X_n$ be independently and identically normally distributed random variables as	
$N(\mu_{}^{},\sigma_{}^{2})$, then their mean \overline{X} = (X_{1} + X_{2} ++ X_{n})/n is distributed as	
$^{\circ}$ $_{N(\mu,\sigma^2/\sqrt{n})}$	
$\bigcirc N(\mu,\sigma^2/n)$	
$\bigcirc N(n\mu,\sigma^2)$	
$N(\mu,\sigma^2)$	
Question No.35	
If n1 and n2 in Mann-Whitney test are large, the variable U is distributed with mean: $ \frac{(n_1+n_2)}{2} $	
\circ n_1n_2	

The second moment about the origin is c³.
 The moment generating function is 1+c² t+t²+...

Question No.41

Stratified sampling is always more efficient than SRS if units are selected by Proportional Allocation	
Neyman Allocation	
Both Proportional Allocation and Neyman Allocation are true	
○ None of these	
Question No.42	
Consider a 2 ³ factorial design laid out in 2 blocks, each of size 4, as follows	
Block1: 1 b c bc Block2: ab ac a abc	
Here the treatment combinations are written in Yates' notation. Then which of the following are always true?	
Main effect A is confounded	
 Interactions AB, BC, AC are all unconfounded Interaction ABC is confounded 	
All of these	
Question No.43	
Square of standard normal variate follows	
Standard normal variate	
○ Chi-square variate	
○ F- variate	
○ Beta variate	
Question No.44	
The desirable criteria of a good estimator are	
Unbiasedness Consistency	
ConsistencyEfficiency	
○ All of these	
Given $P(A_i) = \left(\frac{1}{2}\right)^i$ and $\bigcup_{i=1}^{\infty} A_i = S$, where A_i are mutually exclusive events, then $P(S)$ is-	
⁰ 1/3	
ο σ	
\circ 1	
9	
Question No.46	
Which one of the following statements is not true?	
 In a symmetric distribution the values of mean, mode and median are the same In a positively skewed distribution, Mean > Median > Mode 	
In a negatively skewed distribution, Mode > Mean > Median	
The measure of skewness is dependent upon the amount of dispersion	
Question No.47	
Let $X_{\mathcal{L}}, X_{\mathcal{L}},, X_{\mathcal{K}}$ be a random sample from normal population $N(\mu, \sigma^2)$. The unbiased estimator	
of population mean μ is given by	
$(X_1+X_n)/2$	
$(X_1 + X_n)/2$ All the above	
All the above	

Question No.40	
Given a random sample of size 'n', which of the following distribution does not possess MLR property?	
Cauchy distribution	
Weibull distribution	
O Poisson distribution	
Neither Cauchy distribution nor Weibull distribution	
Question No.49	
Ordinary sign test utilizes:	
Poisson distribution	
Binomial distribution	
 both Poisson distribution and Binomial distribution 	
oneither Poisson distribution nor Binomial distribution	
Question No.50	
random variable X is distributed with probability density function	
$f(x) = Kx (2-x), 0 \le x \le 2$	
the value of K is	
○ <u>1</u>	
3	
$ \begin{array}{c} \frac{1}{3} \\ \frac{2}{3} \end{array} $	
3	
O <u>3</u>	
$\overline{4}$	
Question No.51	
B: Every optimal solution of linear programming problem is solution. A and B both are true Only A is true	
Only B is true	
○ Both A and B are false.	
Question No.52	
et T_1 and T_2 be unbiased estimators of a parameter with variances V_1 and V_2 . Then, T_1 is more efficient the	an $T_{\scriptscriptstyle 2}$ if
\circ v_1	
$\frac{v_1}{v_2}$ < 1	
$\frac{V_1}{V_2} = 1$	
$\overline{V_2} = 1$	
On conclusion is possible	
$\frac{V_1}{V_2} > 1$	
5.2	
Question No.53	
Siven a random sample of size 'n' from geometric distribution. Which of the following statement is true?	
\overline{X}^2 is minimum variance bound estimator of $\frac{q}{p}$	
\overline{X} is minimum variance bound (MVB) estimator of 'q'	
\overline{X} is minimum variance bound (MVB) estimator of 'p'	
\overline{X} is minimum variance bound estimator of $\frac{q}{\overline{X}}$	
p	

Question No.54	
R-charts are preferable over σ-charts because:	
R and S.D. fluctuate together in case of small samples R is easily to calculate	
○ R-charts are economical	
○ all of these	
Question No.55	
Let $X_1, X_2,, X_n$ are $N(\mu, \sigma^2)$, independent then the sample mean is distributed as	
$N(\mu,\sigma^2)$	
$^{\circ}$ $_{ m N(\mu,\sigma^2/n)}$	
\bigcirc N(μ , σ /n)	
$N(\mu, n\sigma^2)$	
Question No.56	
While analysing the data of a k × k Latin square, the error degrees of freedom in analysis of variance is equal to:	
$^{\circ}$ k ² -2 $^{\circ}$ k ² -k-2	
○ k(k-1)(k-2)	
○ (k-1)(k-2)	
Question No.57	
The probability mass function of Poisson distribution $P(X,\lambda)$ with X=0,1,2, and $\lambda > 0$ is given by	
$\bigcirc e^{-\lambda}\lambda^{x}$	
$\bigcirc \frac{e^{-\lambda}\lambda^{\kappa}}{\lambda}$	
$\bigcirc \frac{e^{-\lambda}\lambda^x}{x!}$	
$\bigcirc \frac{e^{-\lambda}\lambda^x}{x}$	
Question No.58	
The characteristic function of degenerate random variable at a is	
exp(at) sin(at)	
o exp(-iat)	
o exp(iat)	
Question No.59	
Which of the following statements is true?	
 population mean decreases with increase in sample size population mean decreases with decreases in sample size 	
oppulation mean increases with the increase in sample size	
oppulation mean is a constant value	
Question No.60	
For estimating the population proportion P in a class of a population having N units, the variance of the estimator p of P based on simple random sample for size n is:	;
$\bigcirc \frac{N}{N-1} \frac{PQ}{N}$	
N-1 N	
$\frac{N}{N-1}\frac{PQ}{n}$	
5900 30 200	
$ \begin{array}{c} N-1 \\ N-n \end{array} \underbrace{PQ}_{n} $	

$\frac{N-n}{N-1} \frac{PQ}{n}$	
Question No.61	
Control Charts in statistical quality control are meant for: describing the pattern of variation checking whether the variability in the product is within the tolerance limits or not discovering whether the variability in the product is due to assignable causes or not all of these	
Question No.62	
Suppose X is distributed as Poisson with parameter λ . Then P(X = 0) is $ e^{-\lambda} $ $ \lambda $	
$^{\circ}$ $\lambda e^{-\lambda}$ $^{\circ}$ $\lambda / e^{-\lambda}$	
Question No.63	
Which of the following is not considered as an assumption for t-test? The sample is drawn from normal population The sample observations are independent The standard deviation of population is known All of these	
Question No.64	
Which of the above statements is true? Statement(I) is true statement (II) is true Both statements are true Both are false	
Question No.65	
Which of the following basis distinguishes cluster sampling and stratified sampling? clusters are preferably heterogeneous whereas strata are taken as homogeneous as possible small size clusters are better whereas there is no such restriction for stratum size all of these a sample is always drawn from each stratum whereas all the elementary units is drawn from selected clusters	
Question No.66	
If the sample size is large in Wilcoxon's signed rank test, the statistic T ⁺ is distributed with variance: $\frac{n(n-1)(2n+1)}{12}$	
$\frac{n(n-1)(2n-1)}{24}$ $\frac{n(2n+1)}{12}$	
$\frac{n(n+1)(2n+1)}{24}$	
Question No.67	
The causes leading to vast variation in the specifications of a product are usually due to:	

○ all of these
Question No.68
In simple random sampling without replacement, variance of sample mean \overline{y} is given by
$V(\bar{y}) = \frac{N-n}{N} S^2$
$V(\vec{y}) = nS^2$
$V(\bar{y}) = \frac{N-1}{Nn} S^2$
$V(\bar{y}) = \frac{N-n}{Nn} S^2$
Question No.69
The first two moments of a distribution about the value 4 are -1.5 and 17. The first two moments about mean are
-1.5, 172.5, 21.0
5.5, 12.50 _ 2.5, 14.75
○ 2.5, 14.75
Question No.70
A basic solution to the system is degenerate if- Some basic variables are equal to zero
Some basic variables are negativeSome basic variables are positive
Some basic variables are non-zero
Question No.71
The mean deviation of observations is least if observations are measured from
○ Mode ○ Median
Geometric mean
⊝ Mean
Question No.72
A simple random sample of size 3 is drawn from a population of N units with replacement. The probability that the same unit appears in the three draws is
○ 1/N ³
○ 1/N ○ 1/N ²
○ 1/N² ○ (N-1)/N
Question No.73
For two attributes X and Y, the conditions of their consistency are
$\bigcirc (XY) \ge (X) + (Y) - N$
\bigcirc (XY) \leq (X)
Statement (A) is true but (B) is false
O Both statements (A) and (B) are true
Question No.74
Let the variance of a random variable X be σ^2 . Then the variance of random variable U= 2X + 3 is
\odot σ^2
\bigcirc 4 σ^2
$\bigcirc 2\sigma^2 + 3$

$\bigcirc 4\sigma^2 + 9$
Question No.75
Let $\{X_n: n \geq 0\}$ and X be random variables defined on a common probability space. Further assume that X_n 's are non negative and X takes values 0 and 1 with probability p and 1-p respectively, where $0 \leq p \leq 1$. Which of the following statements are necessarily true?
If $0 and X_n converges to X in distribution, Then X_n converges to X in probability$
If $p = 0$ and X_n converges to X in distribution, Then X_n converges to X in probability
If X_n converges to X in probability, Then X_n converges to X almost surely.
If $p = 1$ and X_n converges to X in distribution, Then X_n converges to X almost surely.
Question No.76
Method of minimum Chi-square for the estimation of parameters utilizes:
Chi-square distribution function Pearson's Chi-square statistic
Contingency table
○ All of these
Question No.77
An urn contains 4 white, 3 black, 2 red and 1 blue balls. Four balls are drawn randomly. The probability that they are of different colour is
$\frac{3}{5}$
$\bigcirc \frac{12}{105}$
$\bigcirc \frac{4}{35}$
$\bigcirc \frac{2}{5}$
3
Question No.78
The chances that doctor A will diagnose a disease X correctly is 60%. The chances that a patient will die by his treatment after correct diagnosis is 40% and the chances of death by wrong diagnosis is 70%. A patient of doctor A, who had disease X, died. The chance that his disease was diagnosed correctly is
<u>13</u> <u>25</u>
$\bigcirc \frac{1}{13}$
3905
$\left \begin{array}{c} \frac{6}{13} \end{array}\right $
$\bigcirc \frac{2}{25}$
Question No.79
If value of correlation coefficient between X and Y is zero, then they are
necessarily dependent
cannot decide not necessarily independent
onecessarily independent
Question No.80
The main and interaction effects in a 2 ⁿ - factorial experiment can easily be estimated with the help of: Simple effects
ontrasts
o both Simple effects and contrasts
oneither Simple effects nor contrasts
Question No.81

VA/I-1-1-541-5-11		the selection			
$Vinich of the following H: \theta < \theta_0$	owing is not a composite hypo	tnesis?			
All of the					
$O_{H:\theta=\theta_0}$					
$\bigcirc H:\theta > \theta_0$					
Question No.8	32				
An analysis of following res	of monthly wages paid to sults	the workers of two	o firms A and B be	longing to the same i	ndustry give the
	<u></u>	A		ī	
	Number of workers	Firm A 500	Firm B 600	-	
	Average daily wages	Rs. 186.00	Rs. 175.00		
	Standard deviation	9	10		
Then					
	nas larger wage bill				
	ison of Bills is not possible ns have equal bills				
	ns have equal bills has larger wage bill				
Question No.8	22				
Significance of t	he partial regression coefficien	its can simultaneousl	y be tested by:		
Z-test					
⊝ Chi-squa	are test				
○ F-test					
Question No.8	34				
To examine whe a clinical trial. The this?	ether two different skin creams nen cream A was applied to on	A and B have difference of the randomly ch	nt effect on the huma osen arms of each pe	n body n randomly chose erson, cream B to the othe	n persons, were enrolled in er. What kind of a design is
	nized Block Design				
	d Incomplete Block Design				
	tely Randomized Design uare Design				
Question No.8					
	oution has a double mode at x=	=3 and x=4			
The pro	bability that x=3 is $\frac{32}{3}e^{-4}$				
All of the					
The pro	bability that x=4 is $\frac{32}{3}e^{-4}$				
The pro	bability that x=3 or x=4 is $\frac{64}{3}$	e ⁻⁴			
Question No.8	36				
		and the second second	O't. 14#1 1 5#1	fall and a second	
	for the month of June 2013 is a infall is random?	avallable for Bengalul	ru City. Which of the f	ollowing test is most appr	opriate to check whether the
Wilcoxo					
Median					
Run testSign tes					
Question No.8	37				

Consider the following data-	
X: 0 1 2 3 4 5 6 7 8 f: 1 9 26 59 72 52 29 7 1	
The 4 th decile of above data is given by	
4	
0 1	
© 2 © 3	
Question No.88	
Binomial distribution B(n, p) tends to Poisson distribution if np= constant and	
$n \to \infty$ and $p \to 0$	
$n \to \infty$ and $p \to \infty$ $n \to 0$ and $p \to \infty$	
$n \rightarrow 0$ and $p \rightarrow 0$	
Question No.89	
A cyclist pedals from his house to his college at a speed of 10 km/hr and back from the college to his house at 15 km/hr The	average speed of
the cyclist is	
15 km/hr12.5 km/hr	
○ 25 km/hr	
○ 12 km/hr	
Question No.90	
Which one problem out of the four is not related to stratified sampling? in fixing the criterion for stratification	
fixing the number of strata	
○ fixing the sample size	
fixing the points of demarcation between strata	
Question No.91	
For estimating the population mean , let T ₁ be the sample mean under srswor and T ₂ under srswr. Then:	
○ var (T1) = 1/var(T2) ○ var (T1) < var(T2)	
var (T1) = var (T2)	
ovar (T1) ≥ var (T2)	
Question No.92	
QUESTION NO.32	
If the list of all the population unit is not available then we go for	
Systematic samplingTwo stage sampling	
Cluster sampling	
Stratified sampling	
Question No.93	
Stratified sampling belongs to the category of:	
onon-random sampling	
judgement sampling	
orandom sampling	
 subjective sampling 	
Question No.94	
In usual notations, let $r_{12} = 0.77_{\ell}$ $r_{13} = 0.72$ and $r_{23} = 0.52$. The value of multiple correlation $R_{1,23}$ is	
0.8	
0.09 0.86	
0.95	

Question No.95	
Which of the following distributions does not belong to exponential family?	
○ Gamma	
Uniform	
Normal Waithull	
○ Weibull	
Question No.96	
In sample surveys, as sample size increases	
Statement (I): Variance of estimator decreases. Statement (II): Non-sampling error increases	
Which of the above statements is true?	
Statement (I) is true	
Statement (II) is true	
Both statements are true	
Both statements are false	
Question No.97	
The moment generating function of normal distribution $N(\mu,\sigma^2)$ is given by	
$\exp(\sigma t - \frac{1}{2}\mu^2 t^2)$	
$\exp(\mu t + \frac{1}{2}t^2\sigma^2)$	
$\exp(\mu t - \frac{1}{2}t^2\sigma^2)$	
$\exp(\mu t - \frac{1}{2}t \delta)$	
$\exp(\sigma t + \frac{1}{2}\mu^2 t^2)$	
Question No.98	
$E[(aX+b)^n]$ is equal to	
$aE(X) + b^n$	
$E(a^nX)+b^n$	
$\sum_{i=0}^{n} \binom{n}{i} a^{n-i} b^{i} E(X^{n-i})$	
$t=0$ \ t	
n(n) $n-i$ $n-i$ $n-i$ $n-i$	
$\sum_{i=1}^{n} {n \choose i} a^{n-i} b^{n-i} E(X^{n-i})$	
Question No.99	
Let X and Y be independent random variables distributed Binomially as $\mathit{B}(n,p_1)$ and	
$B(n, p_2)$ respectively. Then Z=X+Y is distributed as	
$\bigcirc B(\frac{1}{n}, p_1 p_2)$	
$\bigcirc B(n, p_1 + p_2)$	
$\bigcirc B(\sqrt{n},p_1p_2)$	
$\bigcirc B(n^2,p_1+p_2)$	
Question No.100	
 	
Let \overline{X} be the mean of a variable X. Then mean of variable U= (X- \overline{X})/ \overline{X} is \bigcirc 0	
○ 0 ○ -1	
0 1	
\circ \overline{x}	
15.00	