Module Name : MSc Statistics-E

Exam Date: 20-Sep-2020 Batch: 16:00-18:00

Sr. No.	Client Question ID	Question Body and Alternatives	Marks	Negativ Marks
bject	tive Question			
	1	What is the harmonic mean of 1, $1/2$, $1/3$,, $1/n$?	4.0	1.00
		A1 n		
		: n		
		A2 2n		
		A3 2/(n+1)		
		A.4		
		A4 n(n+1)/2		
biect	tive Question			
	1 -	If the values of 1st and 3rd quartiles are 20 and 30 respectively, then the value of inter quartile range is	4.0	1.00
		if the values of 1 and 5 quarties are 20 and 50 respectively, then the value of inter quartie range is		
		A1		
		A1 : 10		
		A2 25		
		: 23		
		A3 ₅ :		
		A4 : 0		
hiaat	tive Question			
ojeci		If the coefficient of correlation between two variables is -0.4 , then the coefficient of determination is	4.0	1.00
		if the coefficient of conclution between two variables is – 0.4, then the coefficient of determination is		
		A1		
		A1 : 0.84		
		A2 0.6		
		: 0.0		
		A3 0.16 :		
		A4 : - 0.6		
	tive Question			
hier		If the regression coefficients of x on y and y on x are respectively -1 and -0.25 , then the correlation coefficient between x	4.0	1.00
bject		and y is $x = x + 1$ and $y =$		
bject				
bject				
oject		A1 0.5		

	A2 - 0.5		
	\parallel : -0.5		
	A3 0		
	$\begin{vmatrix} A4 \\ \vdots \end{vmatrix} - 1$		
jective Question			
5		4.0	1.00
	Given the following less than type frequency distribution of income per month Income (Rs.) less than No. of persons		
	1500 100		
	1250 80		
	1000 70		
	750 55 500 32		
	250 12		
	the modal class is		
	A1 250 – 500		
	A2 500 - 750		
	A 2		
	A3 750 – 1000		
	A4 1000 – 1250		
	A4 1000 – 1250 :		
jective Question			
6	Which one of the following is called as metric data or quantitative data?	4.0	1.00
	A1 Interval and Ratio data		
	: Interval and Nominal data		
	A3		
	A3 Ratio and Nominal data		
	A4 Ordinal and Nominal data		
	:		
jective Question			1.00
7	If two independent random variables X and Y have Poisson distribution with parameters 3 and 4 respectively, then P(X+Y=0) is	4.0	1.00
	A1 2		
	A1 e-3 :		
	A2 e-7		
	: e '		
	A3 e-4		

		A A		
		$\begin{vmatrix} A4 \\ \vdots \end{vmatrix} e^{-12}$		
Object	tive Question		4.0	1.00
,	8	The mean and variance of a Binomial random variable having moment	4.0	1.00
		generating function $M(t) = \left(\frac{2}{3} + \frac{1}{3}e^t\right)^5$ is respectively		
		A1 5/3 and 10/9		
		M 2		
		A2 10/9 and 5/3		
		A3 2/3 and 2/9		
		A4		
		A4 1/3 and 2/9 :		
Object 9	etive Question		4.0	1.00
,	9	A lower bound to the variance of an unbiased estimator is given by	4.0	1.00
		A1 Rao-Blackwell theorem		
		Al Rao-Blackwell theorem		
		A2 Rao-Cramer inequality		
		A3 Method of maximum likelihood		
		: Nethod of maximum inclinood		
		A4 Lehmann-Scheffe theorem		
	tive Question			
10	10	A research report concludes that there are significant differences among treatments, with the F ratio having degrees of freedom (2, 27). How many times each treatment is replicated in this study?	4.0	1.00
		1		
		A1 12		
		A2		
		A2 11 :		
		A3 9 :		
		A4		
		A4 10		
	tive Question	120 TH 4	4.0	1.00
11	11	In a Latin Square Design (LSD) of order 5 with two missing values, it is found that the error sum of square is 120. Then the mean square error is	4.0	1.00
		A1 10		
		: 10		

		A2 12		
		A3 15		
		A4 8 :		
Objec 12	tive Question	Suppose one has to conduct an experiment in laboratory where the experimental units are homogeneous, then the suitable design is	4.0	1.00
		A1 Completely Randomized Design		
		A2 Randomized Block Design		
		A3 Latin Square Design		
		A4 Split Plot Design		
Objec	tive Question			
13	13	Models in which some factors are fixed and some are random are called as	4.0	1.00
		A1 Fixed effect models		
		A2 Random effect Models		
		A3 Mixed effect models:		
		A4 Growth Models		
Obiec	tive Question			
14	14	Fisher's ideal index formula satisfies	4.0	1.00
		A1 Circular test		
		A2 Time Reversal test		
		A3 Factor Reversal test		
		A4 Both Time Reversal and Factor Reversal test		
	tive Question	A4 Both Time Reversal and Factor Reversal test :		

		A4 Harmonic mean		
		A2 Geometric mean		
		A1 Arithmetic mean :		
Objec 18	tive Question	To deal with the qualitative data, the measure of central tendency which is applicable is the	4.0	1.00
		A4 Histogram :		
		A3 Scatter plot		
		A2 Pie diagram		
		Al Pictogram		
Objec 17	tive Question	Data measured in numerical scale of measurement (categorical data) can be represented by an appropriate diagram known as	4.0	1.00
		A4 Standard Deviation :		
		A3 Range		
		A2 Mean Deviation		
		Al Quartile Range		
Objec 16	tive Question	For the data, measured in ordinal scale an appropriate measure of dispersion is	4.0	1.00
		A4 Percentage of production		
		A3 Quantities of production		
		A2 Percentages of expenditure		
		Al Quantities consumed by the families		

19	tive Question	If the probability is calculated after the experiment is repeated a large number of times then such probability is known as	4.0	1.00
		Al Apriori probability		
		A2 Martin at the Latitude		
		A2 Mathematical probability		
		A3 Posterior or empirical probability		
		A4 Classical probability		
Ohiaa	tive Question			
20 20	20	The standard deviation of a set of 50 observations is 6.5. If the value of each observation is increased by 5, the standard	4.0	1.00
		deviation is		
		A1 2.5		
		A2 6.5		
		A3		
		A3 3.5		
		A4 10 :		
Objec	tive Question			
21	21	Sample survey is advantageous over census due to	4.0	1.00
		(i) Less costly (ii) More efficient (iii) More specific		
		Al co		
		A1 (i)		
		A2 (ii)		
		A3 (iii)		
		A4		
		A4 All the three (i), (ii) and (iii)		
	tive Question		4.0	1.00
22	22	Division of heterogeneous population into K homogeneous subpopulations is known as	4.0	1.00
		Al a via vi		
		A1 Stratification		
		A2 Break up of population		
		A3 Commonants of completion		
		A3 Components of population		

	An investigator wants to select a sample of the households in a village consisting of 100 households. He decided to select a random number r < 30 and then every 20 th person in the list. Suppose 13 is the random number selected then the sample would comprise Al 13, 18, 23, 28, 33 etc. A2 13, 33, 53, 73, 93 etc. A3 13,23, 33, 43, 53 etc. A4 13, 28, 43, 58, 73 etc.	4.0	1.00
23 23	An investigator wants to select a sample of the households in a village consisting of 100 households. He decided to select a random number r < 30 and then every 20 th person in the list. Suppose 13 is the random number selected then the sample would comprise A1 13, 18, 23, 28, 33 etc. A2 13, 33, 53, 73, 93 etc. A3 13,23, 33, 43, 53 etc.	4.0	1.00
	A2 13, 33, 53, 73, 93 etc. A3 13,23, 33, 43, 53 etc.		
	A3 13,23, 33, 43, 53 etc.		
	A4 13, 28, 43, 58, 73 etc.		
Objective Q	ruestion		
24 24	A discrete distribution corresponding to random variable, that count the number of success among N independent trials having the same probability of success is known as	4.0	1.00
	A1 Bernoulli		
	A2 Poisson		
	A3 Binomial		
	A4 Geometric :		
21: 4: 6			
Objective Q 25 25		4.0	1.00
	The joint p.d.f. of a random variable (X, Y) is given by		
	$f(x,y) = \begin{cases} \frac{1}{8}(6-x-y); & 0 < x < 2, & 2 < y < 4 \\ 0 & otherwise \end{cases}$		
	Then $P(X < 1, Y < 3)$ is equal to		
	A1 3/7		
	A2 _{2/7}		
	A3 _{2/5}		
	A4 3/8		
Objective Q		4.0	1.00
.0 20	A family has two children. The conditional probability that both are boys given that at least one of them is a boy is Al 1/4	7.0	1.00

	\parallel .		
	A2 1/5		
	A3 1/3 :		
	A4 : 1/2		
21 : t'== Opertion			
Objective Question 27 27	Suppose that the number of typographical errors on a single page of a book follow Poisson distribution with parameter $\lambda=1$. Then the probability that there is at least one error on this page is equal to	4.0	1.00
	A1 e-1		
	A2 : 1+e ⁻¹		
	A3 1-e-1		
	A4 0		
Objective Question			
28 28	Let \overline{X}_1 and \overline{X}_2 be sample means based on independent random samples drawn form Normal distribution with means μ_1 and μ_2 respectively and common variance σ^2 . If S_p^2 denote the pooled sample variance, then 100 (1- α)% for confidence for (μ_1 - μ_2) is,	4.0	1.00
	$ \begin{array}{c} \text{A1} \\ \vdots \\ \left(\overline{X}_1 - \overline{X}_2 \right) \pm Z_{\alpha/2} \sqrt{S_P^2 \left(\frac{1}{n_1} + \frac{1}{n_2} \right)} \end{array} $		
	$ \overset{\text{A2}}{:} \left(\overline{X}_1 - \overline{X}_2 \right) \pm t_{\alpha/2} \sqrt{S_P^2 \left(\frac{1}{n_1} + \frac{1}{n_2} \right)} $		
	: $(\overline{X}_1 - \overline{X}_2) \pm F_{\alpha/2} \sqrt{S_P^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$		
	$\vdots \left(\overline{X}_{1} - \overline{X}_{2}\right) \pm Z_{\alpha/2} \sqrt{S_{P}^{2} \left(n_{1} + n_{2}\right)}$		
Objective Question	<u> </u>		
29 29	A two-tailed statistical test is	4.0	1.00
	A1 a statistical test for which the critical region comprises of both large and small values of the test statistic.		
	A2 a statistical test for which the critical region comprises of either large or small values of the test statistic.		

		A4 a statistical test for which the critical region comprises of large values of the test statistic.		
Obje	ctive Question			
30	30	A non parametric test used for testing the identical nature of two populations is	4.0	1.00
		A1 : Kruskal Wallis test		
		A2 Friedman test :		
		A3 : Wald-Wolfowitz Run test		
		A4 Mann-Whitney U test		
Obie	ctive Question			
31	31	The alternative name for confidence level is	4.0	1.00
		A1 Coverage probability		
		A2 Confidence Coefficient		
		A3 Induced probability		
		A4 both Coverage probability and Confidence Coefficient :		
Ohie	ctive Question			
Object 32	32	Student t-test is used for testing the H_0 : ρ =0 against H_1 : ρ >0, ρ being the population correlation coefficient for which the test statistic $t=\frac{r}{\sqrt{1-r^2}}\sqrt{n-2}$ and r being the sample correlation coefficient. The hypothesis is rejected if	4.0	1.00
		A1 r is positive and $t \ge t_{\alpha,n-2}$:		
		A2 r is negative and $t \ge t_{\alpha,n-2}$		
		A3 r is positive and $t = t_{\alpha,n-1}$:		
		A4 r is negative and $t = t_{\alpha,n}$:		
Obie	ctive Question			
33	33	The relation between expected value of Range(R) and Standard deviation (S.D) σ with	4.0	1.00

		$ \begin{array}{c} A1 \\ \vdots \\ E(R) = d_2 \sigma \end{array} $		
		$ \stackrel{A2}{:} E(R) = d_1 \sigma $		
		$ \stackrel{A3}{:} E(R) = D_1 \sigma $		
		$ \overset{\text{A4}}{:} E(R) = D_2 \sigma $		
Object	tive Question			
34	34	When there is no defective in the lot, the OC function for p=0 is:	4.0	1.00
		A1 L (0) =0		
		A2 L (0) =1		
		A3 : L (0) =∞		
		A4 L (0) = -∞		
Object	tive Question			
35	35	Sampling inspection procedure by variables as compared to one by attributes is:	4.0	1.00
		Al More prevalent :		
		A2 Not practiced		
		A3 Less prevalent :		
	tive Question	A3 Less prevalent:		
Object 36	tive Question	A3 Less prevalent:	4.0	1.00
		A3 Less prevalent A4 All the these	4.0	1.00
		A3 Less prevalent: A4 All the these: Control chart for the number of defectives is	4.0	1.00
		A3 Less prevalent A4 All the these Control chart for the number of defectives is A1 c-chart :	4.0	1.00
		A3 Less prevalent A4 All the these Control chart for the number of defectives is A1 c-chart C-chart A2 p- chart	4.0	1.00

7 37	The producer's risk is	4.0	1.00
	Al Probability of rejecting a good lot		
	A2 Probability of accepting a good lot		
	A3 Probability of rejecting a bad lot:		
	A4 Probability of accepting a bad lot		
Objective Question			
38 38	To which component of the time series, the term recession is attached?	4.0	1.00
	A1 Trend		
	A2 : seasonal		
	A3 cycles		
	A4 random variation		
Objective Question			
39 39	If the equation of exponential trend with 1989 as origin is $Y=15 (1.8)^{x}$, the equation of the exponential trend with 1991 as origin will be	4.0	1.00
	A1 $Y=15 (1.8)^{x/2}$		
	A2 Y= 48.6 (1.8) ^x		
	$^{A3}_{:}$ Y= 4.62 (1.8) ^x		
	$^{A4}_{:}$ Y= 15 / (1.8) ^x		
Objective Question			
40 40	If l_x is the number of persons living at the age x and L_x the number of persons living in mid of x and $(x+1)$ years, then the relation between l_x and L_x is:	4.0	1.00
	$ \begin{array}{c} \text{A1} \ L_x = (1/2)(l_x + l_{x+1}) \\ \vdots \end{array} $		
	$A2 L_x = (x/2) + I_x$		

		$\begin{array}{c} A4 \ \ L_x = l_{x+1} \\ \vdots \end{array}$		
	ctive Question			
	41	Which leader amongst the following attained the maximum age of a life-table?	4.0	1.00
		A1 Mao Tse-tung of China		
		A2 Karl Marx of Germany		
		A3 Morarji Desai of India		
		A4 Macmillan of U.K.		
~1.; _{ac}	ctive Question			
Objec 42	42	If X and Y are two Poisson variates such that $X \sim P(1)$ and $Y \sim P(2)$, then the probability, $P(X+Y < 3)$ is equal to	4.0	1.00
		A1 e ⁻³		
		A2 3e ⁻³		
		A3 : 4e ⁻³		
		A4 8.5e ⁻³		
Objec 43	ctive Question		4.0	1.00
43	43	A family of parametric distributions in which mean is always greater than its variance is	4.0	1.00
		Al Poisson distribution		
		A2 Geometric distribution		
		A3 Binomial distribution		
		A4 Hypergeometric distribution		
Ohier	ctive Question			
	44 duestion	If a Poisson distribution is such that $P(X=2) = P(X=3)$, then the variance of the distribution is	4.0	1.00
77	177	If a Poisson distribution is such that $P(A=2) = P(A=3)$, then the variance of the distribution is	1.0	1.00
		A1 9 :		
		A2 3		

			II	ı
		A3 6 :		
		A4 √3 :		
Object	tive Question			
45	45	If a variable X has the p.d.f. $f(x) = \frac{1}{4} x e^{\frac{-x}{2}}$ for $x > 0$, then the variable x is distributed as	4.0	1.00
		A1 Gamma variate :		
		A2 Chi-square variate:		
		A3 Both Gamma variate and Chi-square variate:		
		A4 Beta Type I variate :		
Object	tive Question			
	46	A variable X with moment generating function $M_x(t) = (\frac{2}{3} + \frac{1}{3}e^t)$ is distributed with mean and variance as	4.0	1.00
		A1 Mean = $\frac{2}{3}$, Variance = $\frac{2}{9}$		
		$ A4 Mean = \frac{2}{3}, Variance = \frac{1}{9} $		
Object	tive Question			
	47	If a distribution has moment generating function $M_X(t) = (2 - e^t)^{-3}$, then the distribution is	4.0	1.00
		Al Geometric distribution		
		A2 Hyper Geometric distribution		
		A3 Binomial distribution		
		A4 Negative binomial distribution		
Ohiect	tive Question			
	48	One hundred tickets are numbered serially from 1 to 100. From this collection a ticket is randomly drawn. What is the chance that the selected ticket has a number which is a perfect square?	4.0	1.00

		A1 8/10		
		A2 7/10		
		A3 1/10		
		A4 3/10		
Objec	ctive Question			
	40	A negative binomial variate has probability mass function, $f(x) = \binom{n+x-1}{x}q^xp^n \; ; \; x=0,1,2,$ with its mean = 2 and variance = 3, then value of p is equal to	4.0	1.00
		A1 2/3 A2 1/3		
		A3 1/4		
		A4 3/4 :		
	ctive Question			
50	50	Binomial distribution tends to Poisson distribution when	4.0	1.00
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
		A2 $n \to \infty$, $p \to 1/2$ and $np = \mu$ (finite)		
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
		$A4 \atop : n \rightarrow 15, p \rightarrow 0 \text{ and } np \rightarrow 0$		
	ctive Question			
51	51	If <i>n</i> , the sample size is large than 30, then Student's t-distribution tends to:	4.0	1.00
		A1 Normal distribution		
		A2 F-Distribution		
		A3 Cauchy distribution		
.		A4 Chi-square distribution		

Ohied	ctive Question			
52	52	Which one of the following is not true regarding independent of events A and B?	4.0	1.00
		A1 P (A U B) = P (A) + P (B)		
		$ \stackrel{A3}{:} P(A \mid B) = P(A) $		
		$ \stackrel{A4}{:} P(B A) = P(B) $		
Objec	ctive Question			
53	53	If X and Y are two gamma variate $\gamma(n_1)$ and $\gamma(n_2)$, the distribution of $\frac{X}{\gamma}$ is	4.0	1.00
		$\stackrel{A1}{:} \beta_{I}(n_1, n_2)$		
		$\begin{array}{c} ^{\mathrm{A2}} F_{n_1,n_2} \end{array}$		
		$\beta_{\mathrm{II}}(\mathbf{n}_{1},\mathbf{n}_{2})$		
		$\begin{array}{c} A4 \\ \vdots \\ \gamma(n_1+n_2) \end{array}$		
Objec	ctive Question			
54	54	How large a sample must be taken in order that the probability will be at least 0.95 that \overline{X}_n will be within 0.5 of μ . (μ is unknown and σ = 1)	4.0	1.00
		A1 n = 50		
		A2 n≥80		
		A3 n < 80		
		A4 n ≤ 50		
Objec	ctive Question			
55	55	Examine whether the Weak Law of Large Numbers (WLLN) holds for the sequence $\{x_k\}$ of independent random variables defined as follows $P(x_k = \pm 2^k) = 2^{-(2k+1)}, P(x_k = 0) = 1 - 2^{-2k}$	4.0	1.00
		A1 WLLN holds		

		A2 WLLN holds when mean = ∞ :		
		A3 WLLN does not hold		
		$A4$ WLLN holds when mean = - ∞		
Ohiec	ctive Question			
	56	Population is one in which the rate of growth is zero.	4.0	1.00
		Al Stationery		
		A2 Stable:		
		A3 Unstable		
		A4 Increasing		
	ctive Question		4.0	1.00
,, 		In case of demography errors can be divided into three categories i.e. sampling error, error of content or repose error) and A1 Standard error.		
		A2 Error of coverage. A3 Non sampling error.		
		Non sampling error. A4 Percentage error		
Objec	ctive Question			
	58	Ratio of all live births registered during a year to the number of women of child bearing age. Al Crude birth rate.	4.0	1.00
		A2 Standardized birth rate.		
		A3 Net reproduction rate.		
		A4 The general fertility rate.		
	ctive Question			
59	59	If P ₁ and P ₂ are the population at an interval of 10 years, the population just after five will be:	4.0	1.00
		A1		

	: $\frac{1}{2}(P_1 + P_2)$		
	$\begin{array}{c} A2 \\ \checkmark \sqrt{(P_1 + P_2)} \end{array}$		
	$: \frac{A3}{2} \left(\frac{1}{P_1} + \frac{1}{P_2} \right)$		
	$\begin{array}{c} A4 \\ : \end{array} \sqrt{P_1 + P_2}$		
Objective Question			
60 60	The main sources of information concerning fertility are population census and	4.0	1.00
	A1 Demographic surveys		
	A2 Birth registration system.		
	A3 Stratified sampling.		
	A4 Questionnaire		
Objective Question 61 61	TI NIGGO: 4 TH.C. 1.4: Cd.CH.: 4: 11	4.0	1.00
	The NSSO is not responsible for conducting one of the following nation-wide surveys on various socio-economic aspects	4.0	1.00
	A1 Surveys of Economic Census,		
	A2 Annual Survey of Industries (ASI),		
	A3 Census of India		
	A4 Urban Frame Survey		
Objective Question 62 62	The main statistical unit which is not covered under the <i>Ministry of Home Affairs</i> , Govt. of India	4.0	1.00
	The main statistical unit which is not covered under the ministry of nome Affairs, Govt. of India		1.00
	A1 Collecting, compiling and analyzing industrial dat(A)		
	A2 Carrying out population census		
	A3 Carrying out registration of Birth and Death Statistics		
	A4 Carrying out Ad-hoc Demography surveys		

Objective Question	on		
63	The name of the statistics $T = \sqrt{\frac{\chi^2}{N(m-1)(n-1)}}$ is	4.0	1.00
	A1 Tschprow's Coefficient of Contingency		
	A2 Yules Coefficient of Contingency:		
	A3 Pearson's Coefficient of Contingency		
	A4 Kendall's Coefficient of contingency		
Objective Question	on .		
64	$\left \frac{(AB)}{(B)} > \frac{(A\beta)}{(\beta)} \right _{\text{then}}$	4.0	1.00
	$: \frac{A1}{(A)} < \frac{(\alpha B)}{(\alpha)}$		
	$: \frac{A2}{(A)} > \frac{(\alpha B)}{(\alpha)}$		
	$: \frac{A3}{(A)} = \frac{(\alpha B)}{(\alpha)}$		
	$\stackrel{A4}{:} \frac{(AB)}{(A)} \approx \frac{(\alpha B)}{(\alpha)}$		
Objective Questic	on		
65 65	The relationship between Yule's coefficient of association (Q) and coefficient of colligation (Y) is defined as	4.0	1.00
	$ \stackrel{\text{A1}}{:} Q = \frac{2y}{1+y^2} $		
	$A2 = \frac{2Q}{1+Q^2}$ $A3 = Q < \frac{2y}{1+y^2}$		
	$: Q < \frac{2y}{1+y^2}$		
	$A4 y < \frac{2Q}{1+Q^2}$		
Objective Question	on		
66 66	If two events A and B are mutually exclusive then P(A or B) will be equal to:	4.0	1.00
	$ \begin{array}{c} A1 \\ \vdots \\ P(A) + P(B) - P(AB) \end{array} $		

	$ \begin{array}{c} A2 \\ P(A) + P(B) \end{array} $		
	$ \begin{array}{ccc} A3 & P(A) + P(B) - P(AUB) \\ \vdots & & \end{array} $		
	$ \begin{array}{c} A4 \\ P(A) + P(B/A) \end{array} $		
Objective Ques	tion		
67 67	The probability of impossible event A is:	4.0	1.00
	A1 P(A) = 0.5		
	A2 P(A) = 1		
	A3 P(A) = 0		
	$\begin{vmatrix} A4 & P(A) = \infty \\ \vdots & A \end{vmatrix}$		
Objective Ques	tion		
68 68	A husband and wife appear in an interview for two vacancies in the same post. The probability of husband's selection is 1/7 and that of wife is 1/5. The probability of both of them will be selected is:	4.0	1.00
	A1 10/35		
	A2 1/35		
	A3 24/35 :		
	A4 42/35		
Objective Ques	tion		
69 69	If A, B, C are three mutually exclusive and exhaustive events and $\frac{1}{3}P(C) = \frac{1}{2}P(A) = P(B)$. The value of P(B) is:	4.0	1.00
	A1 1/3 :		
	A2 1/4 :		
	A3 1/6 :		
	A4 1/8 :		

70	tive Question	The difference between sample estimate and population parameter is known as:	4.0	1.00
		The difference between sample estimate and population parameter is known as.		1.00
		Al Absolute error		
		Absolute error :		
		A2 Sampling error		
		·		
		A3 Standard Error		
		A3 Standard Error		
		A4 Sampling Variance		
Objec	tive Question			
71	71	Under what condition sample mean is not unbiased estimate of population mean in linear	4.0	1.00
		systematic sampling:		
		Al Niconstanting and analysis of a soul le		
		Al N is not an integral multiple of n and k		
		A2 N is an integral multiple of n and k		
		A3		
		A3 N is greater than an integral multiple of n and k		
		A4 N is less than an integral multiple of n and k		
Objec	tive Question	JI.		
72	72	An investigator wants to select a samples from a group of male and female separately at random. What sampling method	4.0	1.00
		would he use?		
		A1 Simple random sample		
		Al Simple random sample		
		A2 Cluster sampling		
		·		
		A3		
		A3 Stratified sampling:		
		A4 Systematic sampling		
		·		
Objec	tive Question			
73	73	Let $\{X_n\}$ be a sequence of independent random variables such that	4.0	1.00
		$P[X_n = 1] = \frac{1}{n}$; $P[X_n = 0] = 1 - \frac{1}{n}$, $n = 1, 2,$ Which of the following statements is true?		
		Δ1		
		111 X _n converges to zero in r th (quadratic) mean		
		$\stackrel{A1}{:} X_n$ converges to zero in r^{th} (quadratic) mean		
		X_n converges to zero in r ^{tn} (quadratic) mean A2 X_n converges to zero almost surely		

		A3 Both X_n converges to zero in r^{th} (quadratic) mean and X_n converges to zero almost surely:		
		A4 Neither X_n converges to zero in r^{th} (quadratic) mean nor X_n converges to zero almost surely:		
Ohiec	tive Question			
74	74	A perfect dice is tossed twice. The probability of getting a total of 9 is:	4.0	1.00
		Al 4/9		
		A2 2/9 :		
		A3 _{3/9}		
		A4 1/9		
Objec ¹	tive Question			
75	75	The variance of first <i>n</i> natural numbers is	4.0	1.00
		$\binom{A1}{12} (n^2 + 1)_{12}$		
		$\frac{A^2}{12} (n+1)^2 / \frac{12}{12}$		
		$(n^2-1)/_{12}$		
		$\binom{A^4}{12} (2n^2-1)_{12}$		
	tive Question			
76	76	$\int_0^{\frac{\pi}{2}} \sin^5 x \cos x dx =$	4.0	1.00
		A1 1/3 :		
		A2 1/6		
		A3 _{2/3} :		
Object	etive Question	A4 3/2 :		
	77		4.0	1.00
<i>''</i>		$\int_0^{\frac{\pi}{2}} \sqrt{\sin x + 1} \cos x dx =$	7.0	1.00

	A1 2√2		
	$\begin{array}{c} A2 \\ 2\sqrt{2} - 1 \end{array}$		
	$\begin{array}{c} A3 & 2 \\ \vdots & \frac{2}{3}(2\sqrt{2}-1) \end{array}$		
	A4 √2 :		
Objective Questic	on		
78 78	The value of $\int_0^1 x(1-x)^4 dx$ is	4.0	1.00
	A1 : 1/12		
	A2 1/30		
	A3 : 1/24		
	A4 1/20		
Objective Questic	on.		
79 79	$\lim_{x \to \pi/2} \log \sin x / (\pi - 2x)^2 \text{ is equal to}$	4.0	1.00
	A1 : 1/2		
	A2 : 1/8		
	A3 -1/8		
	A4 : 1/4		
Objective Questic	on		
80 80	If $w = x + 2y + z^2$ and $x = \cos t$, $y = \sin t$, $z = t$, then dw/dt is	4.0	1.00
	$\begin{array}{c} A1 \\ \vdots \\ \sin t + \cos t t + 2 t \end{array}$		
	$\begin{array}{c} A2 \\ : \end{array} - \sin t - \cos t + 2t$		
	$\begin{array}{c} A3 \\ : \end{array} - \sin t + 2\cos t + 2t$		

	$ A4 \sin t + 2 \cos t + 2t $ $ \vdots $		
jective Quest	ion		
81	Let $y = \sqrt{u}$, $u = v^3 + 1$, $v = \sin x$, then $\frac{dy}{dx} =$	4.0	1.00
	$\begin{array}{cc} A1 & \frac{3}{2}\sin x \cos x \end{array}$		
	$\frac{A^2}{2} \frac{3}{2} \frac{\sin^2 x \cos x}{\sqrt{\sin^3 x + 1}}$		
	$\frac{A^3}{2} \frac{3}{2} \frac{\sin x \cos x}{\sqrt{\sin^4 x + 1}}$		
	$\begin{array}{c} A4 \frac{3}{2} \frac{\cos x}{\sqrt{\sin^3 x + 1}} \end{array}$		
bjective Quest	ion		
82	If $\sum a_n = \sum \frac{x^n}{n^n}$; $\forall x \ge 0$, be a series of positive numbers, then the series is	4.0	1.00
	Al Divergent		
	A2 Oscillatory sequence		
	A3 Both Divergent and Oscillatory Sequence:		
	A4 Convergent		
bjective Quest	The series of positive terms $\sum a_n = \sum \frac{n!}{n^n}$ is	4.0	1.00
	Al Convergent		
	A2 Divergent:		
	A3 Equal to 1		
	A4 Equal to 0		
	ion		
jective Ouest			
bjective Quest		4.0	1.00

	For a Matrix A, $ A = 5$ and Adjoint of A is $\begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}$, then A ⁻¹ is		
	A1 An Orthogonal matrix		
	A2 An Identity matrix		
	A3 A Null matrix		
	A4 does not exist :		
Objective Ques	<u>. </u>		
85 85	The matrix $A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ is	4.0	1.00
	Al Singular		
	A2 Orthogonal :		
	A3 Skew Symmetric		
	A4 Negative semi definite		
Objective Ques	tion		
86 86	Let $f(x) = 3x-1$ and $g(x) = x + 4$, then $\frac{d}{dx}(f+g)$ is	4.0	1.00
	Al 2		
	A2 ₁		
	A3 ₀		
	A4 ₄ :		
Objective Ques	tion		
87 87	The series $\frac{1}{2} + \frac{1.3}{2.5} + \frac{1.3.5}{2.5.8} + \dots$ converges to	4.0	1.00
	A1 1:		

		A2 2/3 :		
		A3 3/2 :		
		A4 0 :		
bjec	ctive Question			
	88	Which of the following functions are solutions of the given differential equation? $\frac{dy}{dx} = \frac{2y^4 + x^4}{xy^3}$	4.0	1.00
		A1 y=x		
		A2 y=x8-x4		
		$^{A3}_{:} y = \sqrt{x^8 - x^4}$		
		$^{A4}_{:}$ y= $(x^8-x^4)^{1/4}$		
	etive Question	What is the value of c so that $y(x) = c(1-x^2)$ satisfies the given initial condition $y(0)=1$?	4.0	1.00
		What is the value of c so that $y(x) = c(1-x^2)$ satisfies the given initial condition $y(0)=1$? A1 c = 0		
		$\begin{bmatrix} A2 \\ \vdots \end{bmatrix} c = -1$		
		$\begin{bmatrix} A3 \\ \vdots \end{bmatrix} c = 1$		
		$\begin{vmatrix} A4 \\ c = \frac{1}{2} \end{vmatrix}$		
	ctive Question	<u></u>	- <u>-</u>	
90	90	If $f(x) = x^n$, where $n \notin \mathbb{N}$, then the value of $\sum_{r=0}^n \frac{f^{(r)}(1)}{r!}$ is	4.0	1.00
		A2 -1		
		A3 2n		
		$\stackrel{A4}{:} 2^{n-1}$		

	tive Question		4.0	1.00
91	91	y = f(x) is twice differentiable and has a minimum value, then	4.0	1.00
		$\begin{array}{c} A1 \\ \vdots \\ f''(x) < 0 \end{array}$		
		$f^{*}(x) > 0$		
		f''(x) = 0		
		$f^*(x)$ is a constant		
hiec	tive Question			
12	92	If $\begin{bmatrix} 15-x & 11 & 10 \\ 11-3x & 17 & 16 \\ 7-x & 14 & 13 \end{bmatrix} = 0$, then x is equal to	4.0	1.00
		A1 6 :		
		A2 5 :		
		A3 4 :		
		A4 : 0		
bjec	tive Question			
	93	If $A = \begin{bmatrix} 2 & -1 & 4 \\ x & 0 & 1 \\ 1 & 2 & 0 \end{bmatrix}$ is a singular matrix, then x is	4.0	1.00
		A1 -2		
		A2 : 1		
		A3 3/8		
		A4 - 5/8		
biec	tive Question			
Эвјес 94	94	If $1^3+2^3+3^3++100^3=k^2$ then k is equal to	4.0	1.00
		A1 10100		

A3 5050		
A4 1010		
ive Question		
95 A set of linear equations in the matrix form AX=B if	4.0	00
Al : A is invertible and its inverse is known.		
A2 A is non-invertible and its inverse is known.		
A3 : A is invertible and its inverse is not known.		
A4 : A is non-invertible and its inverse is not known.		
ive Question		
The series $1 + \frac{1}{2!} + \frac{1}{4!} + \frac{1}{6!} + \dots \infty$ is equal to	4.0	00
$\begin{array}{ccc} Al & e-e^{-1} \\ \vdots & \hline 2 \end{array}$		
A2 $\frac{e+e^{-1}}{2}$		
^{A3} e		
A4 e-1		
ive Question		
The matrix $\begin{bmatrix} 1 & -1 & 4 \\ 2 & -1 & 5 \\ 2 & -2 & 8 \end{bmatrix}$ is	4.0	00
A1 Singular with rank 2		
A1 Singular with rank 2 A2 nonsingular with rank 3		

	tive Question			
98	98	The solution of $\sqrt{x} + \sqrt{x - \sqrt{1 - x}} = 1$	4.0	1.00
		A1 ₀		
		A2 1		
		A3 25/16 :		
		A4 16/25		
bjec	tive Question			
	99	The value of $\Gamma(\frac{1}{2})$ is	4.0	1.00
		A1 π		
		$^{\mathrm{A2}}_{:}\sqrt{\pi}$		
		A3 1 :		
		A4 0		
	tive Question			
.00	100	The solution of the system of equations $2x + y - z = 3$	4.0	1.00
		x + y + z = 1		
		x - 2y - 3z = 4		
		using determinants is		
		A1 (0,1,2)		
		A2 (2,1,0)		
		A3 (2,-1,0)		
		A4 (-2,1,0)		