ENTRANCE EXAMINATION FOR ADMISSION, MAY 2011. M.Sc. (BIOCHEMISTRY AND MOLECULAR BIOLOGY) COURSE CODE: 368

Register Nu	mber :		
			Signature of the Invigilator (with date)

COURSE CODE: 368

Time: 2 Hours

Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	An e	endemic species is
	(A)	A species found uniquely in one place
	(B)	A species carrying an epidemic disease
	(C)	A species at an early phase of its evolution
	(D)	A taxonomist's mistake
2.	The	physical similarity of body shape in dolphins, sharks, and penguins results from:
	(A)	Parallel evolution (B) Geographic isolation
	(C)	Convergent evolution (D) A property of a common ancestor
3.	Con	tinental drift is caused by
	(A)	The dispersal of seeds and spores from one continent to another
	(B)	The random loss of genes from populations isolated on a continent
	(C)	The upwelling and subsequent movement of marine sediments
	(D)	The movement of tectonic plates on the Earth's crust
4.	each	alm tree was 90 cm high, when it was planted. It grows by an equal number of cm a year and at the end of the seventh year it was one ninth taller than at the end of twelfth year?
	(A)	30 (B) 45 (C) 57 (D) 18
5.		ording to Darwin's theory of evolution, differences between species may be the
	(A)	the disuse of body structures
	(B)	the transmission of acquired characteristics
	(C)	natural selection
	(D)	mutagenic agents
6.		nucleotide sequences found in two different species are almost exactly the same. suggests that these species
	(A)	are evolving into the same species
	(B)	contain identical DNA
	(C)	may have similar evolutionary histories
8	(D)	have the same number of mutations

7.	. Which group of organisms is believed to be among the earliest to evolve on Earth?					on Earth?	
	(A)	Arthropods		(B)	Coelenterates		
	(C)	Protozoan		(D)	Reptiles		
8.	Whi	ch concept was not i	ncluded in Charles	Darw	rin's theory of na	tural s	selection?
	(A)	Survival of the fitte	est	(B)	Struggle for exi	stence	
	(C)	Overproduction of	offspring	(D)	Punctuated equ	ilibriu	ım
9.	Viruses are exceptions to the cell theory, but they have some characteristics of living things. What is one of these characteristics?						
	(A)	They are made up	of many specialized	d cells			
	(B)	They contain genet	ic material				
	(C)	They reproduce by	mitosis				
	(D)	They contain chlore	phyll				
10.	Whi	ch are the four most	abundant element	s in li	ving cells?		
	(A)	carbon, oxygen, nit	rogen, sulfur				
	(B)	carbon, oxygen, hy	drogen, nitrogen				
	(C)	carbon, oxygen, sul	fur, phosphorus				
	(D)	carbon, sulfur, hyd	rogen, magnesium				
11.	Whi	ch of the following is	not an amino acid	?			
	(A)	Glutamic acid		(B)	Aspartic acid		
	(C)	Glutamine		(D)	Palmitic acid		
12.		ts growing in and arestrial habitat	round a pond event	tually	filling in the pon	d and	changing it to
	(A)	Succession (B) Dispersion	(C)	Fertilization	(D)	Speciation
13.		pH of human blood pH of human blood?	is slightly basic.	Which	of the following	is mo	ost likely to be
	(A)	10.6 (B	7.4	(C)	7.6	(D)	6.4

14.	A fo		gellum,	organism is obse chloroplasts, m				
	(A)	Protista	(B)	Plantae	(C)	Fungi	(D)	Animalia
15.	Cell	ular proteins d	estined	for secretion are	e sorte	d and package	d in the	
	(A)	Lysosomes			(B)	Endosomes		
	(C)	Endoplasmic	reticulu	ım	(D)	Trans golgi no	etwork	
16.	The	general cellula	r genet	ic information is	store	d in structures	known	as
	(A)	chromosomes			(B)	mitochondria		
	(C)	vacuoles			(D)	endoplasmic i	reticulu	m
17.	Whi	ch of the follow	ing cod	on codes for the	termi	nation of the tr	anslatio	on?
	(A)	UAC	(B)	UCA	(C)	UAG	(D)	GUA
18.		ch of the followns and ages?	ving in	itiates and enha	ances	the conditions	under	which the fruit
	(A)	Gibberillins			(B)	Auxins		
	(C)	Ethylene gas			(D)	Abscisic acid		
19.	The	most common	form of	DNA that exists	s in the	e physiological	state is	
	(A)	A-DNA	(B)	B-DNA	(C)	C-DNA	(D)	Z-DNA
20.	Bar	bara McClintoc	k disco	vered transposa	able el	ements in the	late 19	40s in which of
	the	species						
	(A)	Rice	(B)	Maize	(C)	C. elegans	(D)	E. coil
21.	Rev	erse transcript	ase was	discovered by				
	(A)	Watson &Cri	ck		(B)	Temin & Arb	er	
	(C)	Temin & Balt	imore		(D)	Arber & Balt	imore	

22.	The difference between the molecula	r weight o	f sucrose and that of the sum of th				
	molecular weights of its components (glucose and fructose) is						
	(A) 0 (B) 1	(C)	16 (D) 18				
23.	Proline disrupts -helical structure in	proteins be	cause it is				
	(A) An acidic amino acid	(B)	An aromatic amino acid				
	(C) An amino acid	(D)	A basic amino acid				
24.	The microscope usually used for view	ing living ti	ssues is known as				
	(A) electron microscope	(B)	phase contrast microscope				
	(C) oil immersion microscope	(D)	compound microscope				
25.	X-ray crystallography is used to study	7					
	(A) structure of lipids						
	(B) composition of proteins and nucl	leic acids					
	(C) arrangement of proteins						
	(D) three dimensional structure of p	roteins					
26.	The isolation of individual organelles	from homo	genates is achieved through				
	(A) Differential centrifugation	(B)	Chromatography				
	(C) X-ray diffraction	(D)	Employment of different solvents				
27.	What is the primary objective of cell f	ractionation	n?				
	(A) to view the structure of cell fract	tionation					
	(B) to identify the enzymes outside	the organel	les				
	(C) to determine the size of various	organelles					
	(D) to separate the organelles						
28.	High wavelength UN rays are used in	ıa					
	(A) fluorescent microscope	(B)	polarizing microscope				
	(C) ultraviolet microscope	(D)	phase-contrast microscope				

29.		Lipids, proteins and carbohydrates mainly constitute cell membrane. With respect to their mutual proportions, which of the following statements is correct?								
	(A)	all the three ar	e in e	qual proportion	s					
	(B)	lipids are in least proportion								
	(C)	carbohydrates are in least proportion								
	(D)	proteins are in	least	proportion						
30.	Basi	ic unit of plasma	mem	brane is						
	(A)	protein and pho	osphol	lipids	(B)	cellulose and c	arboh	ydrate		
	(C)	protein and cell	lulose		(D)	protein and car	rbohy	lrate		
31.	Carl	Carbohydrates are present in the plasmalemma in the form of								
	(A)	cellulose			(B)	hemicellulose				
	(C)	starch			(D)	glycolipids and	glyco	proteins		
32.	In S	inger-Nicholson	fluid-1	mosaic model, e	xtrinsi	c proteins are				
	(A)	superficially ar	range	d and cannot be	e separ	ated easily				
	(B)	superficially arranged and can be separated easily								
	(C)	tightly attached to intrinsic proteins and can be separated easily								
	(D)	tightly attached to intrinsic proteins and cannot be separated easily								
33.	The	enzyme that fac	ilitate	the transport t	hrough	cell membrane	is			
	(A)	permease	(B)	lipase	(C)	endonuclease	(D)	ligase		
34.	RNA	A is absent in								
	(A)	plasmalemma	(B)	cytoplasm	(C)	ribosomes	(D)	chromosomes		
35.	Carr	Carrier molecules in the plasma membrane are required for								
	(A)	facilitated diffu	sion o	only						
	(B)	osmosis								
	(C)	active transpor	t only							
	(D)	(D) both facilitated diffusion and active transport								

36.	Tonoplast is a differentially permeable	nembrane surrounding the	
	(A) cytoplasm (B) vacuole	(C) nucleus (D) mito	chondria
37.	Most plant cells are surrounded by cell	wall. There are some exceptions, for e	example
	(A) bacteria	(B) stem hairs	
	(C) gametes	(D) root hairs	
38.	Cell theory was propounded by		
	(A) Schleiden and Schwann	(B) Watson and Crick	
	(C) Mendel and Morgan	(D) Wallace and Darwin	
39.	Prokaryotic genetic system contains		
	(A) DNA and histones	(B) DNA but no histones	
	(C) Neither DNA nor histones	(D) Either DNA or histones	
40.	The cytoplasmic connections from cell to	cell are known as	
	(A) middle lamella	(B) plasmodesmata	
41.	(C) cell membrane system Chemical nature of ribosomes is	(D) endoplasmic reticulum	
	(A) beta galactosidase	(B) proteins and lipids	
	(C) glucose and sucrose	(D) proteins and RNA	
42.	The process of oxidative phosphorylatio	is explained by	
	(A) Chemical coupling hypothesis	(B) Chemi-osmotic coupling hy	pothesis
	(C) Both (A) and (B)	(D) The design of the TCA cycle	е
43.	The first step in the degradation of all a	mino acids is a	
	(A) Oxidation	(B) Reduction	
	(C) Transamination	(D) Decarboxylation	
44.	Disulfile bonds are broken by — mercaptoethanol	with reagents such a	as beta-
	(A) Alkylation	(B) Reduction	
	(C) Oxidation	(D) Proteolysis	

45.	Org	anic solvents denature proteins prima	rily by						
	(A)	(A) Increasing the free energy of hydrophilic residues							
	(B)	(B) Lowering the free energy of hydrophobic residues							
	(C)	Aggregation of hydrophobic regions of	of the	protein					
	(D)	Dissociation of the disulphide bonds							
46.	Cyc	lins are proteins involved in regulation	n of						
	(A)	Cell cycle	(B)	Circadian Rhythm					
	(C)	Membrane transport	(D)	Synthesis of Cyclic AMP					
47.	Sick	de cell anemia is							
	(A)	X-linked recessive	(B)	Autosomal dominant					
	(C)	Autosomal recessive	(D)	None of the above					
48.		pH activity profile of lysozyme drop s cause	harply	y on either side of the optimum at pH					
	(A)	Asp 52 carboxyl becomes protonated							
	(B)	Glu 35 carboxyl becomes ionised							
	(C)	Both (A) and (B)							
	(D)	Asp 52 and Glu 35 remain in unioniz	ed for	m					
49.	Enz	yme catalysis can be explained by a lo	ek and	key concept of					
	(A)	enzyme fit on substrate							
	(B)	substrate fit on active site		Ain ·					
	(C)	cofactor fit on enzyme							
	(D)	substrate fit on charged residues on	the en	zyme					
50.	Gel	filtration is a method for separating pr	roteins	s on the basis of their					
	(A)	stokes radii	(B)	solubility					
	(C)	hydrophobicity	(D)	surface charge					
51.	Two	general classes of enzymatic catalysis	are						
	(A)	anion, cation	(B)	donor, acceptor					
	(C)	acid-base, covalent	(D)	Ionic, van derWaals					

52.	Equ	Equilibrium constant of a reaction is defined as the							
	(A)	A) ratio of reactant concentration to product conc.							
	(B)	(B) ratio of product conc. to reactant conc.							
	(C)	(C) product of reactant and product concentration							
	(D)	inverse product of reactant and produ	act cor	ıc.					
53.	The	The technique of affinity labelling is employed to identify amino acid residues at							
	(A)	active site	(B)	amino terminus					
	(C)	carboxy terminus	(D)	membrane interface					
54.	The	principal fuel molecule of most cells is							
	(A)	carbohydrate	(B)	vitamins					
	(C)	alcohol	(D)	nucleic acids					
55.	Proc	luction of ATP in the absence of oxyger	ı is de	signated as					
	(A)	glycolysis	(B)	fermentation					
	(C)	TCA cycle	(D)	none of the above					
56.	Two	important principal commodities prov	ided t	o a cell by catabolic pathways are					
	(A)	ATP and intermediates	(B)	ATP and NADPH					
	(C)	NAD and intermediates	(D)	Substrates and intermediates					
57.	The	cofactor in the glycogen phosphorylase	react	ion is					
	(A)	NADP	(B)	Cyclic AMP					
	(C)	Glucose phosphate	(D)	ATP					
58.	A ni	trogenous base linked to sugar is called	1						
	(A)	Nucleoside	(B)	Nucleotide					
	(C)	Nucleic acid	(D)	None of the above					

59.	All carboxylation reactions involving C	O2 fixatio	n in animal cells require
	(A) thiamine pyrophosphate	(B)	biotin
	(C) alpha-keto carboxylic acids	(D)	coenzyme-A
60.	Oxidative phosphorylation is blocked b	у	
	(A) inhibitors of electron transport	(B)	inhibitors of phosphorylation
	(C) uncoupling agents	(D)	all of the above
61.	In the absence of an energy source, mo	st active to	ransport systems promote
	(A) active diffusion	(B)	passive diffusion
	(C) facilitated diffusion	(D)	no diffusion at all
62.	The coenzyme required for two steps is synthase reaction during pyrimidine sy		
	(A) cyanocobalamin	(B)	pyridoxal phosphate
	(C) pantothenic acid	(D)	tetrahydrofolate
63.	In the prokaryotes, all polypeptide chamino acid	ain synth	esis probably are initiated with the
	(A) arginine (B) f-methionin	ne (C)	acetyl lysinc (D) glycine
64.	Which one of the following elements thyroxin?	is essentia	al for the formation of the hormone
	(A) Calcium (B) Potassium	(C)	Sodium (D) Iodine
65.	How are impulses transmitted across s	ynapses b	y?
	(A) electrical means	(B)	chemical means
	(C) mechanical means	(D)	thermal means
66.	Rericulocytes refer to		
	(A) white blood cells	(B)	blood platelets
	(C) lymphocytes	(D)	immature erythrocytes
67.	Follicle stimulating Hormone (FSH) is	produced	by
	(A) posterior pituitary	(B)	adrenal
	(C) thyroid	(D)	anterior pituitary
68.	Which of the following glands have both	h an endo	crine and an exocrine functions?
	(A) mammary gland	(B)	pancreas
	(C) pituitary gland	(D)	adrenal gland

69.	Bloo	od of insects has						
	(A)	blue colour	(B)	red colour				
	(C)	green colour	(D)	none of the above				
70.	Diffe	erence between a sponge and the met	azoa is					
	(A)	cell division	(B)	cell organization				
	(C)	division of labour	(D)	presence of blood				
71.	The	hydrophobic tails of a phospholipids	bilayer	are oriented towards the				
	(A)	Interior of the plasma membrane						
	(B)	Extra cellular fluid surrounding the	e cell					
	(C)	Cytoplasm of the cell						
	(D)	Nucleus of the cell.						
72.	During the metamorphosis of a tadpole into a frog, there is a change in nitrogen metabolism from ammonotelism to ureotelism. This would be reflected in							
	(A)	An increase in ornithine transcarbamylase (OTCase) activity in liver.						
	(B)	An increase in ammonia in the blood.						
	(C)	An increase arginase activity in the heart.						
	(D)	A decrease in cabamoylphosphate s	yntheta	ase in kidney.				
73.	Certain amino sugars may be components of							
	(A)	DNA	(B)	Glycogen				
	(C)	ABO blood group antigens	(D)	Vit. C				
74.	Gas with in the colon is primarily derived from which one of the following sources?							
	(A)	(A) CO ₂ liberated by the interaction of HCO ₃ & H ⁺						
	(B)							
	(C)	Fermentation of undigested oligosaccharides by bacteria						
	(D)	Swallowed atmospheric air						
75.	Whi	ch of the following is not a similarity	of mito	chondria and chloroplast?				
	(A)	Both make ATP						
	(B)	Both have an envelop of double uni	t memb	rane				
	(C)	Both possess their own DNA						
		Both capture solar energy and conv	ert it ir	nto chemical energy				

76.	Mit	onia and mainia annuality		11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
70.	dau	osis and meiosis accomplish segregat ghter cells. Which of the following is th	ne cha	the replicated DNA to two or more racteristic of both mitosis and meiosis
	(A)	Chromosomes attach to actin		
	(B)	The resulting cells are diploid (2n)		
	(C)	The resulting cells are haploid (n)		
	(D)	Spindle fibers attach to chromosome	s at th	eir kinetochores
77.	Mad	crophages are directly involved in im	mune	responses in which of the following
	(A)	Production of IL-2	(B)	Presentation of antigens
	(C)	Specific killing of tumor cells	(D)	Production of antibodies
78.	Oka	zaki segments are		
	(A)	segment of DNA capable of replication	n	
	(B)	segment of chain nucleotides		
	(C)	segments of chain of nucleotides form	ned du	ring replication of DNA
	(D)	segment of gene which under recomb	inatio	n
79.	Sub	strate level phosphorylation occurs wh	en	
	(A)	Succinic acid changes to fumeric acid		
	(B)	Fumeric acid changes to malic acid		
	(C)	Succinyl coA changes to succinic acid		
	(D)	Oxaloacetic acid changes to OL-keto	glutar	ic acid
80.	Fun	ctions of hepatocytes include which of	the fol	lowing
	(A)	Synthesis of immunoglobulin	(B)	Concentration of bile
	(C)	Storage of vitamin A	(D)	Synthesis of albumin & fibrinogen
81.	This	protein of saliva as a role in taste		
	(A)	Amylase (B) R protein	(C)	Gusten (D) None
82.	The	rate limiting step in fatty acid synthes	sis is c	atalyzed by
	(A)	Acetyl Co A carboxylase	(B)	ATP- citrate lyase
	(C)	Malic enzymes	(D)	Pyruvate dehydrogenase
368		12		

00.	Con	imon lesions lou	na in	DNA after exp	osure of	Oftraviolet rays	are			
	(A)	Pyrimidine din	ners		(B)	Single strand	oreaks			
	(C)	Base deletion			(D)	Purines dimer	S			
84.	In the classical model of transcriptional control described by Jacob and monad, a repressor protein binds to									
	(A)	An enhancer			(B)	An AUG seque	nce			
	(C)	An operator			(D)	ATATAbox				
85.	Which of the following does not make direct use of pH or proton gradient?									
	(A)	Mitochondrion			(B)	Cyanobacteria				
	(C)	Protozoan ciliu	ım		(D)	Bacterial flage	llum			
86.	Which of following six member ring compounds has most planar structure?									
	(A)	Glucose	(B)	Cytosine	(C)	Cyclohexane	(D)	Inositol		
87.	Which of the following is most likely to mechanism for origin of multigene families?									
	(A)	(A) Gene duplication								
	(B) Convergent evolution of dissimilar genes									
	(C)	(C) Horizontal gene transfer								
	(D)	D) Viral infection								
88.	Which of the following found only in the organisms containing polycistronic mRNA									
	(A)	Missense muta	ation		(B)	Polar mutation	1			
	(C)	Temperature sensitive mutation			(D)	Alternate splic	ing m	utation		
89.	An E.coli strain lacking DNA polymerase I would be deficient in DNA									
	(A)	Repair			(B)	Methyalation				
	(C)	Splicing			(D)	Degradation				
90.	How much energy will be released if 1 mole of ATP to ADP on hydrolysis?									
	(A)	17 kCal	(B)	7 kCal	(C)	20 kCal	(D)	25 KCal		
91.	Whi	ch among the fo	llowin	g is free radica	al scaven	iging enzyme?				
	(A)	Amylase	(B)	Catalase	(C)	Peptidase	(D)	Polymerase		

92.	Albumin globulin ratio is reversed in which conditions?								
	(A)	Metabolic acidosis	(B)	Diabetes Type II					
	(C)	Cirrhosis	(D)	Chronic lung infections					
93.	Which immunoglobulin is secreted as a primary response to antigen?								
	(A)	IgG (B) IgM	(C)	IgE (D) IgA					
94.	What is the function of Troponin-C?								
	(A)	ATPase inhibition	(B)	ATPase generation					
	(C)	Binding of calcium	(D)	Binding of copper					
95.	What are the substituent groups of heme?								
	(A)	Methyl	(B)	Propionyl					
	(C)	Vinyl	(D)	All of the above					
96.	What is calcitriol?								
	(A)	1, 25-dihydroxy cholecalciferol	(B)	7-dehydro cholesterol					
	(C)	25-hydroxy cholecalciferol	(D)	1-hydToxy cholecalciferol					
97.	Transamination reaction requires which Vitamin?								
	(A)	Thiamine pyrophosphate	(B)	Inositol triphosphate					
	(C)	Pyridoxal phosphate	(D)	Niacin					
98.	What is the important extracellular cation?								
	(A)	Potassium (B) Calcium	(C)	Both (A) & (B) (D) Sodium					
99.	Which among the following is an essential fatty acid?								
	(A)	Oleic acid	(B)	Palmitic acid					
	(C)	Linoleic acid	(D)	Decanoic acid					
100.	When pH falls by 1 unit, what is the change in the hydrogen ion concentration?								
	(A)	Increases by 10 times	(B)	Decreases by 10 times					
	(C)	Increases by 100 times	(D)	Decreases by 100 times					