ENTRANCE	E EXAMINATION FOR ADMISSIO M.Sc. (BIOINFORMATICS) COURSE CODE : 378	N, MAY 2010.
Register Number :		* PONDICHERRY UNIVERSITY
		Signature of the Invigilator (with date)

COURSE CODE: 378

Time : 2 Hours

Max: 400 Marks

Instructions to Candidates :

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET <u>using HB pencil</u>.
- 4. Avoid blind guessing. A wrong answer will fetch you -1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

- 1. What is the function of DNA polymerase III?
 - (A) It attaches the RNA primers to the DNA strand
 - (B) It adds nucleotide pairs to the growing DNA strand
 - (C) It adds single nucleotides to the growing DNA strand
 - (D) It unwinds the DNA
- 2. During DNA replication what is the first process of occur?
 - (A) Sealing of the nicks between short DNA sections
 - (B) Synthesis of the lagging strand
 - (C) Unwinding of parental DNA
 - (D) Synthesis of the leading strand
- 3. Sickle cell anaemia is a disease resultant of missense mutation. What codon number in the DNA sequence does the mutation take place? What amino acid substituted the original glutamic acid? This mutation affects which protein chain in the hemoglobin?
 - (A) 6; valine; beta hemoglobin (B) 7; methionine; alpha hemoglobin
 - (C) 6; cysteine; beta hemoglobin (D) 7; praline; alpha hemoglobin
- 4. Why does a single base substitution in DNA base sequence not necessary result in a malfunctional polypeptide?
 - (A) Degeneracy of the triplet code
 - (B) New amino acid is chemically equivalent
 - (C) The substitution takes place at introns
 - (D) All of the above
- 5. In eukaryotes, transcription of mRNA is (1) catalyzed by what type of enzyme (2) initiated by binding of transcription factors to which important promoter sequence?
 - (A) RNA polymerase IV; TATA box
 - (B) RNA polymerase I; Goldberg-Hogness box
 - (C) RNA polymerase II; TATA box
 - (D) RNA polymerase III ; Goldberg-Hogness box
- 6. How many domains are there in an immunoglobulin heavy chain constant region?
 - (A) 2 (B) 3 (C) 6

(D) 5

7.	Wha	t is the approximate size (in Mb) of the	Caer	norhabditis elegans genome?
	(A)	100 Mb (B) 235 Mb	(C)	540 Mb (D) 1000 Mb
8.	Wha	t reagent is used, in the Edman degrad	lation	of a peptide?
	(A)	Mercaptoethanol	(B)	Phenylisothiocyanate
	(C)	Trifluoroacetic acid	(D)	Trichloroacetic acid
9.	Wha	t is the origin of the name given to the	Salm	onella genus of bacteria?
	(A)	It was first isolated from salmon tissu	les	
	(B)	It is named for microbiologist D. Salm	ion	
	(C)	It produce pink 'salmon-like' colonies		
	(D)	It smells like salmon fish		
10.	By v	vhat other name is growth hormone kn	own?	
	(A)	Somatomedin	(B)	Somatotropin
	(C)	Somatostatin	(D)	None of the above
11.	Whi	ch of these disease causing bacteria wa	s disc	covered by Robert Koch?
	(A)	Bacillus anthrax	(B)	Salmonella typhimurium
	(C)	Shigella dysenteriae	(D)	Corymebacterium diptheriae
12.	Whi	ch of the following growth curve is repr	esent	ed by bacterial cultures?
	(A)	S-shaped (B) V-shaped	(C)	J-shaped (D) L-shaped
13.	Pho	sphofructokinase I is inhibited only by		
	(A)	ATP only	(B)	ATP and citrate both
	(C)	Hexokinase	(D)	Isocitrate dehydrogenase
14.	Nic	ks in a double-stranded DNA molecule	can b	e repaired by
	(A)	DNA topoisomerase	(B)	DNA polymerase I
	(C)	DNA ligases	(D)	Polynucleotide kinase

- 15. At which wavelength are DNA/RNA concentrations measured?
 - (A) 240 nm (B) 260 nm (C) 300 nm (D) 340 nm
- 16. In each round of fatty acid oxidation
 - (A) NADH and ATP is released
 - (B) NADH₂ and ATP is released
 - (C) NADH₂, FADH₂ and Acetyl CoA is released
 - (D) FADH₂ and Acetyl CoA is released
- 17. Which of the following pairs of compounds are interconvertible in the liver by a single polypeptide chain containing two different catalytic sites?
 - (A) Glucose and, glucose 6-phosphate
 - (B) 3-Phosphoglycerate and phosphoenol pyruvate
 - (C) Fructose 6-phosphate and fructose 1,6-bisphosphate
 - (D) Fructose 6-phosphate and fructose 2,6-bisphosphate
- 18. Which of the following occurs as a result of epinephrine binding to its receptor?
 - (A) cAMP is produced from AMP
 - (B) Phosphorylase kinase is phosphorylated and glycogen synthase is dephosphorylated
 - (C) Phosphodiesterase is activated to prolong the effect of cAMP
 - (D) A phosphatase inhibitor is activated by phosphorylation
- 19. When the coding region of a prokayotic gene is cloned into the *lac* Z gene downstream from the translational initiator, the chance of an in-frame fusion is
 - (A) 1/6 (B) 1/5 (C) 1/3 (D) 1/2
- 20. Which of the following elements is LEAST likely to be found on any + strand viral genomic RNA?
 - (A) A cap
 - (B) A binding site for RNA-dependent RNA polymerase
 - (C) A binding site for ribosomes
 - (D) A binding site for RNA polymerase II

21.	A ga	as performs the most work when it expa	ands	
	(A)	isothermally	(B)	adiabatically
	(C)	at a non-uniform rate	(D)	isobarically
22.	A th	nermos flask contains hot tea. It is vig system, then its temperature will	orous	ly shaken. If the tea is considered as
	(A)	not change	(B)	rise
	(C)	fall	(D)	first fall and then rise
23.	The	door of an operating refrigerator is ope	ned. l	Now the temperature of the room will
	(A)	increase		
	(B)	decrease		
	(C)	remain unchanged		
	(D)	decrease in summer and increase in v	vinter	
24.	In tl	ne case of a petrol engine, the real usef	ul woi	k is done in the
	(A)	exhaust stroke	(B)	suction stroke
	(C)	compression stroke	(D)	explosion stroke
25.	Hea	ting of water under atmospheric pressu	ure is	an
	(A)	isothermal process	(B)	isobaric process
	(C)	adiabatic process	(D)	isochoric process
26.	The	function of the carburetor in a car engi	ne is	to
	(A)	filter the petrol before entering the pi	ston o	hamber
	(B)	form a proper mixture of air and petr	ol	
	(C)	maintain a proper flow of petrol in the	e engi	ne
	(D)	check air from going into engine		
27.	Met	als are good conductors of heat because	•	
	(A)	they contain free electrons	(B)	they are relatively far apart
	(C)	their atoms collide very frequently	(D)	they have a reflecting surface
28.	Hea	t is transmitted from higher to lower to	emper	ature through molecular collisions in
	(A)	viscosity (B) radiation	(C)	convection (D) conduction

- 29. A pendulum suspended from the ceiling of a train has a period T when the train is at rest. When the train is accelerating with a uniform acceleration at the period of oscillation will
 - (A) increase

- (B) decrease
- (C) remain unaffected (D) become infinite
- 30. A hollow metallic sphere is filled with water and hung by a long thread. A small hole is drilled at the bottom through which water slowly flows out. Now the sphere is made to oscillate. The period of oscillation of sphere
 - (A) decreases (B) increases
 - (C) remains constant (D) first increases and then decreases
- 31. Wavelength of any radiations from electromagnetic spectrum is
 - (A) Directly proportional to its frequency
 - (B) Inversely proportional to its frequency
 - (C) Inversely proportional to its velocity
 - (D) None of the above
- 32. A pair of electric charges of equal magnitude but opposite sign, separated by some, usually small, distance
 - (A) Insulator (B) Magnetic dipole
 - (C) Electric dipole (D) None of the above
- 33. A 2-kg object is moving horizontally with speed of 4 m/s. How much net force is required to keep the object moving at this speed and in this direction
 - (A) 8 N (B) 0 N
 - (C) 50 N (D) None of the above
- 34. Imagine a place in the *cosmos* far from all gravitational and frictional influences. Suppose that you visit that place (just suppose) and throw a rock. The rock will
 - (A) Gradually stop
 - (B) Continue in motion in the same direction at constant speed
 - (C) Continue in motion in the same direction at different speed
 - (D) None of the above
- 35. An airplane accelerates down a runway at 3.20 m/s² for 32.8 s until is finally lifts off the ground. Determine the distance traveled before takeoff
 - (A) d = 1720 m (B) d = 0 m (C) d = 10 m (D) d = 17.2 m

36.	A certain number (call it "one zillion") of oxygen atoms weighs 1.200 g. What will be the weight of an equal number of lithium atoms?										
	(A)	0.570 g	(B)	1 g		(C)	$2 \mathrm{g}$	~	(D)	5.7 g	
37.	How deco	many kilogran mposing 0.400 k	ns of g of ma	metallic agnesium	magnes oxide i	sium nto it	could s eleme	theoretic ents	ally b	be obtained l	уy
	(A)	$0.241 \mathrm{~kg}$ of Mg				(B)	0.5 kg	of Mg			
	(C)	0.7 kg of Mg				(D)	0.9 kg	of Mg			
38.	Suppose that we have N carbon atoms, where N is a number large enough to give us a pile of carbon atoms whose mass is 12.0 grams. How much would the same number, N , of oxygen atoms weigh?										
	(A)	16.0 g				(B)	20.0 g				
	(C)	25.0 g				(D)	None	of the abo	ove		
39.	9. Methanol, CH ₃ OH, is a liquid having a density of 0.79 g per millilitre. Calculate th molar volume of methanol							ıe			
	(A)	$V_M=0.0405~{\rm L}$	mol^{-1}			(B)	$V_M =$	0.100 L r	nol ⁻¹		
	(C)	$V_M=0.1050~{\rm L}$	mol^{-1}			(D)	$V_M =$	$0.0025~\mathrm{L}$	mol ⁻¹	L	
40.	How	many grams of	KCl wi	ll contair	n 10 g oi	f pota	ssium?			·	
	(A)	20 g	(B)	19 g		(C)	50 g		(D)	30 g	
41.	Ubic	quitin is a proteir	n of ab	out							
	(A)	46 amino acids			÷	(B)	56 am	ino acids			
	(C)	66 amino acids				(D)	76 am	ino acids			
42.	The	oxygen carrier p	rotein	in muscle	es is						
	(A)	Myoglobin				(B)	Hemo	globin			
	(C)	Immunoglobin				(D)	Methe	emoglobir	ı		
43.	One	CentiMorgan is									
	(A)	Recombination	ratio o	f 1% over	small	distar	nces in	a chromo	some		
	(B)	Recombination	fractio	on of 1% o	ver sma	all dis	stances	in a chro	moso	me	
	(C)	Recombination	indexe	s of 1% o	ver sma	ll dis	tances	in a chro	mosoi	me	
	(D) Recombination rate of 1% over small distances in a chromosome										

44. Individuals must be — in order to be informative for linkage ana						
	(A)	Double heterozygotes	(B)	Double homozygotes		
	(C)	Single heterozygotes	(D)	Single homozygotes		
45.	indiv	is the presence and absence vidual, regardless of pedigree informat	of eit	her allele could be recognized in any		
	(A)	Dominant allele	(B)	Recessive allele		
	(C)	Codominant allele	(D)	Corecessive allele		
46.	Wha	at is PIC in terms of genomics	*			
	(A)	Polymorphism information Content	(B)	Protein information content		
	(C)	Polymerase information content	(D)	Primers information content		
47.	Нар	lotypes are also said to be				
	(A)	Linkage map	(B)	Linkage study		
	(C)	Linkage ratio	(D)	Linkage phase		
48.	HAI	f medium was first applied to hybrid c	ells by			
	(A)	Littlefield in 1964	(B)	Donahue in 1968		
	(C)	Ruddle in 1975	(D)	Deisseroth in 1977		
49.	Wha	at is FACS?				
	(A)	Flurorescence activated cell sorter				
	(B)	Flurorescence adhered cell sorter				
	(C)	Flow activated cell sorter				
	(D)	Flow adherence cell sorter				
50.	Whi	ch of the following is an autosomal rec	essive	disorder?		
	(A)	Duchenne Muscular Dystrophy				
	(B)	Cystic Fibrosis				
	(C)	Chronic Granulomatous Diseases				
	(D)	Hemophilia				

51. Tumor cells may have surface antigens to which the immune system is not tolerant. Nevertheless, well established tumors are usually resistant to killing by CTL. This may occur via mutational loss of plasma-membrane proteins. Loss of which protein should be most effective in reducing killing by CTL?

(A)	IL-2 receptor	(B)	TNF receptor
· · · ·			

- (C) Fc receptor for IgG (D) Class I MHC
- 52. An Rh-negative mother has given birth to an Rh-positive child. In this situation you need to determine the extent of the mother's immune response to Rh antigen. Which test should you order? [Antiglobulin test = Coombs' test]
 - (A) Indirect antiglobulin test on serum from the newborn and Rh+ erythrocytes
 - (B) Indirect antiglobulin test on maternal serum and Rh+ erythrocytes
 - (C) Indirect antiglobulin test on maternal serum and Rh- erythrocytes
 - (D) Direct antiglobulin test on maternal erythrocytes
- 53. An organized collection of logically related data is known as
 - (A) Data (B) Metadata
 - (C) Database (D) Data versus information

54. Size of a database are usually measured in terms of

(A) Tera Bytes (B) Mega Bytes (C) Giga Bytes (D) Data Bytes

55. The data, administration subsystem helps you perform all of the following, except

- (A) Backups and recovery
- (B) Query optimization
- (C) Security Management
- (D) Create, Change and Delete information
- 56. The network which have a single communication channel that is shared by all the machines on the network is
 - (A) Point-to-point Network (B) Personal Area Network
 - (C) Broadcast Network (D) Virtual Network
- 57. Computers that connect three or more transmission lines are
 - (A) Transmission lines (H
- (B) Switching elements
 - (C) Hosts
- (D) Subnet

58.	58. The situation when too many packets are present in the subnet is called							
	(A)	Overlapping		(B)	Flooding			
	(C)	ALOHA		(D)	Congestion			
59.	The	parts of the network is ca	lled					
	(A)	Intranet (B) Su	ubnet	(C)	Supernetwork (D) Subnetwork			
60.	The	network security software	e is a					
	(A)	Netwall (B) Fi	irewall	(C)	Secuiry wall (D) VPN			
61.	The coen	conversion of pyruvate to zymes?	o oxaloacetate	is lik	ely to require which of the following			
	(A)	Biotin		(B)	Vitamin B12			
	(C)	Thiamine pyrophosphate	е	(D)	Pyridoxal phosphate			
62.	Which of the following hormones initiates biological actions by crossing the plasma membrane and then binding to a receptor?							
	(A)	Glucagon		(B)	Estradiol			
	(C)	Insulin		(D)	Norepinephrine			
63.	An e	enzyme that catalyzes the	reaction A \leftrightarrow	B ch	anges the			
	(A)	Equilibrium constant						
	(B)	Equilibrium concentration	on of A					
	(C)	Entropy of the reaction						
	(D)	Rate of both the forward	l and reverse r	eacti	on			
64.	Cell	s with abundant apical m	icrovilli are ch	aract	eristically found in			
	(A)	Exocrine gland						
	(B)	The reticuloendothelial	system					
	(C)	Neuronal dendrites						
	(D)	Absorptive epithelia						
65.	Diac	ylglycerol activates which	h of the followi	ing er	nzyme?			
	(A)	Protein kinase A		(B)	Protein kinase C			
	(C)	MAP kinase		(D)	Phosphorylase b kinase			

66. Cellular proteins destined for secretion are sorted and packaged in the

- (A) Endosomes **(B)**
 - (C) Trans Golgi network

67. Incubation of gram-negative bacteria with lysozyme in an isotonic medium causes rod-shaped bacteria to assume a spherical shape. This phenomenon is

- (A) Destruction of cell wall **(B)** Destruction of cytoskeleton
- (C) Damage to the cell membrane (D) Change in gene expression

Virus-mediated transfer of cellular genetic material from one bacterial cell to another 68. by means of virus particles is called

- (A) Transfection **(B)** Transformation
- (C) Transposition (D) Transduction

Which of the following processes leads to the formation of polytenc chromosomes? 69.

- (A) Nondisjunction of chromatids during meiosis
- **(B)** Recombination between adjacent chromosome segments
- (C) Sister chromatid exchange
- Repeated replication without separation of chromatids (D)
- In the classical model of transcriptional control described by Jacob and Monod, a 70. repressor protein binds to
 - (A) An Enhancer (B) An AUG sequence
 - (C) An Operator (D) A TATA box
- 71. Satellite DNA consists of
 - (A) Extra chromosomal DNA
 - **(B)** Short repetitive nucleotide sequences
 - **Ribosomal RNA genes** (C)
 - (D) Single gene regions
- 72. Genes containing introns are called
 - (A) silent genes **(B)** split genes
 - (C) structural genes (D) pseudogenes
- 73. NOR (nucleolus organizing region) occurs in the region of
 - (A) secondary constriction

(C) telomere

- (B) primary construction
- (D) centromere
- 11

- (D) Peroxisomes
- Endoplasmic reticulum

74.	Арри	roximately what percentage of human	genon	e contain protein	codi	ng genes
	(A)	~2% (B) ~20%	(C)	~50%	(D)	~80%
75	Prib	now hox located at				
10.	(A)	+10 position	(B)	-10 position		
	(C)	+35 position	(D)	-35 position		
	(-)		()			
76.	The	first bioinformatics database was creat	ted by			
	(A)	Richard Durbin	(B)	Margaret Dayho	ff	
	(C)	Michael j. Dunn	(D)	Pearson		
77.	SWI	SSPROT protein sequence database be	gan ii	ı		
	(A)	1985 (B) 1986	(C)	1987	(D)	1988
79	Ano	wample of Hamalagy & similarity tool?				
10.	(Δ)	PROSPECT	(B)	EMBOSS		
	(\mathbf{C})	RASMOL	(D)	BLAST		
	(0)	TRADITION	(D)	DLAGI		
79.	Dep	osition of cDNA into inert structure is				
	(A)	DNA finingerprinting	(B)	DNA polymerase	9	
	(C)	DNA probes	(D)	DNA microarray	s	
80.	Hun	nam genome contains about				
	(A)	2 billion base pairs	(B)	3 billion base pa	irs	
	(C)	4 billion base pairs	(D)	5 billion base pa	irs	
81	The	identification of drugs through genomi	c stuc	v		
01.	(A)	Genomics	(B)	Cheminformatic	s	
	(C)	Pharmacogenomics	(D)	Phrmacogenetics	5	
				0		
82.	Ana	lysing or comparing entire genome of s	pecies	3		
	(A)	Bioinformatics	(B)	Genomics		
	(C)	Proteornics	(D)	Pharmacogenom	ics	
83.	Cha	racterizing molecular component is				
	(A)	Genomics	(B)	Cheminformatic	s	
	(C)	Proteomics	(D)	Bioinformatics		

84.	When you save a file, it means that you have							
	(A)	E-mailed it			(B)	Placed it in RA	М	
	(C)	Written it to a o	lisk		(D)	Rescued it from	obliv	ion
85.	To n	maintain computer files in an orderly				means to organi	ze the	em
	(A)	Hierarchically			(B)	Randomly		
	(C)	Linearly			(D)	Orthogonally		
86.	In A	TP synthase, F ₀	act as					
	(A)	H ⁺ carrier			(B)	Cl- carrier		
	(C)	Electron carries	C		(D)	None		
87.	Prot	ein crystallograp	hy ha	is no	—, onl	y small molecule	s hav	e them.
	(A)	Mirror Symmet	ry		(B)	Symmetry fold		
	(C)	Screw axis			(D)	Screw fold		
88.	The an is	shape of the plot solated object is o	of in called	tensity versus sc the	atteri	ng angle for the	diffra	ction pattern of
	(A)	Path	(B)	Interference	(C)	Envelop	(D)	Lattice
89.	The	combination of r	eflect	ion across a plan	e witł	n a translation is	said	to be
	(A)	Group plane	(B)	Glide plane	(C)	Mirror plane	(D)	Phase plane
90.	A(n) stru	cture.	s a so	olid with a regu	lar a	rrangement of a	toms	in its internal
	(A)	Atom	(B)	Molecule	(C)	Crystal	(D)	Unit cell
91.	Thr	eading						
	(A)	Protein structu	re pre	ediction	(B)	Genome annota	ation	
	(C)	Sequence align	ment		(D)	Sequence analy	vsis	
92.	The	presence of a omes.	set o	f homologous ge	enes i	n the same ord	ler or	1 two different
	(A)	Codon usage			(B)	Synteny		
	(C)	Karyotype			(D)	None of the abo	ove	

93.	Stringency-refers to									
	(A)	(A) Minimum number of matches required within a window for Filtering								
	(B)	Maximum number of matches required within a window for Filtering								
	(C)	Both (A) and (B)								
	(D)	None of the above								
94.	Uses dynamic programming to find local alignments between sequences									
	(A)	Smith-Waterman algorithm	(B)	Needleman and wunsch algorithm						
	(C)	Both (A) and (B)	(D)	None of the above						
95.	The	entire collection of proteins that are en	coded	l by the genome of an organism						
	(A)	Proteome	(B)	Proteomics						
	(C)	Both (A) and (B)	(D)	None of the above						
96.	A hi	dden Markov model of a conserved regi	ion in	a multiple sequence alignment						
	(A)	Profile hidden Markov model	(B)	Block hidden Markoy model						
	(C)	Pattern hidden Markov model	(D)	Domain hidden Markov model						
97.	of an alignment of a set of related									
	(A)	Position-specific scoring matrix	(B)	Block substitution matrix						
	(C)	Point accepted mutation matrix	(D)	Mutation data matrix						
98.	The ami	percentage of the columns in an align no acids	nment	of two sequences that includes same						
	(A)	Percent similarity	(B)	Percent identity						
	(C)	Percent match	(D)	Percent homologous						
99.	Gen	es that are related through gene duplic	cation	events						
	(A)	Paralogs	(B)	Homologs						
	(C)	Orthologs	(D)	All of the above						
100.	Matrices describe the probability that one base or amino acid has changed during the course of evolution									
	(A)	Position-specific scoring matrix	(B)	Block substitution matrix						
	(C)	Point accepted mutation matrix	(D)	Mutation data matrix						