ENTRANCE EXAMINATION FOR ADMISSION, MAY 2010.

M.Sc. (CHEMICAL SCIENCES) COURSE CODE: 369

Register Number :

Signature of the Invigilator (with date)

COURSE CODE: 369

Time: 2 Hours

Max: 400 Marks

Instructions to Candidates:

- Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	AA TITI	cii one or the for	nowing	statemen	ITS IS II	COLIC	506:			
	(A)	Gaseous PCl ₅	is coval	ent and h	as trig	onal b	ipyramidal str	ructure		
	(B)	PCl ₅ splits in and octahedra					solid state, v	which ha	ve tetrahe	dra
	(C)	PCl ₅ reacts vig	gorously	y with wa	ter					
	(D)	PCl ₅ is pyroph	oric.							
2.	Wha	at is the bond or	der in	O_2^{2-}						
	(A)	1.5	(B)	1		(C)	2.5	(D)	3	
3.	Ni is	s purified by								
	(A)	making Ni(CO)) ₄ and	decompos	sing it a	at high	temperature:	s		
	(B)	making [NiCla] ^{2–} and	reducing	it with	LiAll	H_4			
	(C)	making [NiI ₄]	2- and r	educing i	t with l	LiAlH	4			
	(D)	making [Ni(C	N) ₄] ²⁻ a	nd reduci	ng it w	ith Ra	ney nickel			
4.	In a	close packed as	rrangei	ment of m	etallic	struct	cures, coordina	ation nur	nber of a g	iveı
	(A)	12	(B)	10		(C)	6	(D)	8	
5.	Whi	ch one of the fo	llowing	molecula	r orbit	als ha	s center of syn	nmetry?		
	(A)	$\pi (p-p)$				(B)	$\pi^* (p-p)$			
	(C)	$\sigma\left(p-s\right)$				(D)	σ^* $(p-s)$			
6.	Trii	odide ion, I ₃ , h	as							
	(A)	two lone pairs	of elec	trons and	l has be	ent str	ructure			
	(B)	three lone pai	rs of el	ectrons ar	nd has	bent s	tructure			
	(C)	three lone pai	rs of el	ectrons ar	nd has	linear	structure			
	(D)	two lone pairs	of elec	trons and	l has li	near s	tructure			
7.	Whi	ich one of the fo	llowing	compoun	ds has	dime	ric structure?			
	(A)	BCl_3	(B)	AlCl ₃		(C)	SiCl ₄	(D)	PCl_3	
8.	In li	iquid ammonia,	NH ₄ Cl	acts as						
	(A)	a base				(B)	an acid			
	(C)	a salt				(D)	an amphote	ric substa	ance	
369					2					

9.	The	factor that do	es not i	nfluence ioniza	tion en	ergy is		
	(A)	the charge or	the nu	cleus				
	(B)	type of electr	on invol	ved (s, p, d, f)				
	(C)	the number of	of electro	ons present in t	he oute	er shells		
	(D)	the size of th	e atom					
10.	Carl	bon dating is b	ased on					
	(A)	the isotope 11	C		(B)	the isotope	¹² C	
	(C)	the isotope 13	C		(D)	the isotope	14C	
11.	Talc	(soap stone) is	s an exa	mple of				
	(A)	sheet silicate	8		(B)	3D silicates		
	(C)	chain silicate	es		(D)	discrete sili	cates	
12.	Which one of the following metal carbo				l compl	exes does not	obey the	EAN rule?
	(A)	Ni(CO) ₄			(B)	Fe(CO) ₅		
	(C)	$V(CO)_6$			(D)	$\mathrm{Fe_2(CO)_9}$		
13.	The	metal present	in Wilk	inson's catalys	t is			
	(A)	Mg	(B)	•	(C)	Rh	(D)	Co
14.	Whi	ch of the follow	ving is n	ot a radioactiv	e techn	ique?		
	(A)	¹⁴ C ₆ dating			(B)	$^{235}\mathrm{U}_{92}$ nucle	ar bomb i	naking
	(C)	$^{31}\mathrm{P}_{15}$ nuclear	magnet	ic resonance	(D)	60Co27 radio	graphy	
15.	The	ground state a	atomic te	erm symbol for	carbon	atom is		
	(A)	$^3\mathrm{P}_0$	(B)	$^{1}\mathrm{D}_{2}$	(C)	$^3\mathrm{D}_2$	(D)	$^5\mathrm{P}_0$
16.	The	IUPAC nomer	nclature	of [Fe(CN) ₂ (CH	I ₃ NC) ₄]	is		
	(A)	dicyanotetra	kis(meth	nylisocyanide)ii	ron(II)			
	(B)	tetrakis(met	hylisocy	anide)iron(II)c	yanide			
	(C)	dicyanotetra	kis(meth	nyl isocyano)iro	on(IV)			
	(D)	dicyanoiron((V)meth	ylisocyanide				
17.	CFS	E of low-spin	Co(III) i	n octahedral fie	eld is			
	(A)	0.4 Δ0	(B)	$2.4 \Delta_0$	(C)	$0 \Delta_0$	(D)	1.8 Δ ₀

18.	Acid	rains are mostly due to the
	(A)	burning of carbon present in coal
	(B)	burning of sulfur present in coal
	(C)	burning of phosphorous present in coal
	(D)	burning of nitrogenous material present in coal
19.	Whi	ch one of the following statements is incorrect?
	(A)	Lattice energy in ionic solids depends on the product of the ionic charges
	(B)	Lattice energy in ionic solids is inversely proportional to inter ionic distance
	(C)	Crystals with high lattice energy melt at high temperatures
	(D)	Madelung constant does not depend on the geometry of the crystal
20.	The	hybridization in XeF ₄ is
	(A)	sp^{3} (B) $sp^{3}d$ (C) $sp^{3}d^{2}$ (D) $sp^{3}d^{3}$
21.	XeO	$_2$ F $_2$ has
	(A)	trigonal bipyramidal structure with a lone pair of electrons in equatorial position
	(B)	trigonal bipyramidal structure with a lone pair of electrons in axial position
	(C)	square pyramid with a lone pair of electrons in axial position
	(D)	square pyramid with a lone pair of electrons in equatorial position
22.	The	identical size of Zr and Hf is due to
	(A)	nephelauxetic effect
	(B)	lanthanide contraction
	(C)	crystal field splitting
	(D)	the presence of both the metals in the same group
23.	IUP	AC nomenclature of the complex [CoCl ₂ (CN)(NH ₃) ₃] is
	(A)	cyanodichlorotriamminecobalt(III)
	(B)	dichlorocyanotriamminecobalt(III)
	(C)	cyanotriamminecobalt(III)chloride
	(D)	triamminedichlorocyanocobalt(III)
24.	Whi	ch one of the following metals is highly toxic?
	(A)	Fe (B) Zn (C) Cu (D) Hg
369		4

25.	Whi	ich one of the following meta	ıls is used in Zieg	ler-Natta catalyst	
	(A)	Pd (B) Ti	(C)	Fe	(D) Pt
26.	Ord	er of the d orbitals in terms	of energy in squa	are planar geomet	ry
	(A)	$d_{xy} > d_{xz} \& d_x 2_{-y} 2 > d_z 2 > d_z$	yz (B)	$d_{xz} & d_{yz} > d_{xy} >$	$d_z 2 > d_x 2_{-y} 2$
	(C)	$d_{yz} > d_z 2 > d_{xz} \& d_x 2_{-y} 2 > d_x$	(D)	$d_x 2_{-y} 2 > d_z 2 > d_{xy}$	$y > d_{xz} \& d_{yz}$
27.	Whi	ich one of the following ions	has magnetic mo	ment of 5.9 BM	
	(A)	Fe(II) (B) Co(I	(C)	Mn(II)	(D) Cr(II)
28.	The	correct order of the ligands	CO, H ₂ O, I and I	PR ₃ based on the l	igand field strengt
	(A)	$\mathrm{CO} > \mathrm{H_2O} > \mathrm{I}^{\scriptscriptstyle -} > \mathrm{PR_3}$	(B)	$CO > PR_3 > H_2O$	> I-
	(C)	$I^- > PR_3 > CO > H_2O$	(D)	$PR_3 > CO > H_2O$	> I-
29.	The	acidity of hydrogen halides	is in the order		
	(A)	$\mathrm{HI} > \mathrm{HBr} > \mathrm{HCl} > \mathrm{HF}$	(B)	HF > HCl > HBr	· > HI
	(C)	$\mathrm{HCl} > \mathrm{HBr} > \mathrm{HI} > \mathrm{HF}$	(D)	$\mathrm{HBr} > \mathrm{HCl} > \mathrm{HI}$	> HF
30.	Whi	ich one of the following state	ements is correct	?	
	(A)	Both TiO2 and TiCl3 are vi	iolet (B)	Both TiO2 and T	iCl ₃ are colorless
	(C)	${\rm TiO_2}$ is colorless and ${\rm TiCl_3}$	is violet (D)	TiO ₂ is violet an	d TiCl ₃ is colorless
31.	IUP	AC nomenclature of			
			СНО		
	(A)	E-4-hexen-1-ol	(B)	E-4-hexen-1-al	
	(C)	Z-4-hexen-1-al	(D)	Z-4-hexen-1-ol	

32. Stereochemical descriptor at C2 and C5 are

OH 2 5

(A) R, E

(B) S, E

(C) R, Z

(D) S, Z

33.	The	order of boiling	point a	amon	g the follo	wing is				
	i.	Ethane		ii.	Ethanol					
	iii.	Ethylamine		iv.	Ethanoid	acid				
	(A)	i>iii>ii>iv				(B)	iv > iii > ii > i			
	(C)	iv > ii > iii > i				(D)	ii > iv > ii > i			
34.	Maj	or product forme	d in tl	he ele	ctrolysis o	f butar	noic acid would b	e		
	(A)	butane	(B)	1-bu	itene	(C)	hexane	(D)	octene	
35.	The	major product fi	rom th	e rea	ction of cy	clohexe	ene with NBS in	ethan	ol is	
	(A)	cis-1-bromo-2-e	thoxy	cyclol	nexane	(B)	trans-1-bromo-	2-etho	oxycyclohexan	е
	(C)	3-bromo-1-cycle	ohexei	ne		(D)	3-ethoxy-1-cycl	ohexa	ne	
36.	Maj	or product forme	d in th	he rea	action of 1	pheny	butadiene with	HBr is	s	
				Ph						
	(A)	E-bromo-1-phe	nyl-2-	buten	e	(B)	E-1-bromo-1-pl	nenyl-	2-butene	
	(C)	E-4-bromopher	ıyl-2-b	utene	9	(D)	Z-4-bromo-1-ph	nenyl-	2-butene	
37.		en 1 g of bromob d of the reaction			nitrated,	0.5 g	of 4-bromonitrob	enzen	ne was isolate	d.
	(A)	55%	(B)	75%		(C)	40%	(D)	10%	
38.	Rate	e the following fo	r the	use a	s solvent i	n Fried	lel-Crafts reactio	n		
	i. C	S_2	ii.	EtO	Et	iii.	Hexane			
	(A)	i > ii > iii	(B)	i > i	ii > ii	(C)	ii > i > iii	(D)	ii > iii > i	
39.	The	major product fo	ormed	in th	e reaction	of phe	nol with excess o	f Br ₂ i	in AcOH is	
	(A)	2,4,6-tribromop	henol	I		(B)	2,3,5-tribromo	pheno	1	
	(C)	2,4-dibromophe	enol			(D)	4-bromophenol			
40.	Whi	ich among the for	ur org	anic c	ompounds	is the	strongest acid?			
	(A)	Acetyl acetone				(B)	Acetyl chloride	10		
	(C)	Acetophenone				(D)	Acetone			
41.	Whi	ich among the fol	lowin	g carl	ocation is	most s	stable?			
	(A)	Methyl carboca				(B)	Acyl carbocatio	on		
	(C)	Benzyl carboca				(D)	Vinyl carbocat	ion		

33.	The	order of boiling p	point a	amon	g the folloy	wing is				
	i.	Ethane		ii.	Ethanol					
	iii.	Ethylamine		iv.	Ethanoic	acid				
	(A)	i>iii>ii>iv				(B)	iv > iii > ii > i			
	(C)	iv > ii > iii > i				(D)	ii > iv > ii > i			
34.	Maj	or product forme	d in tl	ne ele	ctrolysis o	f butar	noic acid would b	e		
	(A)	butane	(B)	1-bu	itene	(C)	hexane	(D)	octene	
35.	The	major product fr	om th	e rea	ction of cy	clohexe	ene with NBS in	ethan	ol is	
	(A)	cis-1-bromo-2-e	thoxy	cyclol	nexane	(B)	trans-1-bromo-	2-etho	oxycyclohexane	h.
	(C)	3-bromo-1-cyclo	hexer	ne		(D)	3-ethoxy-1-cycl	ohexa	ne	
36.	Maj	or product forme	d in t	ne rea	action of 1-	pheny	lbutadiene with	HBr is	8	
				Ph						
	(A)	E-bromo-1-phe	nyl-2-	buten	e	(B)	E-1-bromo-1-pl	nenyl-	2-butene	
	(C)	E-4-bromophen	yl-2-b	utene	Э	(D)	Z-4-bromo-1-ph	nenyl-	2-butene	
37.		nen 1 g of bromobenzene was nitrated		nitrated,	0.5 g	of 4-bromonitrob	enzen	ne was isolated	l.	
	(A)	55%	(B)	75%		(C)	40%	(D)	10%	
38.	Rate	e the following fo	r the	use as	s solvent i	n Fried	lel-Crafts reactio	n		
	i. Cs	S_2	ii.	EtO	Et	iii.	Hexane			
	(A)	i > ii > iii	(B)	i > i	ii > ii	(C)	ii > i > iii	(D)	$\mathrm{ii} > \mathrm{iii} > \mathrm{i}$	
39.	The	major product fo	rmed	in th	e reaction	of phe	nol with excess o	f Br ₂ i	in AcOH is	
	(A)	2,4,6-tribromop	henol			(B)	2,3,5-tribromoj	pheno	1	
	(C)	2,4-dibromophe	enol			(D)	4-bromophenol			
40.	Whi	ich among the fou	ır org	anic c	ompounds	is the	strongest acid?			
	(A)	Acetyl acetone				(B)	Acetyl chloride			
	(C)	Acetophenone				(D)	Acetone			
41.	Whi	ich among the fol	lowin	g carl	ocation is	most s	stable?			
	(A)	Methyl carboca				(B)	Acyl carbocatio	n		
	(C)	Benzyl carboca	tion			(D)	Vinyl carbocat	ion		

42.		major product toxide in t-buOI		in the reaction	n of 2-br	como-2-methylbutane with potassium
	(A)	2-methyl-2-bu	tene		(B)	1-methyl-2-butene
	(C)	1-pentene			(D)	E-2-pentene
43.		organic compou N: 12.92%. Mo			_	was analyzed for C: 78.6%; H: 8.4% und is
	(A)	C7H7O	(B)	C_6H_5NO	(C)	C_5H_5N2 (D) C_7H_9N
44.	Iden	ntify two electro	philes	among the foll	owing	
	i.	EtSH	ii.	Ph_3P	iii.	Et ₂ AlCl iv. BBr ₃
	(A)	i and ii			(B)	i and iii
	(C)	iii and iv			(D)	ii and iv
45.	Rea	gent used for th	e conv	ersion of propi	ophenon	e to n-propylbenzene is
	(A)	Na/NH ₃			(B)	H ₂ N.NH ₂ H ₂ O/KOH
	(C)	$KMnO_4$			(D)	Br ₂ /AcOH
46.	Whe	en 1-butene is re	eacted	with i. B ₂ H ₆ ii	. H ₂ O ₂ , ¬	OH the product formed is
	(A)	1-butanol			(B)	2-butanol
	(C)	t-butanol			(D)	2-butanone
47.		aseous hydrocar ate provides a w				on bubbling through ammonical silver and could be
	(A)	1-butyne			(B)	2-butyne
	(C)	1,3-butadiene			(D)	1,2-butadiene
48.	The	reaction of silve	er benz	coate with ethy	yl bromio	de is expected to provide
	(A)	benzoic acid			(B)	ethylalcohol
	(C)	ethyl benzoate	9		(D)	bromobenzene
49.	The	reaction of anil	ine wit	h chloroform	and pota	ssium hydroxide provides
	(A)	2,4-dichloroan	iline		(B)	2-chloroaniline
	(C)	phenyl cyanid	е		(D)	phenyl isocyanide

- 50. Bromobenzene reacts with Mg to afford X. X on reaction with CO2 gives Y. X and Y are
 - (A) 2-bromophenylmagnesium and 2-bromobenzoic acid
 - (B) biphenyl and phenylacetic acid
 - (C) benzene and benzoic acid
 - (D) phenylmagnesium bromide and benzoic acid
- A hydrocarbon of MF: C₆H₁₀ on reaction with i. Hg (OAc)₂ ii. NaBH₄ provides 1-methyl-1-cyclopentanol. X is
 - (A) Cyclohexene

- (B) 1-methyl-1-cyclopentene
- (C) 3-methyl-1-cyclopentene
- (D) 1,2-dimethylcyclobutene
- A hydrocarbon X of MF: C₇H₁₂ on oxidation with conc. KMnO₄ provided cyclohexanone and formic acid. X is
 - (A) ethylydine cyclopentane
- (B) 3-methylcyclohexene

(C) 1-methyl cyclohexene

- (D) methylene cyclohexane
- 53. The reaction of cyclohexanol with i. TsCl, ii. LAH gives
 - (A) cyclohexane

(B) cyclohexene

(C) cyclohexadiene

- (D) cyclohexanone
- 54. Product formed in the following rearrangement is

- 55. Phenylmagnesium bromide reacts with acetaldehyde to form a salt which on hydrolysis gives
 - (A) diphenyl methanol

(B) benzylacohol

(C) 1-phenyl-ethanol

(D) benzoic acid

56.		organic alcohol C ₆ H ₁₂ O (X) re es red precipitate with acidic			rm Y which in turn
	(A)	2-hexenal and hexanoic aci	d		
	(B)	cyclohexanol and cyclohexa	inone		
	(C)	2-methylpentanal and 2-m	ethylpentanoic a	cid	
	(D)	3-methyl-2-pentanone and	butyric acid		
57.	An o	organic compound of MF: C ₉ l	H ₁₈ O answers To	llens test. The con	mpound is
	(A)	3-methyl-2-octanone	(B)	2-methyl-2-octan	one
	(C)	2-nonanone	(D)	1-nonanal	
58.	Cyc	lohexanone reacts with HNC)3 to provide a dil	pasic acid. The ac	id is
	(A)	oxalic acid	(B)	succinic acid	
	(C)	malonic acid	(D)	adipic acid	
59.	Whi	ich among the following dike	tones has most a	cidic hydrogens?	
	(A)	Cyclohexane-1,2-dione	(B)	Cyclohexane-1,3	dione
	(C)	Cyclohexane-1,4-dione	(D)	Hexane-2,5-dion	е
60.		atment of ethyl chloroacetate razine provides	e with potassium	pthalimide follow	ed by reaction with
	(A)	glycine (B) alan	ine (C)	valine	(D) leucine
61.		presenting solvent and solvectively, the conversion exp			
	(A)	$x_2 = \frac{MM_1}{\rho + M\left(M_1 - M_2\right)}$	(B)	$x_2 = \frac{mM_1}{1 + mM_1}$	
	(C)	$x_2 = \frac{1 + mM_1}{mM_1}$	(D)	$x_2 = \frac{MM_1}{\rho - M(M_1 + \dots + M_2)}$	$\overline{(M_2)}$
62.	A so	olution containing 2.68 × 10	-3 mol of An+ ions	require 1.61 × 10	→3 mol of MnO ₄ for
		oxidation of An+ to AO ₃ in a			•
	(A)	1 (B) 2	(C)	3	(D) 4
63.	The	e expression of root mean squ	are speed of the	molecules of a gas	s is given as
		3RT 3R	\overline{r}	$\sqrt{3kT}$	8RT

		$\gamma(Mv)^{-1}=k$	$(t_c - t - 6)$)					
	(C)	Soap is a sur	face acti	ve substance					
	(D)	$1Nm^{-1} = 10^3$	dyn cm-	I.					
66.		he closest pack etrahedral void		toms A and B	the rat	io of their rad	ius that	can be fitted in	1
	(A)	0.155	(B)	0.225	(C)	0.414	(D)	0.732	
67.		ch of the follow e length = a	ving exp	ressions is co	rrect in	case of sodium	chlorid	e unit cell with	1
	(A)	$r_c + r_a = a$	(B)	$r_c + r_a = a/2$	(C)	$r_c + r_a = 2a$	(D)	$r_c + r_a = \sqrt{2}a$	
68.		aseous mixture nd 760 Torr. T						0.5 g/dm ³ at 300)
	(A)	30%	(B)	35%	(C)	40%	(D)	50%	
69.	The	angular mome	ntum of	an electron i	an orb	ital is given as			
	(A)	$L = \left(n / \sqrt{l(l - l)} \right)$	-1))(h/	2π)	(B)	L = l(l+1)(h	$a/2\pi$)		
	(C)	$L = \sqrt{l\left(l+1\right)} ($	$(h/2\pi)$		(D)	$L = m(h/2\pi$)		
70.		wavelength of					ogen ato	m is 656.1 nm	,
	(A)	218.7 nm			(B)	328.0 nm			
	(C)	486.0 nm			(D)	640.0 nm			

The temperature of a given mass of gas is increased from 19° C to 20° C at constant

pressure. The volume, V, of the gas is increased by

a factor of 1/273.15 of its volume at 19°C

Which of the following statements regarding a liquid is NOT correct?

On dissolving sodium chloride in water, its surface tension decreases

The variation of surface tension of a liquid is given by the expression

1/273.15 of its volume at 0°C

1/273.15 of its volume at 0 K

64.

65.

369

(A) V(20/19)

71.	In th	he plot or r ² R ² 1,0	versu	s r for hydro	gen atom,	maximum oc	curs at	
	(A)	r = 0	(B)	$r = a_0$	(C)	$r = 2a_0$	(D)	${\tt r} = {\tt infinity}$
72.	The	word "standard'	in st	andard mola	ar enthalpy	change imp	lies	
	(A)	temperature 29	98 K			. et an 1,000 7 . (1,000 (4)		
	(B)	pressure 1 bar				,		
	(C)	temperature 29	98 K a	and pressure	e 1 bar			
	(D)	temperature 2	98 K a	and pressure	atm			
73.	Whi	ch of the following	ng res	ults in decr	ease in ent	ropy?		
	(A)	Crystallization	_					
	(B)	Rusting of iron						
	(C)	Conversion of i		water				
	(D)							
74.		en the following dded at constant						
	(A)	more of ammor	nia ga	s is produce	d	84		
	(B)	less of ammoni	a gas	is produced				
	(C)	no affect on the	e degr	ee of advance	cement of t	he reaction a	at equilibr	ium
	(D)	equilibrium co	nstan	t of the reac	tion is incr	eased		
75.		dict which of the	e follo	owing facts	for the equ	uilibrium rea	action 2N	$H_3(g) = N_2(g) +$
	(A)	Equilibrium co system	nstan	at of the reac	ction is cha	nged with in	ncrease in	pressure of the
	(B)	Equilibrium copressure of the			reaction re	emains unaf	fected wi	th increase in
	(C)	More of ammo	nia ga	s is decreas	ed with inc	rease in pres	ssure	
	(D)	Less of hydrog	en gas	s is formed a	as compare	d to nitrogen	gas	
76.	90°0	.2 mol of hydrog C to form hydro × 10 ⁻² . Then, the	gen s	ulphide gas	. The equ	ilibrium con	stant of	this reaction is
	(A)	0.19 atm			(B)	0.38 atm		
	(C)	0.6 atm			(D)	6.8×10^{-2} /	(0.2×2) a	tm

77.		solubility of $Pb(OH)_2$ in wat tion of $pH = 8$ will be about	er is 7×10^{-6} M.	The solubility of Pb(OH)2 in a buffe	r
	(A)	$1.372 \times 10^{-1} \mathrm{M}$	(B)	$1.372 \times 10^{-2} \mathrm{M}$	
	(C)	$1.372\times10^{-3}~\mathrm{M}$	(D)	$1.372 \times 10^{-4} \text{ M}$	

78. The density of Cu is 8.94 g/cm³. The quantity of electricity needed to plate an area of 10 cm \times 10 cm to a thickness of 0.01 cm using copper sulphate solution is

(C) 40758 C

79. The equilibrium constant of acetic acid in aqueous solution of concentration c is given by $c\Lambda^2$

(A) 13586 C

(A)
$$K = \frac{c\Lambda_c^2}{\Lambda^{\infty} - \Lambda_c}$$
 (B) $K = \frac{c\Lambda_c^2}{\Lambda^{\infty} \left(\Lambda^{\infty} - \Lambda_c\right)}$

27172 C

(C)
$$K = \frac{c\Lambda_c^2}{\Lambda^\infty + \Lambda_c}$$
 (D) $K = \frac{c\Lambda_c^2}{\Lambda^\infty \left(\Lambda^\infty + \Lambda_c^2\right)}$

80. The standard reduction potential values of three metallic cations, X, Y, Z are 0.52, -3.03 and -1.18 V respectively. The order of reducing power of the corresponding metals is

(A)
$$Y > Z > X$$
 (B) $X > Y > Z$ (C) $Z > Y > X$ (D) $Z > X > Y$

81. The quantity of electricity that would be required to reduce 12.3 g of nitrobenzene (molar mass: 123 g/mol) to aniline is about

82. Which of the following plots does not represent the behavior of an ideal binary liquid solution?

(A) Plot of
$$p_A$$
 versus x_A is linear (B) Plot of p_B versus x_B is linear (C) Plot of p_{total} versus x_A (or x_B) is linear (D) Plot of p_{total} versus x_A is nonlinear

83. A binary solution of h-heptane and ethyl alcohol is prepared. Which of the following statements correctly represents the behavior of this liquid solution?

(A) The solution formed is an ideal solution

(B) The solution formed is nonideal solution with positive deviation from Raoult's law

(C) The solution formed is nonideal solution with negative deviation from Raoult's law

(D) n-Heptane exhibits positive deviation whereas ethyl alcohol exhibits negative deviation from Raoult's law

84.				al concentration ompletion of the			zero-	order kinet	ics.
	(A)	a/k	(B)	a/2k	(C)	k/a	(D)	2k/a	
85.	Whi	ch of the followin	ig sta	tements is NOT	correc	t for a lyophilic s	sol?		
	(A)	It is not easily	solvat	ed					
	(B)	It carries charg	e						
	(C)	The coagulation	n of th	nis sol is irrevers	ible in	nature			
	(D)	It is quite stabl	e in s	olvent					
86.	The	number of EPR	hyper	fine lines expecte	ed for	methyl radical a	re		
	(A)	Two	(B)	Three	(C)	Four	(D)	None	
87.	Nuc	lear quadrupolai	effec	t is due to					
	(A)	electron spin va	alue e	qual to zero	(B)	nuclear spin va	lue e	qual to zero	
	(C)	electron spin va	alue g	reater than 1/2	(D)	nuclear spin va	lue gr	reater than	1/2
88.	For	a molecule to be	Rama	an active, the con	dition	n is			
	(A)	change in dipol	e mor	ment	(B)	change in elect	ron sp	oin value	
	(C)	change in polar	rizabi	lity	(D)	change in nucl	ear sp	in value	
89.	The	number of norm	al mo	des of vibration	for wa	ter and carbon d	ioxide	e are	
	(A)	3 and 4	(B)	4 and 3	(C)	3 and 3	(D)	4 and 4	
90.	In a	system, $a \neq b \neq 0$	e; α =	$\beta = \gamma = 90 \deg$	rees,	then it belongs t	0		
	(A)	cubic			(B)	triclinic			
	(C)	monoclinic			(D)	orthorhombic			
91.	Whe	en one operates v	vith d	² /dx ² on the func	tion 8	sin(2x), one find	s that		
	(A)	the function is	an eig	gen function with	the e	eigen value –32			
	(B)	the function is	an eig	gen function with	the e	eigen value 4			
	(C)	the function is	an ei	gen function with	the e	eigen value –4			
	(D)	the function is	not a	n eigen function					

92.	The reason for normalizing a wave function ψ is								
	(A) to guarantee that ψ is square-integrable								
	(B) to make $\psi * \psi$ equal to the probability distribution of the particle								
	(C) to make ψ an eigenfunction of the Hamiltonian operator								
	(D) to make ψ display the proper symmetry characteristics								
93.	The integral $\int \sin(x) \cos(x) dx$ in the interval –a to +a								
	(A) is zero for any value of a and cos(x) is antisymmetric in this range								
	(B) is not zero except for certain values of a and								
	(C) is zero for any value of a and cos(x) is symmetric in this range								
	(D) is zero for any value of a and sin(x) is symmetric in this range.								
94.	The energy gap between the n and n+1 level in the particle in a sphere								
	(A)) increase with increasing in n			(B)	decrease with increasing in n			
	(C)	C) independent of the value of n				none of the above			
95.	The energy of the particle in a box is independent of								
	(A)	A) length of the box			(B)	potential energy barrier of the box			
	(C)	mass of the par	ticle	*	(D)	none of the ab	oove		
96.	The energy of hydrogen atom is a function of								
	(A) primary quantum number n				(B)	azimuthal quantum number l			
	(C)	(C) magnetic quantum number m				all of the above			
97.	The equation $(x^2/a^2) - (y^2/b^2) = 1$ describes a								
	(A)	straight line			(B)	circle			
	(C)	parabola			(D)	hyperbola			
98.	If three Persons A, B and C toss a coin in the same order repeatedly till somebody gets a head, what is the probability of A getting the head?								
	7.00	1/7	(B)	2/7	(C)		(D)	4/7	
99.	In the differential equation $3(d^2y/dx^2) + (dy/dx)^3 = x$, the degree and order is								
	(A)		(B)			2, 1		3, 2	
100.	The translational analogue of force in rotational motion is								
	(A) moment of Inertia				(B)	angular momentum			
	(C) angular velocity					torque			