ENTRANCE EXAMINATION FOR ADMISSION, MAY 2011. M.Sc. (FOOD SCIENCE AND TECHNOLOGY) COURSE CODE: 396

Register Number :	
	Signature of the Invigilator (with date)

COURSE CODE: 396

Time: 2 Hours Max: 400 Marks

Instructions to Candidates:

- Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

Er	vironmental fac			rature	and pH exert	their	effect on the
(A)) Membrane	(B)	DNA	(C)	Enzymes	(D)	Cell wall
An	enzyme ———	t	the activation e	nergy r	equired for cher	nical re	eaction
(A)	Increases	(B)	Provides	(C)	Lowers	(D)	Catalyzes
Alg	gin is						
(A)	A polysacchar	ide		(B)	A lipid		
(C)	A protein			(D)	A provitamin		
Ma	any coenzymes ar	е					
(A)	Metals	(B)	Vitamins	(C)	Proteins	(D)	Substrates
То	digest cellulose i	n its ei	nvironment, a f	ungus	produces a/an		
(A)	Endoenzymes	(B)	Exoenzymes	(C)	Catalase	(D)	Polymerase
Con	nsider the followi	ng sta	tements				
I.	Carbohydrates	are th	ne compounds n	nade up	of carbon, hydr	ogen a	nd oxygen
II.	Carbohydrates	are po	olyhydroxyderiv	atives	of aldehydes or	ketone	S
III.	Carbohydrates	are po	olyhydroxy acet	als and	l ketals		
Wh	ich of the above s	tatem	ent is/are corre	ct?			
(A)	2 only	(B)	2 and 3	(C)	1 and 2	(D)	1, 2 and 3
	e to the presence arbohydrates exc		or more asymm	etric ca	arbon atom, ster	eoisom	erism is found
(A)	Dihydroxy acet	one		(B)	Glyceraldehyde	е	
(C)	Talose			(D)	Mannose		
Two	sugars differing	only i	n configuration	around	d one specific ca	rbon at	om are called
(A)	Anomer	(B)	Epimer	(C)	Isomers	(D)	Conformers
Whi	ich of the followir	ng pail	of carbohydrate	es are a	anomers of each	other?	
(A)	α – Glucose and	d β – (Glucose	(B)	α – Glucose and	$\beta - f$	ructose
(C)	α – Glucose and	$d\alpha - N$	Mannose .	(D)	All of the above		

10.	Wh	ich of the following pairs are epimers o	or each	otner:
	(A)	D-Glucose and D-mannose	(B)	D-Glucose and D-galactose
	(C)	D-Ribose and D-Arabinose	(D)	All of the above
11.	The	change in optical activity of racemic r	nixtur	e is called
	(A)	Reversion	(B)	Mutarotation
	(C)	Inversion	(D)	Isomerisation
12.	Whi	ch of the following statement is correct	t?	
	(A)	The equatorial hydroxyl group of Pyr	ranose	s are easily esterified than axial
	(B)	The boat form of pyranose ring, wh axial	ich is	relatively rigid and more stable than
	(C)	Monosaccharides are sensitive to hot	dilute	e mineral acids
	(D)	All of the above		
13.	Con	centrated acid causes		
10.	(A)	Dehydration of sugars		
	(B)	Formation of furfurals		
	(C)	Formation of aldehyde derivative of	furan	
	(D)	All of the above		
14.	Mon	osaccharide in slightly acidic solutio	n at r	eact with excess phenylhydrazine to
	(A)	Sugar alcohol	(B)	Glycoside
	(C)	Glycosylamine	(D)	Osazone
15.	Wha	at is phytic acid?		
	(A)	Hexaphosphoric acid of inositol		
	(B)	Potassium salt of hexaphosphoric ac	id	
	(C)	Phosphorous associated with mannit	ol	
	(D)	Phosphoric acid of Sorbitol		
16.	Suga	ar capable of reducing ———— ar	e calle	d reducing agents
	(A)	Cu ²⁺	(B)	Ag*
	(C)	Ferricyanide	(D)	All of the above

17.	Wh	Which of the following is a sachharifying enzyme?								
	(A)	α -Amylase	(B)	β – Amylase						
	(C)	Both	(D)	None of the above						
18.	Pal	atinose is isomer of sucrose and differs	from	it having						
	(A)	β – 1, 2-glycosidic bond	(B)	α – 1, 4-glycosidic bond						
	(C)	A-1, 6-glycosidic bond	(D)	β – 1, 6-glycosidic bond						
19.	Her	micelluloses are								
	(A)	Isomers of cellulose	(B)	Derivatives of cellulose						
	(C)	Polymer of cellulose	(D)	Polymer of Talose						
20.	Who	en valine is heated with glucose at 180°	°C the	e flavor produced is/are						
	(A)	Chocolate	(B)	Bread like						
	(C)	Caramel	(D)	All of the above						
21.	Mod	lification of starch may affect								
	(A)	Gelatinization and heating time								
	(B)	Freezing stability and cold water stab	oility							
	(C)	Viscosity								
	(D)	All of the above								
22.	Nun	Number of carbon atom in strearic acid is								
	(A)	12 (B) 16	(C)	18 (D) 30						
23.	Whi	ch lipid is saponifiable?								
	(A)	Simple	(B)	Complex						
	(C)	Both (A) and (B)	(D)	None						
24.	Butt	erscotch aroma can be obtained by hea	ting g	clucose with ———— at 180°C						
	(A)	Glutamate (B) Valine	(C)	Glycine (D) Leucine						
25.	The	parent compound of phosphoglycerides	sis							
	(A)	Phosphatidic acid	(B)	Phosphoric acid						
	(C)	Glycerol	(D)	Glyceric acid						

(A) (C)	A-dicarbonyl compound	(B)	Glucose
(C)			Oracose
	Glycerol	,	Schiff's base
EPA	A is		
(A)	ω – 2 fatty acid	(B)	ω – 3 fatty acid
(C)	ω – 4 fatty acid	(D)	ω fatty acid
Line	oleic acid is		
(A)	ω – 2 fatty acid	(B)	ω – 3 fatty acid
(C)	ω fatty acid	(D)	ω – 6 fatty acid
ALA	is a precursor of		
(A)	EPA	(B)	DHA
(C)	Both (A) and (B)	(D)	None
Vege	etable oil is rich in		
(A)	ω – 2 fatty acid	(B)	ω – 3 fatty acid
(C)	ω – fatty acid	(D)	ω – 6 fatty acid
Oleid	acid can be transferred in to t	rans form up	on
(A)	Cooling	(B)	Heating
(C)	Solidification	(D)	Hydrogenation
Esse	ntial fatty acid serve as precur	sor of	
(A)	Vitamin C	(B)	Prostaglandin
(C)	Niacin	(D)	Retinol
Casto	or seed is rich in		
(A)	Ricinoleic acid	(B)	Oleic acid
(C)	Linolenic acid	(D)	Linoleic acid
Ovon	nucoid is found to be		
(A)	Antibiotic in nature	(B)	Trypsin inhibitor
(C)	Iron binder	(D)	Haemoglutination inhibitor
	(A) (C) Line (A) (C) ALA (A) (C) Vege (A) (C) Claid (A) (C) Cast (A) (C) Cast (A) (C) Cast (A) (C) Cast (A) (C)	 (C) ω-4 fatty acid Linoleic acid is (A) ω-2 fatty acid (C) ω fatty acid ALA is a precursor of (A) EPA (C) Both (A) and (B) Vegetable oil is rich in (A) ω-2 fatty acid (C) ω-fatty acid Oleic acid can be transferred in to the color of the color	(A) $\omega - 2$ fatty acid (B) (C) $\omega - 4$ fatty acid (D) Linoleic acid is (A) $\omega - 2$ fatty acid (B) (C) ω fatty acid (D) ALA is a precursor of (A) EPA (B) (C) Both (A) and (B) (D) Vegetable oil is rich in (A) $\omega - 2$ fatty acid (B) (C) ω fatty acid (D) Oleic acid can be transferred in to trans form up (A) Cooling (B) (C) Solidification (D) Essential fatty acid serve as precursor of (A) Vitamin C (B) (C) Niacin (D) Castor seed is rich in (A) Ricinoleic acid (B) (C) Linolenic acid (D) Ovomucoid is found to be (A) Antibiotic in nature (B)

35.	Wh	nat is dilatometry?								
	(A)	Measurement of degree of unsatura	ation of	fatty acids						
	(B)	(B) Measurement of degree of hydrogenation								
	(C)	Measurement of melting point of fa	ıt							
	(D)	Measurement of crystallinity of fat								
36.	Tra	ans fatty acids are found in some plan	t oil su	ch as						
	(A)	Pomegranate oil	(B)	Mustard oil						
	(C)	Coconut oil	(D)	Citrus oil						
37.	Wh	ich of the following is a biotin binder?								
	(A)	Avidin (B) Aflatoxin	(C)	Gossypol (D) Ovalbumin						
38.	A st	ubstance incorporates into a polymeri	c mater	rial to increase its deformity is called						
	(A)	Stabilizer	(B)	Emulsifier						
	(C)	Plasticizer	(D)	All of the above						
39.	Cole	orant used in butter is								
	(A)	Annato	(B)	Erythrosine						
	(C)	Congo red	(D)	None of the above						
40.	"Pin	nking" can be avoided by								
	(A)	Blanching	(B)	AR enamel						
	(C)	Treatment of fruit with vinegar	(D)	Blairs process						
41.	Max	rimum amount of psi angle in the pep	tide bor	nd is						
	(A)	-40° (B) −50°	(C)	-60° (D) -70°						
42.	The	peptide bond has								
	(A)	Planar structure	(B)	Angular structure						
	(C)	Tetrahedral structure	(D)	Pyramidal structure						
13.	Simi	mering is								
	(A)	Closing the mouth of can during can	ning pr	rocess						
	(B)	Gentle boiling with temperature abo	ut 100°	°C						
	(C)	Killing the microorganism with the l	help of	antibiotics						
	(D)	Method of removal of contaminants i	from th	e raw material						

44.	Wha	at is Ale?		
	(A)	Fermented corn	(B)	Type of beer
	(C)	Fermented carrot	(D)	None of the above
45.	Gin	ger beer is produced by the use of		
	(A)	Lactobocillus bulgaricus	(B)	Saccharomyces bulgaricus
	(C)	Saccharomyces pyriformis	(D)	Rhizopus sonti
46.	Sarc	cina sickness is the defect of		
	(A)	Wine (B) Sauer kraut	(C)	Beer (D) Bread
47.	Gree	en beer is		
	(A)	Spoiled beer contaminated by Pseudo	mona	s sp.
	(B)	An artificial beer manufactured by color	mixin	g water with beer flavor and added
	(C)	Beer like beverage obtained from pla	nt ext	ract
	(D)	Freshly prepared beer which is furth	er sto	red at 0°C for few months
48.	Run	n is		
	(A)	Distilled liquor	(B)	Undistilled liquor
	(C)	Fortified wine	(D)	By product of brewing industry
49.	The	force involved in crushers is		
	(A)	Impact force (B) Compression	(C)	Attrition (D) Pseudo force
50.	Rey	nolds number is		
	(A)	Ratio b/w inertial force and viscous fo	orce	
	(B)	Ratio b/w viscous force and inertial fo	orce	
	(C)	Ratio b/w inertial force and pressure	1	
	(D)	Ratio b/w viscous force and pressure	differe	ence
51.	The	Tylor standard screen series is based	on	
	(A)	240 mesh screen	(B)	200 mesh screen
	(C)	150 mesh screen	(D)	100 mesh screen

52.	Ele	ectrostatic separator make use of								
	(A)	Magnetic properties	(B)	Electrical properties						
	(C)	Densities	(D)	Moisture content						
53.	Wh	ich of the following is power number								
	(A)	NDa^2p/μ (B) N^2D_a/p	(C)	$pg_e/N^3 D_a^5$ (D) $ND P^2/p$						
54.	For	a Newtonian fluid, the slope of the gr	aph be	etween shear stress and shear rate is						
	(A)	$\tan 45^{\circ}$ (B) $\tan 60^{\circ}$	(C)	tan 90° (D) tan 30°						
55.	The	e most widely used blade is								
	(A)	Dispersion	(B)	Sigma						
	(C)	Double naben	(D)	All of the above						
56.	Hag	gen-Poiseulle-equation is useful for me	easuri	ng the						
	(A)	Viscosity	(B)	Density						
	(C)	Heat capacity of the fluid	(D)	Reynold number of the fluid						
57.	At -	moisture content consta	nt rat	e period ends and falling rate period						
	(A)	Critical (B) Specific	(C)	90% (D) Initial						
58.	Whi	Which of the following is a variable arm meter?								
	(A)	Venturimeter	(B)	Rotameter						
	(C)	Pitotmeter	(D)	All of the above						
59.	Food	l gels are examples of								
	(A)	Plastic solids	(B)	Elastic solids						
	(C)	Gels are not solids	(D)	None of the above						
60.	Pres	sure is always a								
	(A)	Horizontal stress	(B)	Normal stress						
	(C)	Vertical strain	(D)	Horizontal strain						
31.	Polis	hed surface have								
	(A)	Maximum absorptivity	(B)	Low emissivity						
	(C)	Moderate emissivity	(D)	Zero emissivity						

62.	Wh	ich of the following is	most s	suitable fo	r tran	sportation of stic	ky materia	1?
	(A)	Screw conveyor			(B)	Pneumatic con	veyor	
	(C)	Belt conveyor			(D)	Apron conveyo	r	
63.		Kg of orange juice to sture removed in Kg is		ed from 60)% to 2	20% moisture (by	weight). T	he mass of
	(A)	52 (B)	20		(C)	40	(D) 50	
64.	Mai	tch the following diam	ension	less numb	er wit	th field of use		
	A.	Grashof Number	1.	Compre	ssive f	low		
	В.	Froude Number	2.	Free con	vectio	n		
	C.	Euler Number	3.	Free sur	face fl	ow		
	D.	Mach Number	4.	Pressure	e varia	tion in flow		
		ABCD						
	(A)	2 1 4 3		*				
	(B)	4 3 2 1						
	(C)	2 3 4 2						
	(D)	4 1 2 3						
65.	Toot	th paste is						
	(A)	Bingham plastic			(B)	Pseudoplastic		
	(C)	Newtonian fluid			(D)	Dilatent		
66.	Mixi	ing of two fluid is						
	(A)	Reversible process			(B)	Irreversible pro	cess	
	(C)	Isothermal process			(D)	None of these		
67.	The	thermal conductivity is	s mini	mum for		,		
	(A)	Silver			(B)	Chrome nickel	steel	,
	(C)	Aluminium			(D)	Carbon steel		
68.	Mari	nades are prepared fro	om					
	(A)	Egg (B)	Meat		(C)	Fish	(D) Cere	eals
					30		2555	

69.	Niti	rate and Nitrite is helpful in m	eat processing	g as it	
	(A)	Increases tenderness			
	(B)	Increase juiciness			
	(C)	Improves color			
	(D)	Prevent from microbial conta	mination		
70.	Vea	l is obtained from			
	(A)	Sheep (B) Buffalo	(C)	Goat (D) Calf
71.	Fun	ction of casing in sausage is/ar	е		
	(A)	Packing			
	(B)	Tenderization of meat			
	(C)	Prevention of fat and moistur	e loss during	smoking and cookir	ng
	(D)	All of the above			
72.	For	smoking, which type of wood is	used		
	(A)	Hard wood	(B)	Soft wood	
	(C)	Sandal wood	(D)	Any of the above	
73.	Fish	proteins are more digestible t	han meat prot	ein because	
	(A)	The amount of connective pre	sent is more		
	(B)	The amount of connective tiss	sue present is	less	
	(C)	The amount of muscle fibers	present is mor	re	
	(D)	The amount of muscle fiber p	resent is less		
74.	Met	hod of fish liver oil extraction g	enerally follo	wed in small cottag	e scale industry is
	(A)	Method of auto fermentation	(B)	Method of boiling	
	(C)	Method of chemical digestion	(D)	Method of steaming	ng

75.	Gla	zing of fish is done to protec	et the fish fr	om		
	(A)	Microbial spoilage		(B)	Freezer burn	
	.(C)	Oxidation and freezer bur	n	(D)	Chemical spoilage	
76.	The	branch of science which de	als with the	stud	y of muscle is termed as	
	(A)	Mycology (B) Myc	ology	(C)	Cytology (D) One	chology
77.	Mea	t juiciness depends on				
	(A)	Amount of fat in meat		(B)	Amount of fat and WHC	f meat
	(C)	Connective tissue		(D)	Protein present in connec	tive tissue
78.	The	superior method of slaugh	ter of meat	anin	nals as far as efficacy of b	leeding is
	cons	idered is	*			
	(A)	Jhatka method		(B)	Halal method	
	(C)	Kosher method		(D)	Both (A) and (B)	
79.	The	shrinkage of meat is greate	r at pH			
	(A)	4.0 (B) 5.8		(C)	7.0 (D) 5.6	
80.	Cook	ed meat suppose to have				
	(A)	Red to pink		(B)	Red to dull red color	
	(c)	Dull red to brown color		(D)	Dull red to pink color	
81.	In th	e reading room of a libra	ry, there a	re 23	3 reading spots. Each read	ding spot
	consi	sts of a round table with 9	chairs place	d aro	und it. There are some rea	ders such
	that	in each occupied reading s	pot there a	re dif	ferent numbers of readers.	. If in all
	there	are 36 readers, how many	reading spo	ts do	not have even a single read	er?
	(A)	8 (B) None		(C)	16 (D) 15	

		e speed of Mohan's 53 km, find the tot					ed by
	(A) 20.72	(B) 5.18	(C)	238.25	(D)	6.18	
83.		a fictional land in					
		e Elves are peac re and art. The dv					
	game is as follow	vs. A tournol is one	e where out of	the two tear	ns that pla	y a match	, the
	one that loses g	et eliminated. The	e matches are	played in d	ifferent ro	unds whe	re in
	every round, ha	lf of the teams g	get, eliminated	from the to	ournament	t. If there	are
	8 rounds played	in a knock-out tou	rnol how man	y matches w	ere played	?	
	(A) 257	(B) 256	(C)	72	(D)	255	
84.	A research lab in	n Chennai require	s 100 mice an	d 75 sterilize	ed cages fo	r a certain	n set
		periments. To ide			170.00		
	Service and a final service and a service	0 by combining to					
		of toxin-free mate					
		7 degree Celsius.					
		ust be at least 2 s					
		roughly documente					
		approval procedur					
		sed by the lab in n					
	(A) 9	(B) 19	(C)	20	(D)	21	
85.	There are two w	ater tanks A and	B, A is much	smaller than	B. While	water fill	s at
	the rate of one li	re every hour in A	A, it gets filled	up like 10,	20, 40, 80,	160, in t	ank
	B. (At the end of	first hour, B has	10 litres, secon	nd hour it ha	s 20, and s	so on). If t	ank
	B is 1/32 filled af	ter 21 hours, what	is the total du	ıration requi	red to fill i	it complet	ely?
	(A) 26 hrs	(B) 25 hrs	(C)	5 hrs	(D)	27 hrs	
396			12				
500							

Ferrari S.P.A. is an Italian sports car manufacturer based in Maranello, Italy. Founded by Enzo Ferrari in 1928 as Scuderia Ferrari, the company sponsored drivers and manufactured race cars before moving into production of street-legal vehicles in 1947 as Feraari S.P.A. Throughout its history, the company has been noted for its continued participation in racing, especially in Formula One where it has employed great success. Rohit once bought a Ferrari. It could go 4 times as fast as Mohan's old

86.	mu Cor mu styl cor divi	sician. ntinuat sical pl le. If t nplementided be	He deci or, the re hrase and he cost on tary phr	ided to obot co d then of mal ase wi ateria	o build an duet comput king the ith the s	a robo with a es a cor e robot ame pla ar and	ot abl live n nplem is div ying s overhe	ter Science e to impousician in entary plaided between the tyle. If the eads in the	orovise in real- irase w ween a e cost o	like time ith th nd th of mak	a pro. It list ne same nen con cing the	Nan tens to e play nputes e robo	ned o a ing s a t is
	(A)	\$270		(B)	\$324		(C)	\$216		(D)	\$648		
87.			s at 6 mp s average					walks ov	er the	same	route a	it 4 mj	ph.
	(A)	2.4 m	ph	(B)	4 mph		(C)	4.8 mpl	1	(D)	5 mp	h	
88.	card	l aces.		dies ar	re throw			face and cores are					
	(A)	8		(B)	9		(C)	10		(Ď)	11		
89.	Form 8 digit numbers from by using 1, 2, 3, 4, 5 with repetition is allowed and must be divisible by 4?										ıst		
	(A)	31250	1	(B)	97656		(C)	78125		(D)	97657	7	
90.	In school there are some bicycles and 4 wheeler wagons. One Tuesday there are 190 wheels in the campus. How many bicycles are there?												
	(A)	14		(B)	15		(C)	16		(D)	5		
	draw	ver, wh	ich conta	ins 24	red and	l 24 blu	e sock	wo socks s. How m ame color	any soc				
	(A)	2		(B)	3		(C)	48		(D)	25		
92.								of the fou hat is the					er
	(A)	47		(B)	48		(C)	49		(D)	50		
3.		100	3's are to				seque	nce which	h are n	either	r prece	eded b	ру
	936	6395	93789	163	9639								
	(A)	1		(B)	2		(C)	3		(D)	4		
												100	

94.	How many odd numbers are there in the sequence which are immediately preceded by an odd number											
	51473985726315863852243496											
	(A)	1		(B) 2		(C)	4		(D)	More	than	4
95.	In a	class of	50 stu	dents a boy	ranks 31	from	the top	. What i	is his	place fi	rom t	he
	botto	om										
	(A)	20		(B) 19		(C)	21		(D)	18		
96.	Amo and mide	D is not	C, D a	nd E, B is long as E. If all	ger than stands i	E but	smalle er of the	r than A eir heigh	. C is t, who	smaller will b	than e in t	D the
	(A)	C		(B) A	*	(C)	E		(D)	В		
97.	Which of the following statement regarding a scalar matrix is correct?											
	(A) A scalar matrix is a matrix whose all elements are equal											
	(B) Their diagonal elements are equal											
	(C)	Their al	l eleme	ents are zero								
	(D)	Their al	l eleme	ents are odd r	numbers							
98.	Give	en that ta	n A = 1	1/3, tan B = ½	, so wha	at is th	e value	of tan (2	A + B)?		
	(A)	1		(B) 2		(C)	3		(D)	4		
99.		ne roots $ac-1$?	of X ² +	bx + C = 0 a	are two	consect	utive in	ntegers.	What	is the	value	of
	(A)	0		(B) 1		(C)	3		(D)	9		
100.	Wha	at is the I	CM of	2!4!8!15!?	,							
	(A)	2!		(B) 4!		(C)	8!		(D)	15!		