ENTRANCE EXAMINATION FOR ADMISSION, MAY 2010.

M.Sc. (MATHEMATICS) COURSE CODE : 372

	COURSE CODE : 372	and support in the
Register Number :		The second second
		Signature of the Invigilator (with date)

COURSE CODE : 372

Max: 400 Marks

NGAPILLAI

Time : 2 Hours

Instructions to Candidates :

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET <u>using HB pencil</u>.
- 4. Avoid blind guessing. A wrong answer will fetch you -1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1. If
$$f(x) = \begin{cases} -x \text{ for } -1 \le x \le 0 \text{ and} \\ x^2 \text{ for } 0 < x \le 1 \end{cases}$$

then

3.

4.

5.

- (A) f is continuous but not differentiable at 0
- f is not continuous but differentiable at 0 (B)
- (C) f is differentiable everywhere
- (D) none of these

2. If F is a closed subset of R containing all the rational numbers then

- (A) F = R(B) F is compact (C) F = QNone of these (D) $\lim_{n \to \infty} \frac{2^n}{n!}$ is (A) 0 (B) ∞ (C) $\mathbf{2}$ (D) not existing The set $\{e^{2+iy}: y \text{ belongs to } R\}$ is (A) compact not bounded (B) (C) not closed (D) finite If $W = \{(x_1, x_2, ..., x_n) \text{ belongs to } \mathbb{R}^n; \sum_{i=1}^n x_i = 0\}$ where $n \ge 2$ then dimension of W is (A) n (B) n-1(C) 0 (D) ∞ $\lim_{n} \inf \left[(-1)^n \left(1 + \frac{1}{n} \right) \right]$ is 6.
 - (A) 1 · (B) 0 (C) -1 (D) 00

Suppose $n \ge 1$. If V is the set of all polynomials of degree $\le n$ with integer 7. coefficients then it is not a vector space over R since

- (A) it is not closed under addition
- it is closed under addition, but (V, +) does not form an abelian group (B)
- (C) it is not closed under scalar multiplication
- (D) 0 does not belong to V

8. The function $e^x - x - 1$ is strictly increasing on

- (A) (0,∞) (B) nowhere (C) (−∞, 0) $(-\infty,\infty)$ (D) 9. The number of generators of the group (Z, +) is (A) 2 (B) 1 (C) 0 (D) ∞ The closure of $(0, \infty)$ in R is 10. (A) (0,∞) (B) (0,∞] (C) [0, ∞] (D) $[0, \infty)$ If $f(x) = \lim_{n \to \infty} (\sin x)^{2n}$, then f is 11. (A) continuous at $x = \frac{\pi}{2}$ discontinuous at x = $(2k + 1)\frac{\pi}{2}$, k in Z (B) continuous at x = - $\frac{\pi}{2}$ (C) (D) f is continuous at infinite number of points The center of an abelian group is 12. (A) equal to the identity equal to the whole group (B) (C) always nontrivial and normal (D) not normal $f(z) = |z|^2$ is 13. (A) analytic on C not continuous (B) differentiable at 0 and nowhere else (D) differentiable nowhere in C (C) If x is positive then the set of all y for which the relation $(1 + x)^{\gamma} > 1 + xy$ holds is 14. equal to
 - (A) Z (B) N (C) Q (D) R+

15. If $a_n = \frac{(-1)^n n}{n+1}$ then lim sup a_n is equal to

- (A) 0 (B) 1 (C) ∞ (D) does not exist
- 16. Let $f : \mathbb{R} \to \mathbb{R}$ be a function such that f(0) > 0. Then there exists a $\delta > 0$ such that f(x) > 0 for all x belonging to $(-\delta, \delta)$

(A) always

- (B) only for continuous functions
- (C) only for differential functions
- (D) only for monotone continuous functions
- Under addition and multiplication modulo p, where p is a prime number, the set {0, 1, 2, ..., p-1}is
 - (A) a commutative ring but not a field (B) a non-commutative ring
 - (C) a field (D) a skew field

18. If
$$x_r + \frac{1}{x_r} = 2.\cos\frac{\pi}{2^r}$$
, then $x_1 \cdot x_2 \cdot x_3 \dots \infty$ is

- (C) 0 (D) indeterminate
- In a group of 100 people, 75 can speak English, 87 Hindi, 90 Bengali and 95 Urdu. The number of people who can speak all the 4 languages is
 - (A) 0 (B) 37 (C) 47 (D) 55
- 20.
- Let ω be the imaginary cube root of unity. The roots of the equation

 $\begin{bmatrix} x & \omega & \omega^2 \\ \omega^2 & x & \omega \\ \omega & \omega^2 & x \end{bmatrix} = 0 \text{ are}$ (A) 1, -1, 2 (B) -1, -1, 2 (C) 1, -1, -2 (D) 1, 1, -2

21.
$$\lim_{n \to \infty} \frac{n^n + n!}{n^n}$$
(A) does not exist (B) 1 (C) 0 (D) \sim
22. Suppose f: [0, 1] \rightarrow R is given by $f(x) = 0$ if x is rational and $f(x) = \frac{1}{x}$ if x is irrational.
Then
(A) $\int_0^1 f(x) dx = 1$ (B) $\int_0^1 f(x) dx = 0$
(C) $\int_0^1 f(x) dx = \infty$ (D) f is not Riemann integrable
23. The centre of gravity of a circular cone of height h is
(A) $\frac{1}{4}h$ (B) h (C) $\frac{3}{4}h$ (D) $\frac{1}{2}h^2$
24. An open – top box is to be made by uniting small congruent squares from the corners of a 12⁵ X12⁵ sheet of tin and bending up the sides. How large should the squares cut from the corners be to make the box hold as much as possible?
(A) 4^n (B) 2.5^n (C) 3^n (D) 2^n
25. The linear fractional transformation that imaps $x_1 = 0, x_2 = 1, x_3 = \infty$ onto $w_1 = -1, w_2 = -i$ and $w_3 = 1$ respectively is (A) 2^{-i} (B) $\frac{z^{-i}}{z+i}$ (C) $\frac{z-1}{z+1}$ (D) e^i
26. The number of generators of a cyclic group of order 15 is (A) 1 (B) 3 (C) 6 (D) 8
27. Let G be an additive group of integers modulo 24. The number of distinct subgroups of G is (A) 24 (B) 12 (C) 8 (D) 1

28. Let (x_n) be a convergent sequence of real numbers with limit x. Then which one of the following statements is not true?

- (A) (x_n) is monotonic
- (B) (x_n) is bounded
- (C) Every subsequence of (x_n) is convergent
- (D) Every neighbourhood of x contains all but finitely many elements of (x_n)

29. It is found that the order of a group G is less than 320. If G has subgroups of orders 45 and 35, then the order of G is

- (A) 80
 (B) 105
 (C) 315
 (D) None of these
- 30. If three symmetrical dice are thrown, the probability that the sum of the numbers shown is 12 is
 - (A) $\frac{25}{216}$ (B) $\frac{12}{216}$ (C) $\frac{30}{216}$ (D) $\frac{36}{216}$

31. When
$$x > a > 0$$
, the integral $\int_a^{\infty} \frac{1}{x^p} dx$

- (A) diverges if p > 1
- (B) converges if p > 1
- (C) diverges if $p \ge 1$
- (D) converges if p < 1 and diverges if $p \ge 1$
- 32. Let f be a step function on [0,1] and

$$g(x) = \int_{0}^{x} f(t) dt \text{ for } x \in [0.1].$$

If $E = \{x \in [0,1] : g \text{ is continuous at } x\}$ and

 $\mathbf{F} = \{x \in [0,1] : g \text{ is differentiable at } x\}, \text{ then }$

(A) F = [0, 1]

- (B) E = [0, 1] and F is an empty set
- (C) E and F are empty sets
- (D) E = [0, 1] but F is not an empty set

372

33. Let $k \in N$. Let x be an irrational number with 0 < x < 1 and $0.x_1x_2...x_n$... be the decimal expansion of x. Define a sequence (a_n) of reals as follows:

 $a_n = k^{th} \text{ root of } k \text{ if } n = 2k$

and
$$a_n = \sum_{i=1}^k \frac{x_i}{10^i}$$
 if $n = 2k - 1$.

Let $\alpha = \lim inf_n a_n$ and $\beta = \limsup_n a_n$. Then

- (A) $0 < \beta \alpha < 1 x$ (B) $\beta \alpha = 1 x$
- (C) $\alpha = \beta = 1$ (D) $\alpha = \beta = x$
- 34. Let $f: \mathbb{R} \to \mathbb{R}$ be a map given by

$$f(x) = \begin{cases} x \sin(1/x) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

Then

- (A) f is not continuous on R
- (B) f is continuous and differentiable on R but f' is discontinuous
- (C) f is continuous and differentiable on R and f' is continuous on R
- (D) f is continuous on **R** but is not differentiable at 0

35. The solution of the differential equation $\frac{dy}{dx} = \frac{y^2}{1-xy}$ is

(A) $x y = \ln y + c$ (B) $y = \ln x + c$ (C) $y = c e^{x}$ (D) $y = c \sin x$

36. The differential equation corresponding to the general solution $y = Ae^{3x} + Be^{5x}$ is

- (A) $y^{||} 8y^{||} + 15y = 0$ (B) $y^{||} + 8y^{||} + 15y = 0$
- (C) $y^{||} + 8y^{|} 15y = 0$ (D) $y^{||} 8y^{|} 15y = 0$

37. The basis of solution of $y^{(4)} - 2y^{(3)} + 2y^{(2)} - 2y^{(1)} + y = 0$ is

- (A) $e^x, xe^x, x^2e^x, x^3e^x$ (B) $e^x, xe^x, x^2e^x, \cos x$
- (C) $e^x, xe^x, \cos x, \sin x$ (D) $e^x, xe^x, x \cos x, x \sin x$

38. The 2- step solution of the initial value problem $y^{\downarrow} = 2x - y$, y(0) = 1 is

(A) $1+3x^2-x-x^3$ (B) $1+\frac{3x^2}{2}-x-\frac{x^3}{3}$ (C) $1+2x+3x^2+4x^3$ (D) sin x

39. The particular solution of $(D^2 + 4)y = x \sin x$ is

(A) $\frac{1}{3} \left(x \sin x - \frac{2}{3} \cos x \right)$ (B) $\frac{x}{4} \sin x + \frac{x^2}{5} \cos x$ (C) $x \sin x - x^2 \cos x$ (D) $x \sin x + x^2 \cos x$

40. The general solution of $\frac{dx}{y+x} = \frac{dy}{z+x} = \frac{dz}{x+y}$ is

(A) $\varphi\left(x+y+z, x^2-y^2\right)$ (B) $\varphi\left(\frac{y-x}{z-y}, (x-y)^2(x+y+z)\right)$ (C) $\varphi\left(\frac{x-y}{y-z}, \frac{y-z}{z-x}\right)$ (D) $\varphi\left(\frac{x+y}{z}, z-x-y\right)$

41. The Laplace transform of $e^{-t} \cos 2t$ is

(A)
$$\frac{s+1}{s^2+4s+5}$$
 (B) $\frac{s-1}{(s+1)^2}$ (C) $\frac{s^2-2s+3}{s^2+4s+5}$ (D) $\frac{s^2-1}{s^2+4s+5}$

42. The general solution of
$$y = xp + \sqrt{1 + p^2}$$
, $p = y^{|}$ is
(A) $y = cx + \sqrt{1 + c^2}$
(B) $y = cx + \sqrt{1 + x^2}$
(C) $y = cx + \sqrt{1 - x^2}$
(D) $y = cx + \sqrt{1 - x}$

- 43. By which transformation, the Euler equation $x^2 y^{\parallel} + x y^{\downarrow} + y = 0$ can be transformed into an equation with constant coefficients?.
 - (A) $Z = \log x$ (B) $Z = e^x$ (C) $Z = x^2$ (D) $x = z^2$

44.	The angle of intersection at the point (2,-1,2) of the subspaces $x^2 + y^2 + z^2 = 9$ and										
	z = .	$x^2 + y^2 - 3$ is									
	(A)	83	(B)	$\frac{8}{2\sqrt{21}}$		(C)	$\frac{7}{5}$		(D)	5	
45.	Supp	pose G is cyclic	grou	p which	has ex	actly	three s	subgroup	os viz,	G, {e}	and a
	subg	roup of order 7.	Then	the order	r of G is						
	(A)	7	(B)	14	•	(C)	49		(D)	343	
46.	Let (G be a group hav	ing tv	vo subgro	oups of o	rder 1	14 and 2	4 respec	etively.		
	If o(G) < 300, then th	e orde	er of G is							
	(A)	38	(B)	42		(C)	84		(D)	168	
47.	Let	$\sum a_n$ be a series of	of posi	itive tern	ns. If Σ	a_n^2 is	converg	gent, the	n		
	(A)	$\sum \frac{a_n}{n}$ diverges to	0 + 00			(B)	$\sum \frac{\alpha_n}{n}$ is	converg	ent		
	(C)	$\sum \frac{a_{\pi}}{n}$ oscillates f	initel	у		(D)	$\sum \frac{a_{\pi}}{n}$ os	scillates	infinit	ely	
48.	The	function $exp: R$	$\rightarrow R$	is							
	(A)	injective				(B)	monot	onically	increa	sing	
	(C)	unbounded				(D)	bound	ed			
49.	Let	Z_{10} denote the ri	ing of	integers	modulo	10. T	hen the	number	of ide	eals in .	Z_{10} is
	(A)	2	(B)	3		(C)	4		(D)	5	
50.	If f($\mathbf{x}) = \begin{cases} x, \ for \ x \ i \\ 0, \ for \ x \ i \end{cases}$	s rati s irra:	onal tional ^{tl}	hen f is						
	(A)	discontinuous a	at all j	points of	R	(B)	contin	uous at a	all rati	ional po	ints
	(C)	continuous at a	ull irra	ational p	oints	(D)	contin	uous onl	ly at ze	ero	

44.	The angle of intersection at the point (2,-1,2) of the subspaces $x^2 + y^2 + z^2 = 9$ and									
	<i>z</i> = .	$x^2 + y^2 - 3$ is								
	(A)	83	(B)	$\frac{8}{2\sqrt{21}}$		(C)	75	(D)	5	
45.	Sup	pose G is cyclic	grou	p which	has ex	actly	three sub	ogroups vi	z, G, {e	} and a
	subg	roup of order 7.	Then t	he order	c of G is					
	(A)	7	(B)	14	•	(C)	49	(D)	343	
46.	Let	G be a group hav	ing tw	o subgro	oups of o	rder 1	14 and 24 1	respectivel	у.	
	If o(G) < 300, then th	e orde	er of G is						
	(A)	38	(B)	42		(C)	84	(D)	168	
47.	Let	$\sum a_n$ be a series of	of posi	tive tern	ns. If Σ	a_n^2 is	convergen	nt, then		
	(A)	$\sum \frac{a_n}{n}$ diverges to	0 + 00			(B)	$\sum \frac{\alpha_n}{n}$ is co	nvergent		
	(C)	$\sum \frac{a_{\pi}}{n}$ oscillates f	ïnitely	7		(D)	$\sum \frac{a_{\pi}}{n}$ oscil	llates infin	itely	
48.	The	function $exp: R$	$\rightarrow R$	is						
	(A)	injective				(B)	monotoni	ically incre	asing	
	(C)	unbounded				(D)	bounded			
49.	Let	Z_{10} denote the ri	ing of i	integers	modulo	10. T	hen the nu	umber of i	deals in	Z_{10} is
	(A)	2	(B)	3		(C)	4	(D)) 5	
50.	If f($\mathbf{x}) = \begin{cases} x, \ for \ x \ i \\ 0, \ for \ x \ i \end{cases}$	s ratio s irrat	onal ional tł	nen f is					
	(A)	discontinuous a	at all p	ooints of	R	(B)	continuo	us at all ra	tional p	oints
	(C)	continuous at a	ıll irra	tional po	oints	(D)	continuo	us only at	zero	

51. If $f: \mathbb{R} \to \mathbb{R}$ is a map then

- (A) f is differentiable on R if |f| is differentiable on R
- (B) |f| is differentiable on R if f is differentiable on R
- (C) f is continuous on R if |f| is continuous on R
- (D) None of these

52. If
$$a_n = \cos \frac{np}{2}$$
 for n^3 1, then

- (A) $\limsup n \otimes 4$ an = 0 and $\liminf an = 0$
- (B) $\limsup n \otimes 4$ an = 1 and $\liminf an = 0$
- (C) $\limsup n \otimes \mathbb{R}$ an = 0 and $\liminf an = -1$
- (D) $\limsup n \otimes Y$ an = 1 and $\liminf an = -1$

53. If the determinant $\begin{vmatrix} x-h & 0 & h-x \\ 2x & x+h & 2x \\ x+h & 2h & x+h \end{vmatrix}$ is of the form $k(x-y)^3$, then the pair (k,y) is

- (A) (1,h) (B) (1,2h) (C) (2,h) (D) (h,2)
- 54. The solution of $\frac{dy}{dx} = e^{2x+y}$ is
 - (A) $\frac{e^{2x}}{2} + e^{-y} = k$ (B) $\frac{e^{2x}}{2} - e^{-y} = k$ (C) $\frac{e^{2x}}{2} + e^{-y} = k$ (D) $y = \frac{e^{2x+y}}{2} + k$

55. Let A and B be two non-empty sets. A relation from A to B is a subset of

(A) $A \cup B$ (B) $A \cap B$ (C) A - B (D) $A \times B$

- 56. Let A and B be sets such that |A| = m and |B| = n. The set of all functions from A to B is denoted by $\mathcal{B}^{\mathcal{A}}$. Then $|\mathcal{B}^{\mathcal{A}}|$ is
 - (A) m + n (B) mn (C) m^{33} (D) m^{33}

57.	The function $f: \mathbb{R} \to \mathbb{R}$ defined by the rule $f(x) = 3x$ is								
	(A)	bijection	(B)	1 - 1 but not onto					
	(C)	not 1 - 1 but onto	(D)	neither 1- 1 nor onto					
58.	Let : The	$f:A\to B \text{ and } g:B\to C$ be two function	ons s	uch that f o $g : A \rightarrow C$ is a bijection.					
	(A)	f is onto and g is 1-1	(B)	f is 1-1 and g is onto					
	(C)	f and g are bijections	(D)	none of these					
59.	Let	$G = \left\{ \begin{bmatrix} x & x \\ x & x \end{bmatrix} / x \in \mathbb{R}^* \right\}.$ Under the matrix	k mul	tiplication G is					
	(A)	a group with $e = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	(B)	not a group					
	(C)	an abelian group	(D)	a non abelian group					
60.	The	order of the element 3 in the additive g	roup	Z_{ε} is					
	(A)	2 (B) 4	(C)	6 (D) 8					
61.	Whi	ch one of the following is a group?							
	(A)	The set of all even integers under add	ition						
	(B)	The set of all even integers under sub	tracti	on					
	(C)	The set of all odd integers under addit	tion						
	(D)	The set of all odd under subtraction							
62.	Let	$p = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$ be a permutation. The	n the	inverse of p is					
	(A)	$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$	(B)	$\binom{1 \ 2 \ 3 \ 4}{3 \ 4 \ 1 \ 2}$					
	(C)	$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix}$	(D)	$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix}$					
63.	The	order of -1 in (Z, +) is							
	(A)	2 (B) 1	(C)	0 (D) infinite					
64.	The	kernel of the homomorphism f : (Z, +) -	$\rightarrow (\mathbb{R}^*$, .) defined by $f(x) = 2^x$ is					
	(A)	{1} (B) {0}	(C)	Z (D) {1, -1}					

65.	The algebraic structure which is not a ring is									
	(A)	(Z,+, .)	(B)	(Q,+, .)	(C)	(R,+, .)	(D)	(R, ., +)		
66.	The	character of (Z7,	L,N) i	s						
	(A)	7	(B)	1	(C)	0	(D)	2		
67.	The	function $f: Z \rightarrow Z$	defin	ed by the r	ule $f(x) = 2x$	k is a				
	(A)	ring homomorp	hism		(B)	ring isomorphi	sm			
	(C)	ring automorph	ism		(D)	group homomo	rphisn	n		
68.	In R	³ let S = { e_1, e_2, e_3	3). Th	en L(S) is						
	(A)	S			(B)	{(x, y, 0) / x, y €	E R}			
	(C)	{(0, y, z) / y, z €	R}		(D)	R ³				
69.	In A	3 let S = L({(1, 1)	, 1)}) a	and $T = L({($	(-1,-1,-1)})	. Then dim $S \cap T$	ſis			
	(A)	1	(B)	0	(C)	2	(D)	4		
70.	If K	is a compact sub	set of	R then W =	= {i <i>x</i> i : x bel	ongs to K} is				
	(A)	R			(B)	a compact set i	n R			
	(C)	[0, ∞)			(D)	a closed set bu	t not c	ompact in R		
71.	The	set of 2×2 matr	ices w	ith trace 0	is					
	(A)	a group under a	additio	on but not a	vector sub	space				
	(B)	a non-commuta	tive g	roup under	multiplicat	tion				
	(C)	a commutative	group	under mul	tiplication					
	(D)	a vector subspa	ce							
72.	A an	id B are m × n m	atrice	s. Then the	size of A^T .	$+B^T$ is				
	(A)	$m \times n$	(B)	$\mathbf{m} \times \mathbf{m}$	(C)	n×n	(D)	$n \times m$		
73.	If th	e entries of a 2 $ imes$	2 ma	trix A are d	efined by t	he formula a_{ij} =	= \$2 + ;	/², then A is		
	(A)	a symmetric ma	atrix		(B)	a skew-symme	tric m	atrix		
	(C)	the identity ma	trix		(D)	$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$				
372					12					

74. If $A = \begin{bmatrix} 1 & 2 \\ 3 & m \end{bmatrix}$ and $B = \begin{bmatrix} m & 2 \\ n & 4 \end{bmatrix}$ are singular matrices then the value of mn is (A) 2 (B) 3 (C) 18 (D) 6 75. The inverse of $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ is (B) $\begin{bmatrix} \frac{2}{3} & \frac{1}{1} \\ -\frac{3}{2} & \frac{1}{1} \end{bmatrix}$ (A) $\begin{bmatrix} -2 & 1\\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix}$ (D) $\begin{bmatrix} \frac{1}{2} & 1\\ 2 & -\frac{3}{2} \end{bmatrix}$ (C) $\begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$ The rank of the matrix $\begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ is 76. (A) 1 (B) 2 (C) 3 (D) 4 The characteristic roots of $\begin{bmatrix} \cos \emptyset & \sin \emptyset \\ -\sin \emptyset & \cos \emptyset \end{bmatrix}$ 77. (A) -1, -1 (B) 1, 1 (C) $\cos \emptyset - \sin \emptyset; \cos \emptyset + \sin \emptyset$ (D) $\sin \emptyset - \cos \emptyset$; $\sin \emptyset + \cos \emptyset$ The product of the eigen values of $\begin{bmatrix} 8 & -6 & -6 \\ -6 & 7 & -4 \\ 2 & 4 & 3 \end{bmatrix}$ is 78. (C) 18 (A) 120 **(B)** 40 (D) -40 The quadratic form in two variables x_1, x_2 for the symmetric matrix $\begin{bmatrix} 1 & -2 \\ -2 & -1 \end{bmatrix}$ is 79. (A) $x_1^2 - x_2^2 - 2x_1x_2$ (B) $x_1^2 - x_2^2 - 4x_1x_2$ (D) $(x_1 + x_2)^2$ (C) $x_1^2 - x_2^2 + 2x_1x_2$ 80. If $y^x = x^{\dim y}$, then $\frac{dy}{dx}$ is (B) $\frac{\log y - \frac{\sin y}{x}}{\cos y \log x - \frac{y}{x}}$ (A) $\frac{\sin y}{x\cos x}$ (D) $\frac{\sin y - \log y}{\cos y - \log x}$ (C) x cot y

81.	The	differential coeff	ïcient	of $tan^{-1} \frac{x}{\sqrt{1-x^2}}$	with	respect to sec^1	$\frac{1}{2x^2-1}$	is
	(A)	x	(B)	1	(C)	<u>×</u> 2	(D)	$-\frac{1}{2}$
82.	If p	$a^2 = a^2 \cos^2 \vartheta + d^2$	b²sin	$\frac{d^2}{dr}$, then p + $\frac{d^2p}{dr^2}$	is			
	(A)	$a^2b^2p^2$	(B)	$\frac{a^2b^3}{p^3}$	(C)	$a^2b^2p^4$	(D)	1 a²b²p²
83.	$\frac{n}{2}$ -	$\frac{x^3}{6} + \frac{x^4}{10} - \frac{x^7}{14} +$	· is					
	(A)	e ^{x/2}			(B)	$\sin \frac{x}{2}$		
	(C)	$\tan \frac{x}{2}$			(D)	$\tan^{-1} \frac{(\sqrt{1}+x^3)}{x}$	1	
84.	If y	$=\sqrt{sinx}+\sqrt{sin}$	$\overline{x+y}$	sinx +to ∞,				
	then	$\frac{dy}{dx}$ is						
	(A)	y √ <i>cosx</i>	(B)	y cosx	(C)	$\frac{1}{\gamma}$ cosx	(D)	$\frac{\cos x}{2y-1}$
85.	The	solution of the e	quatio	n				
		tan ⁻¹ (x+1) +	tan ⁻¹	$(x-1) = \tan^{-1} \frac{s}{31}$	is			
	(A)	$\frac{1}{4}$	(B)	-8	(C)	√2	(D)	$2\sqrt{2}$
86.	Lim	it $\frac{\tan\vartheta + \sec\vartheta}{\tan\vartheta - \sec\vartheta}$	$\frac{-1}{+1}$ is					
	(A)	0	(B)	1	(C)	<u>π</u> 2	(D)	n₹
87.	If s	$\sin A + \sin B + \sin B$	n C =	Cos A + Cos B +	Cos C	c = 0		
	then	$1\cos^2 A + \cos^2 H$	3 + cos	5 ² C is				
	(A)	π	(B)	<u>π</u> 2	(C)	1/2	(D)	$\frac{3}{2}$
372				14				

88.	The points B, P, Q in the Argand diagram represent the complex numbers 2, z, z^2 . If P describes the size on AP as disputer the large of Q is									
	If r describes the circle on AB as diameter,	the	locus of Q is							
	(A) Circle (B) Ellipse	(C)	Cardioid (D)	Hypocycloid						
89.	If $\frac{\sin\theta}{\theta} = \frac{5045}{5046}$ then the approximate value of	of Ø	is							
	(A) 0° 32' (B) 1°	(C)	1° 58' (D)	2" 32'						
90.	If $\tan \frac{x}{2} = \tanh \frac{y}{2}$ then $\log \tan \left(\frac{\pi}{4} + \frac{x}{2}\right)$	is								
	(A) $\frac{y}{x}$ (B) y	(C)	$x^2 - y^2$ (D)	$x^2 + y^2$						
91.	The real matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ will have real ei	gen	values when							
	(A) $(\alpha - \dot{\alpha})^2 + 4bc \ge 0$	(B)	$(a-d)^2+4\mathrm{bc}\leq 0$							
	(C) $(\alpha - d)^2 - 4bc \ge 0$	(D)	$(a-d)^2-4\mathrm{bc}\leq 0$							
92.	Let T: $\mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation f	or w	hich T(1, 2) = $(3, -1, 5)$	i) and						
	T(0, 1) = (2, 1, -1). Then $T(x, y)$ is									
	(A) $(-x+2y, -3x+y, 7x+y)$	(B)	(-x+2y, 3x+y, 7x-y)							
	(C) $(x+2y, -3x+y, 7x-y)$	(D)	(-x+2y, -3x+y, 7x-y))						
93.	If $Sin (A + i B) = tan C + i Sec D$, then									
	Cos 2A Cos h 2B is									
	(A) 1 (B) 2	(C)	3 (D)	4						
94.	$\int_{\mathfrak{V}}^{\frac{\pi}{2}} \frac{\cos \vartheta}{1+\sin^2 \vartheta} \mathrm{d}\vartheta \mathrm{is}$									
	(A) $\frac{1}{2}$ (B) $\frac{1}{4}$	(C)	2π (D)	<u>π</u> 4						
95.	Let M be a metric space. Let $f : M \rightarrow R$ a Which one of the following statements is not	and t true	$g: M \rightarrow R$ be continue?	uous functions.						
	(A) $f + g$ is continuous	(B)	fg is continuous							

(C) cf is continuous for all c in R (D) f/g is continuous

- If $f(x) = x e^x$ then 96.
 - f is unbounded from below (A)
 - f is a bounded function (C)
- 97. The function cos h x on R is
 - continuous but not differentiable (A)
 - differentiable but not bounded (B)
 - bounded but not continuous (C)
 - (D) bounded

98. Two sets A and B are equivalent if there exists a mapping from A to B which is

- (A) an injection
- a surjection (C)

(B) a bijection

(D)

a homomorphism

- Which is the incorrect statement? 99.
 - (0, 1] is uncountable (A)
 - **(B)** [0, 1] is uncountable
 - $Q \times (0, 1)$ is uncountable (C)
 - $\{0\} \cup \{1\} \cup \{2\}$ is uncountable (D)
- 100. Which is the incorrect statement in any metric space (M, d)?
 - (A) Ø is open
 - the union of any family of open sets is open **(B)**
 - M is open (C)
 - the intersection of any number of open sets is open (D)

- (B) $f(x) > -\frac{1}{\varepsilon}$ for every x
- (D) $f(x) < -\frac{1}{\varepsilon}$ for every x