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Notation : R —Real line, @ —Set of rationals [ - Natural Numbers,

C - Complex plane A—-Closure of A, A"-Complement of A and ¢ -empty set,
i=+y—1,A7 —Transpose of Matrix A .

For any finite set E, let |E| denote the number of elements in E. If A and B are
finite sets and then |AUB|+|A(B|=

(A) |A|+|B] (B) ||A|-|B]| (©) 2A|+|B| (D) <A|+|B|

Let X and ¥ be subsets of a topological space and let A denote the closure of a subset A of the

topological space. Then, X UY

I

(A X\Y B) XUY © XNY (D) ¥\x
Aset, ACR is compact if and only if A is

(A) open and bounded (B) closed and bounded

(C) open and unbounded (D) closed and unbounded

Aset {xe R:4<x* <9} is

(A) open (B} compact and connected
(C) compact and disconnected (D) disconnected but not compact

Let f(x) bethe function defined for all
1 .
x€ B such that f(0)=0 and f(x)=xsin(—) for x #0.Then f is
X

(A} continuous only at x =0 (B) discontinuous at x=0
(C) discontinuous at x =1 (D) continuous on R

The value of C for which the limit lim{(x’ +7x* + 2)" — x} is finite and non zero is

N340

A) -1 (B) % © o ® 1
1+ "
If z=7 then the real part of z is
j—
1 = —1 1
A) = B) — 0 D -
(A) 5 (B) 3 (C) > ( -

If f(z)=|z| then

(A)  f satisfies the Cauchy Riemann equation at all zeC
(B) [ satisfies the Cauchy Riemann equation only at 7 =~
(C)  f satisfies the Cauchy Riemann equation only at z=0
(D) f sausfies the Cauchy Riemann equation only at 7 =1
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10.

11.

12,

13.

14.

15.

16.

17.

Let f and g be two real valued functions, which have continuous derivatives on (a,b). Then

[ 708 (dx+ [ g(x) £ () is

(A)  fla)gla)= f(D)g(b) (B) f(b)g(b)— fla)g(a)

(C)  fla)g(b)— fib)g(a) D) f(b)gla)- fla)g(b)

If x is real, then ]Jm‘_ch:_%ii is

(A) 0 (B) =« (C) 1 (D) 24

The graph of the curve x* — y* =1 is known as
(A) ellipse (B) cycloid (C) parabola (D) hyperbola

Let f and g be continuous functions on |a,b] such that fia)< g(a) and f(b) > g(b). Then
the set {xe [a,b]: f(x) = g(x}} ;
(A) equals [a,b] (B) is a non-empty proper subset of [a,b]

(C) empty : (D)  must be an infinite set
dx .
is

a’cos® x+b*sin” x
@ tan() ® —tn')  (© iblan"(bm“x}ﬂ)]l sec(2%)
a

ith ] a a a

If f and g are differentiable functions from R into R such that f {0}=-——]-- and

g(0)

h(x)= f(x) g(x) sin gx then h'(0) is

2 4 -2
(A)  — (B) — (&) — (D) 1

T b i
T the Argand diagram of the points 5+ 2i, 7+5i, 4+ 7i and 2+4i form a
(A) parallelogram but not a rectangle (B) square
(C) rectangle but not a square (D) rhombus but not a square

The directional derivative of the function f(x,v,z)=xv'z at the point (1,0,0) in the direction
(21 2] +k) is
(A) 1 (BY -1 (C) 0 (D) -2
&
For the function f(z) =e*, the point z =0,

(A) aremovable singularity (B) not a singularity
(C) an essential singularity (D) a simply pole
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18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

372

If C is the circle | z|= 2, the value of IE—,JZ is
r z--
(A) O (B) -I (C) —2mi (D) 27

If (x,) is a sequence of non negative real numbers then limsup(-x, ) is

n

(A) -limsup(x,) (B) -—liminf(x,)

I ]

(C)  liminf(x,) (D) limsup(x,)

Let f:G — H isa group homomorphism. Then G is isomorphic to f({G)
(A) ifand onlyif f isonto (B) ifandonlyif f isl-1
(C) onlyif f isanisomorphism (D) if Giscyclic

Let f(z):C — C be analytic function such that 0<| f(z)|<1. Then
(A)  f(2) isa constant for all ze C (B) f(z2)=0 forall ze C
(C) |f(z)l=0as z—ee (D) |f(2)|=2las z—= e

Let R be aring and a, b be invertible elements of R. Then the product,
(A) abis invertible (B) ab is invertible if R is commutative ring
(C) ab is invertible but ba need not be invertible (D) ab is invertible if R is a field

If tan~!yx +mn'1y+mn'1z:%,then Xy +yz +zx1s

(A) O (B) -1 (C) m (D) 1

If f:R— R defined by f(x)=1+ax, where a#0, is such that f = f™'. Then the value of
a is

(A) -2 (B) -1 (C) 1 (D) 2
If lim&f{:|I =1, then IimM is

) x- =0y
(A) 1 (B) 0 (C) -1 (D) oo
Let © be a relation on a collection of sets defined by ApB < A[B=¢. Then p is
(A) an equivalence relation (B) reflexive and symmetric only
(C) symmetric and transitive only (D) not reflexive

The relation © is defined on £ as xpy < x—y is a multiple of 5. Then the equivalence class
to which 2 belongs is the set
(A) [5k+2/ked) (B) {2k+5/keZ)

(C) (2k+5/keN} (D) {5k+2/ke N)



28.

29.

30.

31.

32.

33.

34.

Let A be a finite set of size of n. The number of elements in the power setof Ax A is

(A) 2% (B) (2n)*

©cy 2" (D) 2n°

Let A and B be sets such that | Al=m and | B|=n=m, The number of 1-1 functions

from Aand B is
(A) nn-Din=-2)..(n—-m+1)
cy m"

5 4
The inverse of the matrix A= [ﬁ 5}

{A) does not exist

5 4
(C) [ }
24y 13

The system of equations x+ y+z=2

2x+3z=5

3x+y+4z=06

(A) has no solution for (x,y,2)

{(B) has a unique solution for (x, y,z)

(B)y mn

(D) n"

® >
6 5
5 -4

(D)
5 7

(C) has more than one but finite number of solutions for (x, y,z)

(D) has infinite number of solutions for (x, v,z)

If T:R* = R'is given by T(X,,X,, X, %) = (x},%,,0,x,) for (x,%,,x,x,)€ R* then,

(A) Tislinearand 1 -1
('} Tis linear but not onto

Mark the wrong statement

) 121
If Aisthe matrix
1 2

(B} Tis linear and onto
(D) Tisnot linear

(A) there is a matrix P suchthat PAP' is diagonal

(B) the eigenvectors of A span R’

(C) the eigenvectors of A are linearly dependent

(D) there is a 2 x 2 matrix B such that AB=Ba=I where I is the identity matrix

Choose the matrix for which the inverse exists

A e
(A) [ ]
4 3

1 2
3 4

[T1]

H

(C) A 4 (D)
2 2

¥ o

ek
al— tapa
b R
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35.

36.

37.

38.

349,

40,

41.

372

| i S
If the eigen valuesof A=|1 5 1| are-2, 3, 6, then the eigen values of the transpose A" are
= N s |
111 T
(A) -2,3,6 B —,—.— () ~2°,3°,6° (D) -4.6,12
S 1
2 0 0
If A=|0 -1 O] then
0 0 5

(A) A is not Hermitian
(B) A is orthogonal
(C) A is singular

(D) Ax = b, where b is a non-zero vector in R”, has only the zero solution for X € B*

S cosd —sind
The sum of the characteristic roots of are

—sinf cos#
(A) 0 (B) 1 (C) 2cos@ (D) 2sin@

1 ; :
The area under the curve y =— between the ordinates at x=1and x=2 is
x

(A) (B} log2 (C) e-1 (D) 1

7
The value of sinlE s

13- e B 05 3+l JB=1

2 2 A2

(A)

: 5 xtanx , :
The set of points on & where the function y = ——— is continuous equals

x +1
(A) R (B R \{%:n is an even integer}
(C) R\{%:n is an odd integer) (D) R\{%:n is any integer)
‘[ I—Df‘"ia’.r equals
-
1
A 0 B) 1 (©) '5 D) e



42.

43.

43,

46.

47.

48.

49,

50,

If i =a+ib, then a* +b° is

(A) &7 (B) @™ (C) ™

A particular solution of the equation y"+y =sinx 1s given hy

—XCO5X

2

(A) sinx (B) cosx ()

Mark the wrong statement :

A solution of the equation x*y"+ xy'= y =0 is given by

(A) yix)=1 (Bl wvixl=x (Cy wlx)= 1

A solution of the equation x*y"=3xy'=4y =05 given by y(x)=

el

(A) x B) x° (C) xlogx

A solution of the equation y"-4y'+4y=0is given by y(x)=

(A) «x (B) xe' {03 et

A solution of the equation y"-2y'+10y =0 is given by y(x) =

(A) ™™™ (B) cos3x
(C) sin3x . (D) sin3x+cos3x
g 1 0 0
i1 o0 0 0O|.
The rank of the matrix o 0 o 1|
O 0 1 0
(A) 1 (B 2 {C) 3
1 .
Iim —log(l+ x) 18
.l.—“:'_r
(A) 0 By 1 c) -1
. osin“x .
him —— is
a—l Sl!‘l.\"
{(A) 0 (Bl & (C) ==
7

(D)

(D

(D)

(D)

(D)

(D)

(D)

(DY

Ty

—-xs5inx
2

wWx)=0

xe

ix
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ol.

52.

53.

56.

372

1-2xif x=1

If ffx}:{?rx—ihf s then

(A) f is continuous at all points except at x=1

(B) f is continuous on R but not differentiable at any point of R

(C) f is continuous on R and differentiable at all points except x=1

(D) f is discontinuous at x=1

If f(x)=¢" and g(x)=x+1 for all xe R then

(A) (f-g)x)=20 for all xe R

(B) (f-g)x)=0 for all xe[0,o2] and (f —g)(x)<0 for x€ (—e=,0]

© (f-8)X)<0 for x& (~,~1]
(D) (f—-g)lx)=0 forall xe R

X +1 if 0=x21
fm_{ze-‘*' if x>1

(A) is continuous and monotone increasing on R

(B) is discontinuous at x=1

(C) 1is continuous but not monotone increasing on R

(D) 1is monotone increasing but not continuous on B

i

I 6x" sin5x dx equals
in

2

(A) sin% (B) 3?;531"5?31
j—!ﬂ-—dx equals
(A) 1 (B) (log2)*

(C)

(C)

The tangent to the curve y = 3x* =1 ar (0,-1)

(A) is parallel to the X-axis
(C) has slope 1/3

(B)

0 (D) -m

o @y Uog2)

is parallel to the Y-axis

(D) has slope 3




57.

58.

59.

60.

61.

62.

63.

64.

If the fourth derivative of a map f:R — R exists on R and f has 5 distinct zeros,

then the third derivative of f has
(A) atleast 3 distinct zeroes (B) atleast 4 distinct zeroes

(C) atleast 2 distinct zeroes (D) need not have any zeroes

The map f(8)=cos(if),fe R
(A) is a bounded function (B) f(l) is not a real number

(C) f is a 2m - periodic function (D) 1is an even function

If A={(x,»):|x]+|yl1] then

AT -1 1 i
(A) (—=—p=)€A B (-L)eA (C) (—=,—=)eA O (—,—)eAd
NN } N 37
If A={(x,y):y=0}and B={(x,y):xy=1} then
(A) ANB=¢ ' (B) AUB=R’
(C) A B is a non empty finite set (D)  A[B is a non empty infinite set

If A and B are square n x n matrices and A is singular then
(A) Rankof AB=n (B) AB is singular
(C) AB is non-singular if B is non-singular(D) None of these

7 -21 89 1
-31 93 33 -1
The value of the determinant is
56 -168 1 -1

-14 222 0 5
(A) 5 (B) 1 (C) -1 (D) 0

= kn
The series —————
Z n® +100

n=|

. where k is real,

(A) 1is convergent for any real number & (B) is convergent only if £ =100

(C) isdivergentif k>1 (D) is divergent if k <0

The radius of convergence of the power series Z :
n=l T2

]
Z

where ze C, is

(A) oo (B) 1 (C) 0 (D) 2
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1 if x<-1

e TRk ™
x if 0=x=1
1 if x>1
(A) f is continuous on R (B) f is discontinuous at 1
(C) f is discontinuous at -1 (D)  f is continuous at 0

66. The curve y=log 3x,x=0,

(A) intersects the X-axisat x=3 and x= -l-

(B) intersects the X-axis at x =%

(C) interseects the X-axis x=1

(ID)  does not intersect the X-axis

67. Let A=(xe[0,1]: x has more than one decimal expansion}. Then
(A) A=¢ (B)  A=[0,1]

(C) A is non-empty and countable (D) A is an uncountable set

68. Let A be m x n non-singular matrix, with entries from R. If T :R" - R" is the
linear operator represented by A then
(A) Tis 1 -1 but not onto (B) T is onto but not 1-1
(C) Tis1-1 and onto (D) T is neither 1-1 nor onto

69. If'V is a vector spaceand T :V —V i= a linear map then
(A) T*:V -5V isa linear map (B) T7:V —YV isnot linear map

(C) T':V —V isnot a linear map (D) If T"' exists, it need not be linear

70. Theset A={(r,r.5): 1, is a rational for 1<i <3}
(A) is finite

(B) is countably infinite and dense in R®

(C) 1sinfinite and uncountable

(D) is countably infinite but not dense in R’

71. I x=(-L2,1), y=(2,2,-3), z=(L2,-2) are elements of R* . then
(A) xis orthogonal to y+z (B) vis orthogonal to 24+ x

(C) zis orthogonal to x+y (D)  xis orthogonal to x+ y+ 2
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72,

73.

T4.

75.

77,

:\;inl if x#0

If f(x)= X and A" ={xe[0,1): f(x)=1} and A" ={xe[0,1]: f(x)=~1}.
0 if x=0

Then

(A) Both A" and A™ are empty sets (B) A" and A" are finite sets

(C) A"UA =[0,1] (D) A" and A are both infinite sets

If a=supa, where (a,), is a sequence of reals and a > a, for each

L

nmand b<a<c. Then

(A) {neM:b<a <a} is a non-empty finite set
(B) [neM:b<a, <a} is an infinite set

(C) {neM:a, =a} is non-empty

(D) "[neN:b<a, <a}is empty

If f:R—R is continuous, f* =max{ f,0and f~ =max{-f,0}, then
(A)  f is continwous if [~ is continuous

(B} [ is continuous if f~ is continuous

(C) f'and f~ are continuous if f is continuous

(D) f is continuous does not imply [ or [~ is continuous

The functionexp: R— R is

(A) injective (B) monotonically increasing
(C) unbounded (D}  bounded
; 1 2.
The inverse of [ 3 4] is
-2 1 2 L
(A) LA £B) |2 1
_1 - -
4 =2 5 i
© [ 7] o |

IfT:R > R is given by TOx %, 0} =(x +x,,0,x,) for(x,x,x)e R’ then

{A) T iz linear and onto (B) T is linear but not onto
(C) T islinearand1-1 (D) T 1s not linear

11

372



78. If T is a linear map from
R* into B and T(1,0,0)=2, T(0,1,0)=~=1 and T(0,0,1) =3. Then T(-5,2,3) is
(A) -3 (B) 3 (c) 2 D) 1

79. Let T, =V =V be a linear map where V is a vector space fori=12. If
x is an eigenvalue of T, and T,. Then
(A)  2xis an eigenvalue of T, +T, (B) xis an eigenvalue of T, +T,
(C) 4xis an eigenvalue of T, +T, (D) 0is an eigenvalue of T, +7,

80. If x and y are elements of 3-dimensional vector space V and ye span(x) then
(A)  {x,v.x+y) form a basis of V
(B) {x,v,x-y} form a basis of V
(C) {y-x.2x-y,x} form a basis of V
(D) {x+y,x—v, v} does not form a basis of V

81. If d=aji+a,j+ak,b=hi+b,j+bk are two vectors in R*, then the vector @ x b is

perpendicular to ka + mb for
(A) any ke R and me R

(B) only when k=20and m=0
(C) only when k =0and m=1or k=1and m=0
(D) only when k=m=0

82. If 4, b and & are 3 vectors in R® and (dax E},E =0, Then
(A) € is parallel to @ x b
(B) € lies in the plane containing a and b
(C) ac=0o0rbs

(D)  is perpendicular to the plane containing @ and b

83. If X =[0,1]and ¥ =[0,1]U[2,3]) and f :X — Y is a map then
(A) f cannot be continuous (B) f cannot be onto
(C) f cannotbel-1 (D) f cannot be monotone increasing

84. Mark the wrong statement
If X is a metric space, A is subset of X and d(x,A)=inf{d(x,y): ye A}Vxe X,
(A) d:X —[0,==]is continuous

(B) There is a sequence (x,) Z A such that hmd(x,x,)=d(x, A)

(C) d(x,A)=0& x€ A, the closure of A
(D) There exists a€ A such that d(x,a)=d(x,A)

372 12



85.

86.

87.

88.

89.

90.

91.

92

1 if xeE 2 ‘
Let g (x)= 0 'if xe E If f(x)=2x,, _BI[ll.u] + X1 then _!f{x}dx is
(A) -2- (B) i (c) 0 (D) E
3 : 3
Xy 0cing x
If F(x) =jx (s 3 xtcc-s £ I}dx for xe[0,2] then F'(1) is
5 1+x°
(A) 0 (B) 1 (C) 2 D) =
If a,=(3--5)cosnz, ne N then
(A) limsup a, =liminf a, (B) limsupa,=1
(C) liminf a, =4 (D) limsup a, =3# liminf a,
1 2
If A= then
s
(A) A has no eigenvalue (B) 3 is the only eigenvalue of A
(C) 1isthe only eigenvalue of A (D} 0 and 3 are eigenvalue of A

If the only ideals of ring R are {0} and R then

(A) Risafield

(B) R is an integral domain

(C) R is a field provided R is commutative with unit element
(D) R is a commutative ring with unit element

If A is a m % n matrix and B is a matrix such that AB = I, where I is the identity
matrix. Then

{A) B must be am » n matrix (B) m=n
(C) B must be an xm matrx (D) m<n

If f(x)=x-log, x then
(A)  f is monotone increasing on (0,20) (B) [ is monotone decreasing on (0,00)
(C) f=0on(0l (D) f=00n(0l1)

If f(x)=5x"—4x" +3x* —6x+] then
(A)  f has a zero in (0,1) (B) fi-1)<0
(C) f has 25 zeroes on R (D) f is not differentiable on R
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93. lim =
N —hoo x=
(A) oo (B) 0 (C) 1 (D) +

] .1 3
94. IfA:[I l}andlf':{.‘lX:XER'}rheu

(A) V is one dimensional vector space (B) V istwo dimensional vector space

{C) Vis not a vector space (D) V={0}
1 Jz+1 - : ¢
95. The value of —J-—3d: where ¢ is the circle |z|=2 is
279 2(z~1)
(A) 0 (B) L (C) 2mi (D) i
27i

96. The value of JE{:’E. where ¢ is the line from z=010 z=1+iis

i

(A) 0 (B) 1 (C) 2mi (D) mi

97. If (X.d)is a metric space, AC X and x& A then

(A) xis not in closure of A"

(B) xisin A

(C) For anye>0there is a v in A such that d(x,y) <€
(D)  Thereisayin A such that d(x,y)>1

i
98. If f:[a.b]— R is a bounded Riemann integrable function and I f(x)dx =0 then

(A) f=0onlab]

(B) f=0o0nlablif f iscontinuous

(C) f=0onlab] if f(x)20V x€la.b]

(D)  f can be non zero over an interval of positive length

99. The Euler equation x°y"+xy+y=0 can be transformed into an equation with
constant coefficients by the transformation z =
(A) logx (B) ¢ cy x (D) x

100. y=x" is not a solution of the equation x’y'*' +8x*y"+8xy"—8y'=0 when m =

(A) 2 (B 0O c) 1 (D) -1

ini
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