ENTRANCE EXAMINATION FOR ADMISSION, MAY 2011. M.Sc. (MATHEMATICS)

COURSE CODE: 372

J	Register Number :		
			Signature of the Invigilator (with date)
		4.3	

COURSE CODE: 372

Time: 2 Hours Max: 400 Marks

Instructions to Candidates:

- Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

	otation: R - Re						5	
	- Complex plane			-Complen	nent of A and	φ -empty	set,	
i =	$+\sqrt{-1}, A^T$ – Tran	ispose of N	Aatrix A.					
	r any finite set aite sets and the		•	e numbe	r of elements	in E.	If A and I	3 are
(A)) A + B	(B)	A - B	(C)	$\geq A + B $	(D)	$\langle A + B$	3
					.	,		
	t X and Y be sub			e and let	A denote the clo	osure of a	subset A	of the
-	oological space. The			(0)	$\overline{V} \cap \overline{V}$	(T))	77 77	
(A	$(\overline{X} \setminus \overline{Y})$	(B)	$X \cup Y$	(C)	$\overline{X} \cap \overline{Y}$	(D)	$\overline{Y} \setminus \overline{X}$	
A:	set, $A \subset \mathbb{R}$ is com	pact if and	only if A is					
(A	open and bou	inded		(B)	closed and bo	unded		
(C) open and un	bounded		(D)	closed and ur	bounde	d	
Α :	set $\{x \in \mathbb{R} : 4 \le x^2\}$	≤9} is						
(A			100	(B)	compact and	connecte	ed	
(C		disconnec	ted	(D)	disconnected			
Le	f(x) be the fun	ction define	ed for all					
X e	$\in \mathbb{R}$ such that $f($	0) = 0 and	$f(x) = x \sin(x)$	$(\frac{1}{x})$ for x	$z \neq 0$. Then f is	·		
(A) continuous onl	y at $x = 0$		(B)	discontinuous a	at $x = 0$		
(C) discontinuous	at $x = 1$		(D)	continuous on	R		
Th	ne value of C for	which the l	$ \lim_{x \to +\infty} \{ (x^5) \} $	$5 + 7x^4 + 1$	$(2)^c - x$ is finite	and non	zero is	
(A) -1	(B)	1 5	(C)	0	(D)	1	
			~					
If	$z = \frac{1+i}{i-2}$ then the	real part of	f z is					
(A	$\frac{1}{2}$	(B)	<u>-1</u> 5	(C)	$\frac{-1}{2}$	(D)	$\frac{1}{5}$	
If	$f(z) = z ^2$ then							
(A	f satisfies the	Cauchy Rie	emann equatio	n at all z	∈ C			
(B	f satisfies the	Cauchy Ri	emann equation	on only at	z = -i			
(C	f satisfies the	Cauchy Ri	iemann equatio	on only at	z = 0			

1.

2.

3.

4.

5.

6.

7.

8.

(D) f satisfies the Cauchy Riemann equation only at z = i

9.	Let	f and g be two	real va	lued fund	ctions, wh	ich ha	ve continuous	derivative	s on (a,b).	Then
	6	b								
	J f ($\int_{a}^{b} g(x)dx + \int_{a}^{b} g(x)$	f(x)	dx is						
	(A)	f(a)g(a) - f(b))g(b)			(B)	f(b)g(b)	f(a)g(a)		
	(C)	f(a)g(b) - f(b))g(a)				f(b)g(a)			
							3 1 701 7	3 () 3 ()		
10.	If x i	is real, then $\lim_{x \to a}$	3 sin a	esin 3x i	S					
	(A)	0	(B)	π		(C)	1	(D)	24	
11.	The	graph of the curve	$x^2 - y^2$	2 = 1 is k	nown as					
		ellipse		cycloid		(C)	parabola	(D)	hyperbol	la
12.	Let /	f and g be contin	uous fu	inctions	on [a,b] s	uch th	at f(a) < g(a)	a) and f((b) > g(b).	Then
		et $\{x \in [a,b]: f(x)$					3 (/ 6)	, , ,		
	(A)	equals $[a,b]$				(B)	is a non-empt	ty proper si	ubset of [a,	,b]
	(C)	empty		100		(D)	must be an in	finite set		
		dy								
13.	$\int \frac{dx}{a^2 \cos^2 x + b^2 \sin^2 x} is$									
	(A)	$\tan(\frac{bx}{a})$	(B)	$\frac{1}{ab}$ tan	$-1\left(\frac{bx}{a}\right)$	(C)	$\frac{1}{ab} \tan^{-1}(\frac{b t}{ab})$	$\frac{\operatorname{an} x}{a}$) (D)	$\sec(\frac{bx}{a})$	
	**								1	
14.	11	f and g are	differe	ntiable	functions	from	R into R si	uch that f	$g(0) = \frac{1}{g(0)}$	and
	h(x)	$= f(x) g(x) \sin$	$\frac{\pi}{2}x$ the	$en h^1(0)$	is					
	(A)	$\frac{2}{\pi}$	(B)	$\frac{4}{\pi}$		(C)	$\frac{-2}{\pi}$	(D)	1	
15.		Argand diagram o		16				orm a		
	(A)	parallelogram				(B)	square			
	(C)	rectangle but n				(D)	rhombus bu	nt not a so	quare	
16.	The	directional derivat	ive of t	he funct	ion $f(x, \cdot)$	y, z) =	xy^2z at the p	oint (1,0,0) in the dir	ection
		$-2\vec{j}+\vec{k}$) is								
	(A)		(B)	-1		(C)	0	(D)	-2	
17.	For t	he function $f(z) =$	$e^{\frac{1}{z}}$, the	e point	z = 0,					
	(A)	a removable sin				(B)	not a singul	larity		
	(C)	an essential sir		300		(D)	a simply po	-		

18.	If C is the circle $ z =2$, the value of $\int_{C} \frac{e^{-z}}{z^2} dz$ if	S	
	(A) 0 (B) -I	(C)	$-2\pi i$ (D) $2\pi i$
19.	If (x_n) is a sequence of non negative real number	ers then	$\limsup_{n} (-x_n)$ is
	(A) $-\limsup_{n}(x_{n})$	(B)	$-\liminf_{n}(x_{n})$
	(C) $\liminf_{n} (x_n)$	(D)	$\limsup(x_n)$
20.	Let $f: G \to H$ is a group homomorphism. Th	en G is	s isomorphic to $f(G)$
	(A) if and only if f is onto	(B)	if and only if f is $1-1$
	(C) only if f is an isomorphism	(D)	if G is cyclic
21.	Let $f(z): \mathbb{C} \to \mathbb{C}$ be analytic function such that	t 0≤ <i>f</i>	f(z) < 1. Then
	(A) $f(z)$ is a constant for all $z \in \mathbb{C}$	(B)	$f(z)=0$ for all $z \in \mathbb{C}$
			$ f(z) \rightarrow 1 \ as \ z \rightarrow \infty$
22.	Let R be a ring and a, b be invertible elements of (A) ab is invertible (C) ab is invertible but ba need not be invertible	(B)	ab is invertible if R is commutative ring
23.	If $tan^{-1} x + tan^{-1} y + tan^{-1} z = \frac{\pi}{2}$, then	xy + y	z + zx is
	(A) 0 (B) -1	(C)	π (D) 1
24.	If $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = 1 + ax$, when a is	e a ≠ (0, is such that $f = f^{-1}$. Then the value of
	(A) -2 (B) -1	(C)	1 (D) 2
25.	If $\lim_{x \to 0} \frac{f(x)}{x^2} = 1$, then $\lim_{x \to 0} \frac{f(x)}{x}$ is		
	(A) 1 (B) 0	(C)	-1 (D) ∞
26.	Let ρ be a relation on a collection of sets define	d by A	$A \rho B \Leftrightarrow A \cap B = \phi$. Then ρ is
	(A) an equivalence relation	(B)	reflexive and symmetric only
	(C) symmetric and transitive only	(D)	not reflexive
27.	The relation ρ is defined on \mathbb{Z} as $x \rho y \Leftrightarrow x$ -to which 2 belongs is the set	y is a	multiple of 5. Then the equivalence class
	$(A) \{5k + 2/k \in \mathbb{Z}\}$	(B)	$\{2k+5/k \in \mathbb{Z}\}$
	(C) $\{2k+5/k \in \mathbb{N}\}$	(D)	$\{5k+2/k\in\mathbb{N}\}$

28.	Let A	4 be a	finite set	of size of	n.	The number	of	elemer	nts in th	e power se	t of .	Ax	4 is	
	(A)	2^{2n}		(B)	(2	$n)^2$		(C)	2^{n^2}		(D)	2	n^2	

- 29. Let A and B be sets such that |A| = m and $|B| = n \ge m$. The number of 1-1 functions from A and B is
 - (A) n(n-1)(n-2)...(n-m+1) (B) mn
- (C) m^n (D) n
- 30. The inverse of the matrix $A = \begin{bmatrix} 5 & 4 \\ 6 & 5 \end{bmatrix}$ (A) does not exist
 (B) $\begin{bmatrix} 5 & -4 \\ 6 & 5 \end{bmatrix}$
 - (C) $\begin{bmatrix} 5 & 4 \\ -6 & 5 \end{bmatrix}$ (D) $\begin{bmatrix} 5 & -4 \\ -6 & 5 \end{bmatrix}$
- 31. The system of equations x + y + z = 2 2x + 3z = 5 3x + y + 4z = 6
 - (A) has no solution for (x, y, z)
 - (B) has a unique solution for (x, y, z)
 - (C) has more than one but finite number of solutions for (x, y, z)
 - (D) has infinite number of solutions for (x, y, z)
- 32. If $T: \mathbb{R}^4 \to \mathbb{R}^4$ is given by $T(x_1, x_2, x_3, x_4) = (x_1^2, x_2, 0, x_4)$ for $(x_1, x_2, x_3, x_4) \in \mathbb{R}^4$ then,
 - (A) T is linear and 1-1 (B) T is linear and onto
 - (C) T is linear but not onto (D) T is not linear
- 33. Mark the wrong statement

If A is the matrix $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$

- (A) there is a matrix P such that PAP^{-1} is diagonal
- (B) the eigenvectors of A span \mathbb{R}^2
- (C) the eigenvectors of A are linearly dependent
- (D) there is a 2 x 2 matrix B such that AB=Ba=I where I is the identity matrix
- 34. Choose the matrix for which the inverse exists
 - (A) $\begin{pmatrix} 2 & 1.5 \\ 4 & 3 \end{pmatrix}$ (B) $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ (C) $\begin{pmatrix} 3 & 3 \\ 2 & 2 \end{pmatrix}$ (D) $\begin{pmatrix} \frac{1}{10} & \frac{2}{5} \\ \frac{1}{20} & \frac{1}{5} \end{pmatrix}$

- 35. If the eigen values of $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \end{pmatrix}$ are -2, 3, 6, then the eigen values of the transpose A^T are

 - (A) -2,3,6 (B) $\frac{1}{2},\frac{1}{3},\frac{1}{6}$ (C) $-2^2,3^2,6^2$ (D) -4,6,12

- If $A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 5 \end{bmatrix}$ then
 - (A) A is not Hermitian
 - (B) A is orthogonal
 - (C) A is singular
 - (D) Ax = b, where b is a non-zero vector in \mathbb{R}^3 , has only the zero solution for $X \in \mathbb{R}^3$
- The sum of the characteristic roots of $\begin{pmatrix} \cos \theta & -\sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$ are
 - (A) 0

- (B) 1
- (C) $2\cos\theta$
- (D) $2\sin\theta$
- The area under the curve $y = \frac{1}{x}$ between the ordinates at x = 1 and x = 2 is
 - (A) $\frac{1}{2}$
- (B) $\log 2$ (C) e-1
- (D) 1

- 39. The value of $\sin \frac{\pi}{12}$ is
 - (A) $\frac{\sqrt{3}-1}{2}$ (B) $\frac{\sqrt{3}+1}{2}$ (C) $\frac{\sqrt{3}+1}{\sqrt{2}}$ (D) $\frac{\sqrt{3}-1}{2\sqrt{2}}$

- 40. The set of points on \mathbb{R} where the function $y = \frac{x \tan x}{x^2 + 1}$ is continuous equals
 - (A) R

- (B) $\mathbb{R} \setminus \{\frac{n\pi}{2} : n \text{ is an even integer}\}$
- (C) $\mathbb{R} \setminus \{\frac{n\pi}{2} : n \text{ is an odd integer}\}\$ (D) $\mathbb{R} \setminus \{\frac{n\pi}{2} : n \text{ is any integer}\}\$

- 41. $\int \frac{\log x}{x} dx \ equals$
 - (A) 0
- (B) 1
- (C) $\frac{1}{2}$
- (D) e

- 42. If $i^{x+iy} = a + ib$, then $a^2 + b^2$ is
 - (A) $e^{-\pi y}$
- (C) e^{πx}
- (D) e^{πy}
- 43. A particular solution of the equation $y'' + y = \sin x$ is given by
 - (A) sin x
- (B) $\cos x$
- (C) $\frac{-x\cos x}{2}$
- (D) $\frac{-x\sin x}{2}$

44. Mark the wrong statement:

A solution of the equation $x^2y'' + xy' - y = 0$ is given by

- (A) y(x) = 1
- (B) y(x) = x (C) $y(x) = x^{-1}$ (D) y(x) = 0
- A solution of the equation $x^2y'' 3xy' 4y = 0$ is given by y(x) =
 - (A) x
- (B) x²
- (C) $x \log x$
- (D) xe^x
- A solution of the equation y'' 4y' + 4y = 0 is given by y(x) =
 - (A) x
- (B) xex
- (C) x^2e^{2x}
- (D) e^{2x}
- A solution of the equation y''-2y'+10y=0 is given by y(x)=
 - $e^{x\cos 3x}$ (A)

(B) $\cos 3x$

(C) $\sin 3x$

- (D) $\sin 3x + \cos 3x$
- The rank of the matrix $\begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ is
 - (A) 1
- (B)

- (C) 3
- (D) 4

- $\lim_{x\to 0} \frac{1}{x} \log(1+x)$ is
 - (A) 0
- (B) 1
- (C) -1
- (D) ∞

- $\lim_{x \to 0} \frac{\sin^2 x}{\sin x^2}$ is
 - (A) 0
- (B) π
- (C) ∞

7

(D) 1

- 51. If $f(x) = \begin{cases} 1 2x & \text{if } x \le 1 \\ 3x 4 & \text{if } x > 1 \end{cases}$ then
 - (A) f is continuous at all points except at x = 1
 - (B) f is continuous on \mathbf{R} but not differentiable at any point of \mathbf{R}
 - f is continuous on **R** and differentiable at all points except x = 1(C)
 - f is discontinuous at x = 1
- If $f(x) = e^x$ and g(x) = x+1 for all $x \in \mathbb{R}$ then 52.
 - (A) $(f-g)(x) \ge 0$ for all $x \in \mathbb{R}$
 - (B) $(f-g)(x) \ge 0$ for all $x \in [0,\infty]$ and $(f-g)(x) \le 0$ for $x \in (-\infty,0]$
 - (C) $(f-g)(x) \le 0$ for $x \in (-\infty, -1]$
 - (D) $(f-g)(x) \le 0$ for all $x \in \mathbb{R}$
- 53. $f(x) = \begin{cases} x^2 + 1 & \text{if } 0 \le x \le 1 \\ 2e^{x-1} & \text{if } x > 1 \end{cases}$
 - (A) is continuous and monotone increasing on R
 - (B) is discontinuous at x = 1
 - is continuous but not monotone increasing on R
 - is monotone increasing but not continuous on R
- 54. $\int_{3\pi}^{\frac{3\pi}{2}} 6x^{16} \sin 5x \, dx \text{ equals}$

 - (A) $\sin \frac{\pi}{2}$ (B) $\frac{3\pi}{2} \sin \frac{5\pi}{2}$ (C) 0

- 55. $\int_{-x}^{2} \frac{(\log x)^2}{x} dx$ equals
 - (A) 1
- (B) $(\log 2)^2$
- (C) 0
- (D) $\frac{(\log 2)^3}{2}$

- The tangent to the curve $y = 3x^2 1$ at (0, -1)
 - (A) is parallel to the X-axis
- is parallel to the Y-axis (B)

(C) has slope 1/3

(D) has slope 3

57.	If the fourth derivative of a map $f: \mathbb{R} \to \mathbb{R}$ exists on \mathbb{R} and f has 5 distinct zeros, then the third derivative of f has
	(A) atleast 3 distinct zeroes (B) atleast 4 distinct zeroes
	(C) at least 2 distinct zeroes (D) need not have any zeroes
58.	The map $f(\theta) = \cos(i\theta), \theta \in \mathbb{R}$
	(A) is a bounded function (B) $f(l)$ is not a real number
	(C) f is a 2π – periodic function (D) is an even function
59.	If $A = \{(x, y) : x + y \le 1\}$ then
	(A) $(\frac{-1}{\sqrt{3}}, \frac{-2}{\sqrt{3}}) \in A$ (B) $(-1,1) \in A$ (C) $(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}) \in A$ (D) $(\frac{-1}{3}, \frac{-2}{3}) \in A$
60.	If $A = \{(x, y) : y = 0\}$ and $B = \{(x, y) : xy = 1\}$ then
	(A) $A \cap B = \emptyset$ (B) $A \cup B = \mathbb{R}^2$
	(C) $A \cap B$ is a non empty finite set (D) $A \cap B$ is a non empty infinite set
61.	If A and B are square $n \times n$ matrices and A is singular then
	(A) Rank of $AB = n$ (B) AB is singular
	(C) AB is non-singular if B is non-singular (D) None of these
62.	The value of the determinant $\begin{vmatrix} 7 & -21 & 89 & 1 \\ -31 & 93 & 33 & -1 \\ 56 & -168 & 1 & -1 \\ -74 & 222 & 0 & 5 \end{vmatrix}$ is
	(A) 5 (B) 1 (C) -1 (D) 0
63.	The series $\sum_{n=1}^{\infty} \frac{kn}{n^3 + 100}$, where k is real,
	(A) is convergent for any real number k (B) is convergent only if $k \le 100$
	(C) is divergent if $k > 1$ (D) is divergent if $k < 0$
	· · · · · · · · · · · · · · · · · · ·
64.	The radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{z^n}{n!}$ where $z \in \mathbb{C}$, is
	(A) (B) 1 (C) 0 (D) 2

65. If
$$f(x) = \begin{cases} 1 & \text{if } x < -1 \\ -x & \text{if } -1 \le x < 0 \\ x & \text{if } 0 \le x \le 1 \\ 1 & \text{if } x > 1 \end{cases}$$
 then

(A) f is continuous on \mathbb{R}

- (B) f is discontinuous at 1
- (C) f is discontinuous at -1
- (D) f is continuous at 0

- 66. The curve $y = \log_{x} 3x, x > 0$,
 - (A) intersects the *X*-axis at x = 3 and $x = \frac{1}{3}$
 - (B) intersects the X-axis at $x = \frac{1}{3}$
 - (C) intersects the X-axis x = 1
 - (D) does not intersect the X-axis
- 67. Let $A = (x \in [0,1]: x \text{ has more than one decimal expansion})$. Then
 - (A) $A = \phi$

- (B) A = [0,1]
- (C) A is non-empty and countable
- (D) A is an uncountable set
- 68. Let A be $n \times n$ non-singular matrix, with entries from \mathbf{R} . If $T : \mathbf{R}^n \to \mathbf{R}^n$ is the linear operator represented by A then
 - (A) T is 1-1 but not onto

(B) T is onto but not 1-1

(C) T is 1-1 and onto

- (D) T is neither 1-1 nor onto
- 69. If V is a vector space and $T:V\to V$ is a linear map then
 - (A) $T^2: V \to V$ is a linear map
- (B) $T^3: V \to V$ is not linear map
- (C) $T^4: V \to V$ is not a linear map
- (D) If T-1 exists, it need not be linear
- 70. The set $A = \{(r_1, r_2, r_3) : r_i \text{ is a rational for } 1 \le i \le 3\}$
 - (A) is finite
 - (B) is countably infinite and dense in R3
 - (C) is infinite and uncountable
 - (D) is countably infinite but not dense in \mathbb{R}^3
- 71. If x = (-1, 2, 1), y = (2, 2, -3), z = (1, 2, -2) are elements of \mathbb{R}^3 , then
 - (A) x is orthogonal to y+z
- (B) y is orthogonal to z + x
- (C) z is orthogonal to x + y
- (D) x is orthogonal to x + y + z

72. If
$$f(x) = \begin{cases} \sin \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$
 and $A^+ = \{x \in [0,1] : f(x) = 1\}$ and $A^- = \{x \in [0,1] : f(x) = -1\}$.

Then

- (A) Both A^+ and A^- are empty sets (B) A^+ and A^- are finite sets

(C) $A^+ \cup A^- = [0,1]$

- (D) A+ and A- are both infinite sets
- 73. If $a = \sup a_n$ where $(a_n)_{n=1}^{\infty}$ is a sequence of reals and $a > a_n$ for each n and b < a < c. Then
 - $\{n \in \mathbb{N} : b < a_n < a\}$ is a non-empty finite set
 - (B) $\{n \in \mathbb{N} : b < a_n < a\}$ is an infinite set
 - (C) $\{n \in \mathbb{N} : a_n \ge a\}$ is non-empty
 - (D) $\{n \in \mathbb{N} : b < a_n < a\}$ is empty
- If $f: \mathbb{R} \to \mathbb{R}$ is continuous, $f^+ = \max\{f, 0\}$ and $f^- = \max\{-f, 0\}$, then
 - (A) f is continuous if f^+ is continuous
 - f is continuous if f is continuous
 - (C) f⁺ and f⁻ are continuous if f is continuous
 - (D) f is continuous does not imply f or f is continuous
- 75. The function $\exp: R \to R$ is
 - (A) injective

(B) monotonically increasing

(C) unbounded

bounded (D)

- 76. The inverse of $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ is
 - (A) $\begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix}$

(C) $\begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$

- (D) $\begin{bmatrix} \frac{1}{2} & 1\\ 2 & -\frac{3}{2} \end{bmatrix}$
- 77. If $T: \mathbb{R}^3 \to \mathbb{R}^3$ is given by $T(x_1, x_2, x_3) = (x_1 + x_2, 0, x_3)$ for $(x_1, x_2, x_3) \in \mathbb{R}^3$ then
 - (A) T is linear and onto

(B) T is linear but not onto

(C) T is linear and 1 – 1

(D) T is not linear

78. If T is a linear map from

 \mathbb{R}^3 into \mathbb{R} and T(1,0,0) = 2, T(0,1,0) = -1 and T(0,0,1) = 3. Then T(-5,2,3) is

- (A) -3
- (B) 3
- (C) 2
- (D) 1
- 79. Let $T_i = V \rightarrow V$ be a linear map where V is a vector space for i = 1, 2. If x is an eigenvalue of T_1 and T_2 . Then
 - (A) 2x is an eigenvalue of $T_1 + T_2$
- (B) x is an eigenvalue of $T_1 + T_2$
- (C) 4x is an eigenvalue of $T_1 + T_2$
- (D) 0 is an eigenvalue of $T_1 + T_2$
- 80. If x and y are elements of 3-dimensional vector space V and $y \notin span(x)$ then
 - (A) $\{x, y, x + y\}$ form a basis of V
 - (B) $\{x, y, x y\}$ form a basis of V
 - (C) $\{y-x,2x-y,x\}$ form a basis of V
 - (D) $\{x+y, x-y, y\}$ does not form a basis of V
- 81. If $\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$, $\vec{b} = b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}$ are two vectors in \mathbb{R}^3 , then the vector $\vec{a} \times \vec{b}$ is perpendicular to $k\vec{a} + m\vec{b}$ for
 - (A) any $k \in \mathbb{R}$ and $m \in \mathbb{R}$
 - (B) only when $k \ge 0$ and $m \ge 0$
 - (C) only when k = 0 and m = 1 or k = 1 and m = 0
 - (D) only when k = m = 0
- 82. If \vec{a} , \vec{b} and \vec{c} are 3 vectors in \mathbb{R}^3 and $(\vec{a} \times \vec{b}) \cdot \vec{c} = 0$. Then
 - (A) \vec{c} is parallel to $\vec{a} \times \vec{b}$
 - (B) \vec{c} lies in the plane containing \vec{a} and \vec{b}
 - (C) $\vec{a}, \vec{c} = 0 \text{ or } \vec{b}.\vec{c}$
 - (D) \vec{c} is perpendicular to the plane containing \vec{a} and \vec{b}
- 83. If X = [0,1] and $Y = [0,1] \cup [2,3]$ and $f: X \to Y$ is a map then
 - (A) f cannot be continuous
- (B) f cannot be onto

(C) f cannot be 1-1

(D) f cannot be monotone increasing

84. Mark the wrong statement

If X is a metric space, A is subset of X and $d(x, A) = \inf\{d(x, y) : y \in A\} \forall x \in X$,

- (A) $d: X \to [0, \infty]$ is continuous
- (B) There is a sequence $(x_n) \subseteq A$ such that $\lim_{n \to \infty} d(x, x_n) = d(x, A)$
- (C) $d(x, A) = 0 \Leftrightarrow x \in \overline{A}$, the closure of A
- (D) There exists $a \in A$ such that d(x,a) = d(x,A)

- 85. Let $\chi_{E}(x) = \begin{cases} 1 & \text{if } x \in E \\ 0 & \text{if } x \in E^{c} \end{cases}$ If $f(x) = 2\chi_{[0,1]} 3\chi_{\left[\frac{1}{2},1\right]} + \chi_{[1,2]}$ then $\int_{0}^{2} f(x)dx$ is

- (A) $\frac{2}{3}$ (B) $\frac{3}{2}$ (C) 0 (D) $\frac{5}{3}$
- 86. If $F(x) = \int_{1+x^2}^{x} \frac{x^{20}(\sin\frac{\pi}{2}x + \cos\frac{\pi}{2}x)}{1+x^2} dx$ for $x \in [0,2]$ then F'(1) is
 - (A) 0

- (B) 1
- (C) 2
- (D) $\frac{1}{2}$

- 87. If $a_n = (3 \frac{1}{n+2})\cos n\pi$, $n \in \mathbb{N}$ then
 - (A) $\limsup_{n \to \infty} a_n = \liminf_{n \to \infty} a_n$

(B) $\lim \sup a_n = \frac{7}{2}$

(C) $\lim \inf a_n = \frac{5}{2}$

(D) $\limsup_{n} a_n = 3 \neq \liminf_{n} a_n$

- 88. If $A = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$ then
 - (A) A has no eigenvalue

- 3 is the only eigenvalue of A (B)
- 1 is the only eigenvalue of A
- (D) 0 and 3 are eigenvalue of A
- If the only ideals of ring R are $\{0\}$ and R then 89.
 - (A) R is a field
 - (B) R is an integral domain
 - (C) R is a field provided R is commutative with unit element
 - (D) R is a commutative ring with unit element
- If A is a $m \times n$ matrix and B is a matrix such that AB = I, where I is the identity matrix. Then
 - (A) B must be a $m \times n$ matrix
- (B) m = n
- (C) B must be a $n \times m$ matrix
- (D) m < n

- 91. If $f(x) = x \log_{x} x$ then
 - (A) f is monotone increasing on $(0, \infty)$
- (B) f is monotone decreasing on $(0, \infty)$

(C) $f \le 0$ on (0,1)

- (D) f > 0 on (0,1)
- 92. If $f(x) = 5x^5 4x^4 + 3x^2 6x + 1$ then
 - (A) f has a zero in (0,1)

(B) f(-1) < 0

(C) f has 25 zeroes on \mathbb{R}

(D) f is not differentiable on \mathbb{R}

	3 . 2 . 1			
93.	$\lim_{x \to \infty} \frac{x^3 + x^2 + 1}{x^{2x}}$			
	(A) ∞	(B) 0	(C) 1	(D) $\frac{1}{e}$
94	If $A = \begin{bmatrix} 1 & 1 \end{bmatrix}$ and	$V = \{AX \cdot X \in \mathbb{R}^2\} t$	hen	

- - (A) V is one dimensional vector space
- (B) V is two dimensional vector space
- (C) V is not a vector space

- (D) $V = \{0\}$
- The value of $\frac{1}{2\pi i} \int \frac{3z+1}{z(z-1)^3} dz$ where c is the circle |z|=2 is
- (B) $\frac{1}{2\pi i}$ (C) $2\pi i$
- The value of $\int \overline{z}dz$, where c is the line from z = 0 to z = 1 + i is
 - (A) 0
- (B) 1
- (C)
- (D)

- If (X,d) is a metric space, $A \subseteq X$ and $x \in \overline{A}$ then
 - (A) x is not in closure of A'
 - (B) x is in A
 - (C) For any $\in > 0$ there is a y in A such that $d(x, y) < \in$
 - There is a y in A such that d(x, y) > 1
- 98. If $f:[a,b] \to \mathbb{R}$ is a bounded Riemann integrable function and $\int f(x)dx = 0$ then
 - (A) $f \equiv 0$ on [a,b]
 - (B) $f \equiv 0$ on [a,b] if f is continuous
 - $f \equiv 0$ on [a,b] if $f(x) \ge 0 \forall x \in [a,b]$
 - f can be non zero over an interval of positive length
- The Euler equation $x^2y'' + xy' + y = 0$ can be transformed into an equation with constant coefficients by the transformation z =
 - (A) $\log x$
- (B) e^x
- (C) x2
- (D) X
- 100. $y = x^m$ is not a solution of the equation $x^3y^{(4)} + 8x^2y^m + 8xy 8y = 0$ when m =
 - (A) 2
- (B) 0