ENTRANCE EXAMINATION FOR ADMISSION, MAY 2011. M.Sc. (STATISTICS)

COURSE CODE: 375

Register Numbe	r :			
			Signature of	the Invigilator
			(with d	the Invigilator ate)
-				72

COURSE CODE: 375

Time: 2 Hours

Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	409	6 and the per	centage	ople of an area of coffee drink the percentage	ers was	45 and the	percentag	ge of male	
	(A)	10	(B)	15	(C)	18	(D)	20	
2.		e arithmetic pectively. Then		and geometric servations are	mean	of two ob	servations	are 5	and 4
	(A)	2, 8	(B)	4, 1	(C)	6, 4	(D)	3, 7	
3.	Wh	at is the harm	onic me	an of 1, 1/2, 1/3	3,,1/	'n ?			
	(A)	n	(B)	2n	(C)	2/(n+1)	(D)	n (n+1)	/2
4.		ne arithmetic ne of harmonic		nd geometric n	nean of	10 observat	ions are bo	oth 15, th	en the
	(A)	less than 15			(B)	15			
	(C)	more than 1	5		(D)	cannot be	determine	d	
5.				coefficient of the variance o			tage of x	are 20 a	nd 20
	(A)	64	(B)	16	(C)	36	(D)	84	
6.				n two variables			72x + 3y +	4 = 0, th	en the
	(A)	1			(B)	- 1			
	(C)	0			(D)	cannot be	determine	d	
7.		e coefficient o	f correla	ation between	two var	iables is – 0	0.4, then th	ne coeffici	ent of
	(A)	0.84	(B)	0.6	(C)	0.16	(D)	- 0.6	
8.	y are	4 and 9 respe	ectively.	and y are 80 a If the value of is the most lik	the cor	relation coef	ficient bet		
	(A)	90	(B)	103	(C)	104	(D)	107	
9.				ervations, if th		2	f the differ	ences in	ranks
	(A)	0.2	(B)	- 0.4	(C)	0.40	(D)	- 0.2	

10.	If the two lines of regression are obtained as $2x + 3y = 6$ and $2x + 4y = 2$, then the arithmetic mean of x and y are							
	(A) 9, – 4	(B)	-9, 4	(C)	4, 9	(D)	- 4, 9	
11.	If the regression correlation coeffi				x are respec	tively -1	and – 0.25	, the
	(A) 0.5	(B)	- 0.5	(C)	0	(D)	- 1	
12.	If the regression between x and y		on x and x or	n y are ide	ntical, then t	he correla	tion coeffi	cient
	(A) +1	(B)	1	(C)	± 1	(D)	0	
13.	Mr. X is appear passing English a the probability th	and Accou	antancy exar	ninations	are 1/2 and			
	(A) 1/5	(B)	1/2	(C)	1/6	(D)	5/6	
14.	A box contains 5 the box without r probability that t	eplaceme	nt and it is 1					
	(A) 1/8	(B)	3/8	(C)	5/8	(D)	7/8	
15.	A continuous rand	dom varia	able has the	following p	p.d.f., f(x) = 3	$3x^2 ; 0 \le x$	≤ 1	
	If $P(X \le a) = P(X \le a)$	(>a), the	en the value	of a^3 is				
	(A) 1/4	(B)	1/16	(C)	1/2	(D)	1/8	
16.	Let $X_1 \sim N$ ($\mu = 2X_1 + 3X_2$ is	2, $\sigma^2 =$	1) and X ₂ ~	N (μ =	3, $\sigma^2 = 2$), t	hen the	distributio	n of
	(A) N (12, 15)	(B)	N(15,12)	(C)	N (22, 13)	(D)	N (13, 22)	
17.	Let X follow unifo	rm distril	bution over t	he interva	al (2, 4). Then	the mear	n and varia	ance
	(A) 3, 1/3	(B)	2/3, 4	(C)	1/3, 6	(D)	1/3, 2	
18.	A pair of distribut	ions satis	sfying memor	ry less pro	perty is			
	(A) Exponential	and Gam	ma	(B)	Geometric a	nd Chi-sq	uare	
	(C) Exponential	and Geor	netric	(D)	Exponential	and Norn	nal	

If a random variable X has the Probability density function as follows: 19.

 $f(x) = \frac{1}{4}$; -2 < X < 2 and zero otherwise. Find P(X < 1)

- (A) 2/3
- (B) 3/4
- (C) 1/4
- (D) 1/2
- The distribution corresponding to the Moment Generating Function $e^{t}(5-4e^{t})^{-1}$ is 20.
 - Poisson (A)

Geometric (B)

Binomial (C)

- (D) Hyper geometric
- For a Binomial distribution with n = 10 and p = 1/2, the mode of the distribution is at
 - (A) x = 2
- (B) x = 3
- (C) x = 4
- (D) x = 5
- The p.d.f. of a r.v. X is $f(x) = 2e^{-2x}$, x > 0. Then F(2) is 22.
 - (A) $\frac{e^4 1}{e^4}$ (B) $\frac{e 1}{e}$ (C) $\frac{e^3 1}{e}$ (D) $\frac{e + 1}{e 1}$

- The mgf of Normal distribution with mean 2 and variance 1 is equal to 23.
 - (A) $e^{2t+t^2/2}$ (B) $e^{-2t+t^2/2}$ (C) $e^{3t/2}$
- $e^{2(t+t^2)}$
- X and Y are independent with common Exponential distribution with parameter $\theta = 1$, then the distribution of (X - Y) is
 - (A) A Standard Cauchy distribution
- An Exponential distribution (B)
- A Standard Laplace distribution
- A Standard Normal distribution (D)
- Let X and Y be two independent Binomial random variables with parameters (2,1/3) 25. and (7,1/3). Then P[X + Y = 3] is equal to
 - (A) $\binom{9}{3} \left(\frac{1}{3}\right)^3 \left(\frac{2}{3}\right)^6$

(B) $\binom{9}{3} \left(\frac{2}{3}\right)^3 \left(\frac{1}{3}\right)^6$

(C) $\binom{7}{2} \left(\frac{1}{3}\right)^2 \left(\frac{2}{3}\right)^5$

(D) $\binom{9}{3} \left(\frac{1}{3}\right) \left(\frac{2}{3}\right)^8$

26.		t (X,Y) follow Biv r $Y=2$. Then the					(X,Y) =	0.6, Var X =	= 4,
	(A)	0.8 y - 0.4	(B)	0.4 y - 0.8	(C)	0.2 Y - 0.4	(D)	0.4 Y - 0.2	2
27.	The	e m.g.f. of X is given	en by	$M_X(t) = 3/(3 -$	t). Th	en the mean and	d variar	nce of X are	
	(A)	1/3, 2/9	(B)	1/3, 1/9	(C)	1/9, 1/3	(D)	1/2 , 1/4	
28.	The	e r.v. X has Poiss	on dis	tribution such t	hat P	(X=1) = P(X=	2) then	P(X=0) is	
	(A)	e^{-3}	(B)	$e^{.5}$	(C)	e^{-2}	(D)	e-1	
29.		follows chi-squa h mean 1 and is							
	(A)	$B_1(2,1)$	(B)	$B_1(1,1/2)$	(C)	$B_1(1/2,1)$	(D)	$B_2(1,1/2)$	
	whe	ere B_i stands for l	Beta d	istribution of ty	pe i =	1, 2.			
30.		a continuous ra							nd
	(A)	0			(B)	f(a)			
	(C)	F(a)			(D)	f(a+0)-f(a+1)	- 0)		
31.		a discrete r.v. w				,3 What is	the pro	bability that	ta
	(A)	1/3	(B)	1/2	(C)	1/4	(D)	1/8	
32.	Qua	lity aims at							
	(A)	Measured dime	nsion	s are within the	specif	ications			
	(B)	Acceptance of a	ll the	items produced			9		
	(C)	Consistent perfe	ormar	nce for the longe	er perio	od			
	(D)	High productivi	ty						
3.	Stat	istical Process Co	ntrol	mainly deal wi	th				
	(A)	Control charts			(B)	Process capabi	lity ana	alysis	
	(C)	Pareto's charts			(D)	Sampling Plan	S		

	(A)	Identify the presence of chance of	auses			
	(B)	Identify the trend of the process				
	(C)	Identify the presence of assignab	le causes			
	(D)	Identify the tool consumption rat	te			
35.	A pı	process is not under the state of state	istical co	ntrol implies		
	(A)	Exactly one point falls outside th	e control	limits		
	(B)	More than one points fall outside	the cont	rol limits		
	(C)	Presence of trend with seven or n	nore poin	ts		
	(D)	At least one of the above cases is	true			
36.	The	e process capability index C_p is used	to measi	ure		
	(A)	The quality of the product	(B)	The suitability	y of the process	
	(C)	The acceptance level of the produ	ct (D)	The rejection	level of the prod	uct
37.		esearch report concludes that there he " $F(2, 27) = 8.62, p < .01$." How mady?				
	(A)	2 (B) 3	(C)	29	(D) 30	
38.		RBD the equality of treatments et total number of observations consid			7 ratio with df (4	1, 20).
	(A)	24 (B) 29	(C)	30	(D) 32	
39.		esearch report based on a Latin squ degrees of freedom for error mean les is				
	(A)	4 (B) 3	(C)	2	(D) 5	
10.	The d	difference between the estimate an	nd the par	rameter in a san	nple survey is k	nown
	(A)	Non-Sampling Error	(B)	Population Var	riance	
	(C)	Sampling Error	(D)	Sampling Varia	ance	
375			6			

34. Control charts are used to

41.		e Variance of Systematic Sample months n and sampling interval k su		f the population (Population size N , at $N = nk$) with a linear trend is
	(A)	(N-1)(n+1)/12	(B)	(k-1)(k+1)/12 n
	(C)	(k-1)(k+1) / 12	(D)	(k-1)(n+1)/12
42.	Q =	$= \frac{\sum q_{ij} p_{oj}}{\sum q_{oj} p_{oj}} \times 100 \text{ is the formula for}$		
	(A)	Laspeyre's price index number		
	(B)	Laspeyre's quantity index number		
	(C)	Paasche's price index number		
	(D)	Paasche's quantity index number		
43.	Whi	ich index number satisfies both time re	eversa	l test and factor reversal test ?
	(A)	Fisher's index number	(B)	Marshall Edgeworth index number
	(C)	Walsh index number	(D)	Kelly's index number
44.		value of x in formula,		
	Cha	in index number = $\frac{\text{Current year Link}}{100}$	Relati	$\frac{\text{ve} \times x}{\text{is}}$ is
	(A)	Preceeding year Chain index number		
	(B)	Preceeding year link relative		
	(C)	Succeeding year link relative		
	(D)	Suceeding year Chain index number		
45.	Metl	hod of moving averages is used for mea	asuren	nent of
	(A)	Secular trend	(B)	Seasonal trend

46. X is a random variable taking values 1 and 2 with probabilities p and q, p + q = 1, to test H: p = 0.2, a single observation is made on X (say x). A test rejects H if x = 1. What is the size of the test?

(A) 0.8

(B) less than 0.2

(D) Irregular trend

(C) greater than 0.2

(C) Cyclic trend

(D) 0.2

47.	If T_1 is an MVUE of $\gamma(\theta)$; $\theta \in \Theta$ and T_2 is any other unbiased estimator of $\gamma(\theta)$ with efficiency e_{θ} , the correlation coefficient between T_1 and T_2 , say ρ_{θ} equals
	(A) e_{θ} (B) e_{θ}^{2} (C) $\frac{1}{\sqrt{e_{\theta}}}$ (D) $\sqrt{e_{\theta}}$
48.	Every UMP critical region is necessarily
	(A) Biased (B) A null set (C) An infinite set (D) Unbiased
49.	The Interval estimate for a single population mean when σ is known is given by
	(A) $\overline{x} \pm z_{\alpha} \sigma_{\overline{x}}$ (B) $\overline{x} \pm z_{\alpha/2} \sigma_{\overline{x}}$ (C) $\overline{x} \pm z_{\alpha} s_{\overline{x}}$ (D) $\overline{x} \pm z_{\alpha/2} s_{\overline{x}}$
50.	A two-tail statistical test is
	(A) A statistical test for which the critical region comprises both large and small values of the test statistic.
	(B) When the alternative hypothesis is two sided.
	(C) A statistical test for which the critical region comprises small values of the test statistic.
	(D) A statistical test for which the critical region comprises large values of the test statistic.
51.	If X is a Poisson variate with parameter λ , then the unbiased estimator based on a single observation x of $e^{-3\lambda}$ is
	(A) $(-3)^X$ (B) $(-2)^X$ (C) $(3)^X$ (D) $(2)^X$
52.	The Maximum Likelihood Estimator of θ in a random sample of size n from U (0, θ) is
	(A) The sample mean (B) The sample median
	(C) The largest order statistics (D) The smallest order statistics.
53.	Let X_1, X_2, \ldots, X_n be a random sample from $B(1, p)$, then the consistent estimator of $p(1-p)$ is

(A) \overline{X}

(B) \overline{X}^2

(C) $\overline{X} (1 - \overline{X})$ (D) $n \cdot \overline{X}$

54.	The power of a statistical test depends upon
	(i) sample size
	(ii) level of significance
	(iii) variance of sampled population
	(iv) the difference between the value specified by null and alternative hypothesis.
	(A) (i) and (ii) (B) (ii) and (iii) (C) (i) and (iv) (D) all the four
55.	A statistic T is said to be an unbiased estimator of θ if, for all θ ,
	(A) $E\left(T\right) > \theta$ (B) $E\left(T\right) = \theta$ (C) $E\left(T\right) < \theta$ (D) $E\left(T\right) = 0$
56.	For the following 2×2 contingency table for two attributes the value of chi-square is
	A a
	B 20 30
	b 10 40
	(A) 100/21 (B) 10/18 (C) 10/38 (D) 20/36
57.	Two dice are thrown and the sum of the numbers which come up on the dice is noted. The following events are considered
	(i) the sum is even
	(ii) the sum is multiple of 3
	(iii) the sum is less than 4
	(iv) the sum is greater than 11
	The pair of events, which are mutually exclusive is
	(A) (i) and (ii) (B) (ii) and (iii) (C) (i) and (iv) (D) (iii) and (iv)
58.	Mr. X and Mr. Y appear in an interview for two vacancies in the same post. The
	probability of X's selection is $\frac{1}{7}$ and that of Y's selection is $\frac{1}{5}$. Then the probability
	that none of them will be selected is
	(A) $\frac{24}{35}$ (B) $\frac{23}{35}$ (C) $\frac{22}{35}$ (D) $\frac{21}{35}$
59.	The death rate obtained for a segment of a population is known as
	(A) Specific death rate (B) Crude death rate
	(C) Standardized rate (D) Vital index

- The probability of a person aged x living for n more years is given by the formula
 - (A) $\frac{l_{x+n}}{l}$
- (B) $\frac{(l_x l_{x+n})}{l_-}$ (C) $\frac{(l_x l_{x+n})}{l_{x+n}}$ (D) $\frac{l_x}{l_{x+n}}$

- 61. If $u = x^2 + xy + y^2$ then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ is

 - (A) 2u (B) $\frac{u}{2}$
- (C) u
- (D) u+2
- 62. If $f(x) = \begin{cases} x, & x \le 1 \\ ax, & 1 < x < 2 \\ x^2 + bx + 4 & x > 2 \end{cases}$ and f(x) is differentiable everywhere then
- (A) a = 1 b = -2 (B) a = 3 b = -4 (C) a = 2 b = -3 (D) a = 1 b = -3

- 63. If $y = \log(e^{x+1})$, then $\frac{dy}{dx}$ is

 - (A) $\frac{e^x + 1}{e^x}$ (B) $\frac{1}{e^x + 1}$ (C) $\frac{e^x}{e^x + 1}$
- (D) ex+1
- 64. If y = f(x) is twice differentiable and has a minimum value at x = a, then
 - (A) f''(a) < 0

(B) f''(a) > 0

(C) f''(a) = 0

- (D) f''(a) is a constant
- 65. Let f(x) = 3x 1 and g(x) = x + 4, then $\frac{df}{dg}$ is
 - (A) 2

- (B) 1
- (C) 0.4
- (D) 3

- 66. If $u = y \sin x$ then $\frac{\partial^2 u}{\partial x \partial y}$ is equal to
 - (A) $\cos x$
- (B) cos y
- (C) $\sin x$
- (D)

- If $y = a^x$ where a is a constant then $\frac{dy}{dx}$ is equal to
 - (A)

375

- (B) $a^x \log a$ (C) xa^{x-1}

68.	If .	$x = at^2$ and $y = 2at$ wh	ere α is a consta	nt the	n $\frac{dy}{dx}$ is equal to	
	(A)	at^2 (B)	$\frac{1}{at}$	(C)	$\frac{1}{t}$ (I	O) $\frac{a}{t}$
69.	If t	$u = \log \sin x$ then $\frac{du}{dx}$ i	s equal to			
	(A)	$\cos x$ (B)	cos ecx	(C)	sec x (I	O) cotx
70.	If	$\{a_n\}_{n=0}^{\infty}$ converges to a	and for all n , a_n	≥ 0, tl	$\operatorname{nen}\left\{\sqrt{a_n}\right\}_{n=0}^{\infty}$ is	
	(A)	Converges \sqrt{a} (B)	Diverges to \sqrt{a}	(C)	Converges to a (D)) Diverges to a
71.	(i)	Every Convergent is	a Cauchy seque	nce		
	(ii)	Every Cauchy seque	nce is a converge	ent sec	quence	
	(A)	(i) is true		(B)	(ii) is true	
	(C)	(i) and (ii) both are f	alse	(D)	Both (i) and (ii) are	true
72.	Fine	d the value of n such	that $\lim_{x \to 3} \frac{x^n - 3^n}{x - 3}$	= 108		
	(A)	3 (B)	2	(C)	4 (D) 2
73.	The	n^{th} term of the sequen	$1 = \left\{1, \frac{5}{2}, \frac{5}{3}, \frac{9}{4}, \frac{9}{5}, \dots\right\}$, } is		
	(A)	$\frac{2n+\left(-1\right)^n}{2n}\tag{B}$	$\frac{2n + (-1)^n}{n}$	(C)	$\frac{2n+(1)^n}{2n} \tag{D}$	$\frac{2n+(1)^n}{n}$
74.	A se	quence {a _n } is bounde	d iff there is a rea	al nun	nber S such that	
	(A)	$ a_n \le S$, for all n		(B)	$ a_n \ge S$, for all n	
	(C)	$ a_n = S$, for all n		(D)	$ a_n \le S$, for all n	
5.	The	series $\sum_{n=1}^{\infty} \frac{(-1)^n}{2n-1}$ is				
	(A)	Convergent		(B)	Divergent	
	(C)	Unbounded		(D)	Absolutely converge	ent sequence

- A square matrix 'A' is said to be skew symmetric if
 - (A) $A^T = A$

- (B) $A^T = -A$ (C) $A^2 = A$ (D) $A^2 = -A$
- 77. If $A = \begin{bmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{bmatrix}$ then |A| is equal to
 - (A) (a-b)(b-c)(c-a)

(B) (a-b)(b+c)(c-a)

- (C) (a-b)(b-c)(c+a)
- (D) (a-b)(b-c)(c-a)(a+b+c)
- If $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ then the trace of A^{-1} is
 - (A) 4

- (B) 5
- (C) 2.5
- (D) 2
- If A is a matrix of order 4×4 and if it is singular, then the rank of A is
 - (A) 0

less than 4 (C)

- (D) cannot be determined
- For the following system of homogeneous equations AX = b, if determinant of A is 80. non-zero, then the system of equations possess
 - (A) unique solution

infinite number of solutions

no solution (C)

- (D) both (B) and (C)
- Sum of the roots α and β of the equation $ax^2 + bx + c = 0$ is 81.
 - (A) $\frac{-b}{a}$ (B) $\frac{-a}{b}$ (C) $\frac{c}{a}$
- (D) $\frac{-b^2}{a}$
- The roots of α and β of the equation $ax^2 + bx + c = 0$ are imaginary if 82.

- (A) $b^2 4ac = 0$ (B) $b^2 4ac < 0$ (C) $b^2 4ac > 0$ (D) $b^2 4ac \neq 0$
- If discriminant $D = b^2 4ac = 0$ for $ax^2 + bx + c = 0$ then the roots are 83.
 - (A) real and imaginary

(B) real and equal

(C) imaginary (D) real

- The set of values of k for equation $kx^2 6x 2 = 0$ has real roots when
- (A) $k = \frac{-9}{2}$ (B) $k \ge \frac{-9}{2}$ (C) $k < \frac{-9}{2}$ (D) $k = \frac{7}{2}$
- If sum and product of roots of quadratic equation $ax^2 5x + c = 0$ are equal to 10, then 85. the values of a and c are

- (A) $\frac{-1}{2}$ and $\frac{1}{2}$ (B) $\frac{-1}{2}$ and $\frac{-1}{2}$ (C) $\frac{1}{2}$ and 5 (D) $\frac{-1}{2}$ and -5
- If α and β are roots of the equation $ax^2 + bx + c = 0$, then the value of $\alpha^2 + \beta^2$ is 86.
 - (A) $\frac{b^2}{2}$

- (B) $\frac{2ac}{a^2}$ (C) $\frac{b^2 2ac}{a^2}$ (D) $\frac{b^2 + 2ac}{a^2}$
- Evaluate $\int_0^1 x(1-x)^n dx$
 - (A) $\frac{1}{(n-1)(n+2)}$

- (B) $\frac{1}{(n+1)(n+2)}$ (C) $\frac{1}{(n+1)(n+2)}$ (D) $\frac{1}{(n-1)(n-2)}$
- Evaluate $\int \frac{e^x + 1}{x} dx$

- (A) $x + e^{-x} + c$ (B) $x e^{-x} + c$ (C) $xe^{-x} + c$ (D) $e^{-x} x + c$
- Evaluate $\int x \, 5^x \, dx$ 89.
 - (A) $\frac{x 5^x}{\log 5} \frac{5^x}{(\log 5)^2} + c$

(B) $\frac{x5^x}{\log 5} + \frac{5^x}{(\log 5)^2} + c$

(C) $\frac{x 6^x}{\log 6} - \frac{6^x}{(\log 6)^2} + c$

(D) $\frac{x 6^x}{\log 6} + \frac{6^x}{(\log 6)^2} + c$

- 90. Evaluate $\int \frac{dx}{x^2-x^2}$
 - (A) $\frac{1}{a} \log \left(\frac{x-a}{x+a} \right) + c$

(B) $\frac{1}{2a} \log \left(\frac{x-a}{x+a} \right) + c$

(C) $\frac{1}{a} \log \left(\frac{x+a}{x-a} \right) + c$

- (D) $\frac{1}{2a} \log \left(\frac{x+a}{x-a} \right) + c$
- Let $A = \{4,8,12\}$ and $B = \{1,2,3\}$. Define $f: A \to B$ by $f(x) = \frac{x}{4}$ where $x \in A$. Then f is
 - into function (A)

onto function (B)

one-one onto function (C)

(D) constant function

- 92. If $f(x) = \frac{1}{x}$, $g(x) = x^2 + 3$, then the composite function $f \circ g$ is equal to

 - (A) $\frac{1}{x+3}$ (B) $\frac{1}{x^2+3}$ (C) $\frac{1}{x}$
- (D) $\frac{1}{r^2}$
- The value of a when $5x^3 2x + a$ is divided by (x 2) is 93.
 - (A) -28
- (B) -29
- (D) 27
- The value of m when (x + 1) is a factor of $x^3 + m x^2 + 19 x + 12$ is
 - (A) 8
- (B) -8
- (C) 7
- (D) -7

- The value of $12^2 + 13^2 + \dots + 40^2$ is
 - (A) 21635
- (B) 21636
- (C) 21634
- (D) 21630

- The value of 1 + 8 + 27 + ... + 8000 is
 - (A) 44100
- (B) 43100
- (C) 42100
- (D) 40100

- 97. If $\frac{1}{1 + \log_{1} 10} = \frac{3}{4}$, then the value of x is equal to
 - (A) 100
- (B) 1200
- (C) 1400
- (D) 1000

- 98. The value of $\log \frac{11}{5} + \log \frac{490}{297} 2 \log \frac{7}{9}$ is
 - (A) log 6
- (B) log 7
- (C) log 8
- (D) log 9
- 99. The rank of the matrix $\begin{bmatrix} 1 & 2 & 3 & -1 \\ 2 & 4 & 6 & -2 \\ 3 & 6 & 9 & -3 \end{bmatrix}$ is equal to
 - (A) 3
- (B) 2
- (C) 1

- (D)
- 100. If $z_1 = 2 + i$ and $z_2 = 3 2i$ then the conjugate of $z_1 z_2$ is
 - (A) 8-i (B) 8+2i
- (C) 8+i
- (D) 8 + 3i