ENTRANCE EXAMINATION FOR ADMISSION, MAY 2013.

M.Tech. (ELECTRONICS)

COURSE CODE: 304

Register Number :	
	Signature of the Invigilator (with date)

COURSE CODE: 304

Time: 2 Hours

Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you -1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

•	** ** **	Came Subsections		10 cm	((()	4 cm	(D)	20 cm.
	(A)	8 cm	, (D)	10 cm	(0)	4 CIL	(D)	20 cm.
2.				_		rce F= -kx with point 40 cm aw		
•	(A)	3 m/s ²	(B)	15 m/s^2	(C)	40 m/s^2	(D)	10 m/s ² .
3.		circle passes thogonally, then l		. –		ts the circle x2	+ y ² +	2x + 2y + 1 =
	(A)	3x + 2y - 2 = 0)		(B)	2x + 3y - 2 = 0)	
	(C)	3x - 2y + 2 = 0)		(D)	2x - 2y + 2 = 0	•	
4 .		en two numbers Is between a an				single AM and	S deno	otes the sum
	(A)	n, a, b	(B)	n, b	(C)	n, a	(D)	n.
5.	Perc	ent resolution o	of a 10	bit ADC is		•		
	(A)	1.588%	(B)	0.0978%	(C)	0.392%	(D)	0.0244%.
6.	Effic	iency of half wa	ave rec	tifier is				•
	(A)	45%	(B)	50%	(C)	86%	(D)	100%.
7.	If a 1	potential of 1V	is appl	ied across a c	apacitor (of 10 pF, the en	· ergy st	ored is
	(A)	5 PJ	(B)	10 PJ	(C)	100 PJ	(D)	0.01 PJ .
3.		e maximum pe eak voltage is 4		-		vave is 16 mV a is	nd the	minimum pea
	(A)	0.3	(B)	0.5	(C)	0.6	(D)	0.8.
9.	In ce	ellular mobile c	ommur	nication, the f	requency	reuse distance	D is	
	(A)	√3K . R	(B)	√K . R	(C)	√3KR	· (D)	√R . 3K.
10.		noise figure i x10 ⁻¹⁴ W with I				ivable signal ir	ı a ra	dar receiver
	(A)	10 dB	(B)	9 dB	(C)	20 dB	(D)	18 dB.
				m 11 CO	,			
11.	The	beam width be	tween i	irst null of 7	m กละลห	DIC reflector or	rating	at 900 MHz 1

12.	After a target has been acquired, the best scanning system for tracking is											
	(A)	Linear	(B)	Spiral	(C)	Conical	(D)	Helical.				
13.	To p	permit the sel	ection of	1 out of 16 eq	uiprobabl	le events, th	e number	of bits required				
	(A)	2	(B)	log ₁₀ 16	(C)	8	(D)	4.				
14.	The	number of li	nes per se	cond in the U	Jnited Sta	ates TV syste	em is					
	(A)	31,500	(B)	15,750	(C)	262 ½	(D)	525.				
15.	VDE	E is, EMC sta	ndard of	•								
٠	(A)	USA	(B)	India	(C)	France	(D)	Germany.				
16.	FEN	1 is	•				·					
	(A)	Empirical n	nethod	•	(B)	Numerical method						
	(C)	Analytical 1	method		(D)	None of the	ese.					
17.	Imp	edance inver	sion may	be obtained v	vith	•						
	(A)	A short circ	uited stu	b į	(B)	An open cir	rcuited stu	ıb				
	(C)	A quarter w	vave line		(D)	A half wav	e line.	•				
18.	Tropospheric scatter is used with frequencies in the range											
	(A)	HF	(B)	VHF	(C)	UHF	(D)	VLF.				
19.	The attenuator is used in the Traveling wave tube to											
	(A)	Help bunch	ing		(B)) Prevent oscillations						
	(C)	Prevent sat	uration		(D)	Increase ga	ain.					
20.	The biggest advantage of the TRAPATT diode over the IMPATT diode is its											
	(A)	Lower noise	е					•				
•	(B)	Higher effic	ciency									
	(C)	Ability to o	perate at	higher freque	encies							
	(D)	Lesser sens	itivity to	harmonics.								
21.	A tu	ınnel diode is	loosely c	oupled to its	cavity in o	order to	. 1					
	(A)	Increase th	e frequen	cy stability								
÷	(B)	Increase th	e availabl	le negative re	sistance							
	(C)	Facilitate t	uning									
	(D)	(D) Allow operation at the highest frequencies.										

22.	The	Hartley - Shani	on th	eorem-sets a li	mit on t	che			
	(A)	Highest freque	ncy tł	n <mark>at m</mark> ay be sent	over a	given channel			
	(B)	Maximum cape	ecity o	f a channel wit	h a give	en noise level			
	(C)	Maximum num	ber o	f coding levels i	n a cha	nnel with a give	n nois	e level	
	(D)	T. Company				a channel of a g			
23.	In o	rder to separate	chanr	nels in a TDM r	eceiver	, it is necessary	to use		
•	(A)	AND gates			(B)	Band pass filte	ers		
	(C)	Differentiation			(D)	Integration.			
24.	The	should	lie in 1	the left half of	the S pl	an for stability			
·	(A)	Zeros			(B)	Poles and Zero	s		
•	(C)	Poles			(D)	None of the ab	ove.		
25.	Con	vert the 101101	Binar	y number into (octal nu	ımber	•		
	(A)	65	(B)	55	(C)	51	(D)	45.	
26.	How	many flip-flops	are re	equired to cons	truct M	od -12 counter?	•		
	(A)	5	(B)	6	(C)	12	(D)	4.	
27.	If th and-	e output of the g	gate is	always high t	hen the	gates applied to	this l	ogic are	
	(A)	NAND and EX-	NOR		(B)	NAND and NO	OR .		
	(C)	AND and X-NO	R		(D)	OR and XOR.			
28.		largest negativesentation.	e nui	mber can be i	epresei	nted with 8 bit	s in i	2's compliment	
	(A)	-256	(B)	-255	(C)	-127	(D)	-128.	
29.	Trar	nsparent latch is	seen	in which type o	f flip fl	op			
	(A)	SR FF	(B)	D FF	(C)	JK FF	(D)	T FF.	
30.	Whi	ch type of ADC i	s faste	est?					
	(A)	SARC			(B)	Counter type			
•	(C)	Integrated type	•		(D)	Flash.	•	•	
31.	The	resolution for a	DAC i	s given by 0.4%	then r	no. of bits of DAG	C is	,	
	(A)	8- bits	(B)	12- bits	(C)	16- bits	(D)	32-bits.	
32.	CMI	RR of an OP AM	P is gi	ven as 80dB aı	nd Ad is	s 20000.Value of	A _{cm} wi	ll be	
,	(A)	4	(B)	8	(C)	2	(D)	·1.	
00.									

33.	Si	and Ge lie in	blocl	k of periodic ta	able							
	(A)		(B)		(C)	IV A	(D)	IV B.				
34.	VS	WR = 1 is obtaine	ed wh	en								
	(A)	$Z_L = 0$	(B)	$Z_L = \infty$	(C)	$Z_L = Z_0$	(D)	Z _L is reactive.				
35.	Ha	lf Power beam wi	dth o	f a dish anten	na is							
	(A)	70 λ/D	(B)	70 D/λ	(C)	7 D/λ	(D)	7 λ/D.				
36.	One	e of the following he	types	s of noise becom	mes of gr	eat importance	e at high	frequencies. It				
	(A)	Shot Noise			(B)	Random Nois	se	•				
•	(C)	Impulse Noise	-		(D)	Transit-time	Noise.					
37.	A Superheterodyne receiver with an IF of 450 kHz is tuned to a signal at 1200 kHz. The image frequency is											
	(A)	750 kHz	(B)	$900~\mathrm{kHz}$	(C)	$1650~\mathrm{kHz}$	(D)	2100 kHz.				
38.	A re	A receiver has poor RF selectivity. It will therefore also have poor										
	(A)	Blocking			(B)	Double-Spott						
	(C)	Diversity recep	tion		(D)	Sensitivity.	_					
39.	Indicate which of the following pulse modulation system is analog											
	(A)	PCM			(B)	DPCM						
	(C)	PWM			(D)	Delta Modula	tion.					
4 0.	The	The code which provides for parity check is										
	(A)	Baudot	(B)	ASCII	(C)	EBCDIC	(D)	CCITT-2.				
41.	The	The data transmission rate of a modem is measured in										
	(A)	bytes per secon	ď		(B)	baud rate						
	(C)	bits per second			(D)	megahertz.						
42 .	Sate	ellites used for in	tercor	ntinental com	nunicatio	ns are known	as					
	(A)	Comsat	(B)	Domsat	(C)	Marisat	(D)	Intelsat.				
43 .	If th	e peak transmitt	ed po	wer in a radar	system	is increased by	a factor	of 16,				
	the 1	maximum range v	will b	e increased by	a factor	of						
	(A)	2	(B)	4	(C)	8	(D)	16.				
44.	Equ	alizing pulses in '	TV ar	e sent during								
	(A)	Horizontal blan		(B)	Vertical blank	ing						
	(C) The Serrations					The Horizonta	_	e.				

45 .	A linear block code with a minimum distance dmin can correct up to errors										
	(A)	$t \leq floor[(d_{min}-1)]$	L)/2]		(B)	$t \geq floor[(d_{min}\cdot$	1)/2]	•			
	(C)	$t \leq floor[d_{min}/2$	- 1]		(D)	$t \ge floor[d_{min}/2]$	2 - 1].	e - 1			
46.		mutual informa	ition o	f a channel ma	ıy be exp	pressed in term	s of the	entropy of the			
	(A)	I(x;y) = H(y) +	H(y/x))	(B)	I(x;y) = H(y)	H(x/y)				
•	(C)	I(x;y) = H(y) - 1	H(y/x)		(D)	I(x;y) = H(y)	+ H(x/y)	•			
47 .	A ne	etwork which co	mpens	ates distortion	is						
	(A)	Filter			(B)	Equalizer					
	(C)	Attenuator			(D)	Amplifier.					
48.	The is	phase character	ristic o	of a FIR filter i	$\mathbf{s} \; \boldsymbol{\theta}(\boldsymbol{\omega})$	= - 5ω . The g	roup de	lay of the filter			
	(A)	5	(B)	-5	(C)	-10	(D)	10.			
49 .	Z – '	Transform, eval	uated	on its unit circ	le is	·		•			
	(A)	DTFT	(B)	FT	(C)	IFT	(D)	FFT.			
50.		culate the critic tron density is 1				t vertical incid	lence if	the maximum			
	(A)	5 MHz	(B)	7 MHz	(C)	10 MHz	(D)	12 MHZ.			
51.	The	maximum effici	ency o	f a full-wave re	ectifier i	8					
	(A)	40%	(B)	81.2%	(C)	40.2%	(D)	90% .			
52 .	Und	er normal opera	iting v	oltages, the re	verse cu	rrent in a silic	n diode	isabout			
	(A)	1μA	(B)	·1mA	(C)	10 μΑ	(D)	100 μΑ.			
53.	The	Potential at a p	oint d	ue to electric d	ipole cor	nsists of					
	(A)	r terms	(B)	$1/r^2$ terms	(C)	1/r³ terms	· (D)	1/r terms.			
54 .	If a	potential of 1V i	s appl	ied across a ca	pacitor (of 10 pF, the er	nergy st	ored is			
-	(A)	_	(B)	10 PJ	(C)	. –		0.01 PJ.			
55.	The	work in moving	a cha	rge between tw	vo points	depends on					
	(A)	the path		J	(B)	Q, E and the	path				
	(C)	Q and E only			(D)	Q, E and end	points.	,			
56.	Q-S	witched LASER	is a								
	(A)	Continuous La			(B)	Short burst I	aser	•			
				witching opera	Low powered Laser.						

57.		en a magnetic age is	flux cı	uts across 200	turns	at the rate of	2 wb/	s, the induced				
	(A)	400 V	(B)	100 V	(C)	600 V	(D)	0 V.				
58.				o coil are 4H and on the two coil is	9H. I	f the coefficient	of cou	oling is 0.5, the				
	(A)	12 H	(B)	3 H	(C)	6 mH	(D)	10 H.				
59.				urries a current ude of the force i		mA and is at	an anş	gle of 30° with				
-	(A)	7.5 mN	(B)	5 mN	(C)	3.75 mN	(D)	7.5 N.				
60.	If a	If a wave in free space has E = 2 V/m, H is										
	(A)	1/60 п A/m			(B)	60 п A/m						
	(C)	120 п A/m	•		(D)	240 π A/m.						
61.				rrow and broad v dominant mode		of a waveguide is	3 cm	and 4.5 cm, the				
	(A)	6 cm	(B)	9 cm	(C)	$12.5~\mathrm{cm}$	(D)	1.5 cm.				
62.	At le	ow frequencies,	earth i	s a				, , , ,				
	(A)	Good Conduct	or		(B)	Excellent Cond	luctor					
	(C)	Bad Conducto	r		(D)	A Good Capa	citor.					
63.	A solution to the "blind speed" problem is											
	(A) .	To change the	Doppl	er Frequency	(B)	To vary the PF	RF ·	•				
	(C)	To use monop	ulse		(D)	To use MTI.						
64.		largest negati	ive nui	mber can be re	prese	nted with 8 bit	ts in 2	2's compliment				
	(A)	-256	(B)	-255	(C)	-127	(D)	-128.				
65.	Nor	malized frequer	ncy (V)	for a single mod	e fiber	r is						
	(A)	V ≤ 2.4	(B)	$2.4 \le V \le 3.8$	(C)	$V \ge 2.4$	(D)	$0 \le V \le 3.8.$				
66.	If B	W is the bandw	idth of	an optical fiber	and N	A is the numeri	cal ape	rture then				
	(A)	BW a NA	(B)	BW a 1/NA	(C)	BW α 1/(NA) ²	(D)	BW α 1/(NA) ³				
67.	Scat	ttering loss in o	ptical f	iber varies with	wavel	ength as						
	(A)	1/λ	(B)	1/ λ²	· (C)	$1/\lambda^4$	(D)	1/ \(\lambda^3.\)				
68.	-23	dBm indicates a	a power	r of			•					
	(A)	23 mW	(B)	5 µW	(C)	-23 mW	(D)	10 mW.				

69.	If bandgap energy of a material is 1.24 eV then wavelength of peak emission is									
	(A)	1.0 µm	(B)	0.75 µm	(C)	1.24 µm	(D)	124 µm.		
70.	The m	aterial used for	opti	cal fiber for leas	t losse	s is	٠			
	(A) S	SiF4	(B)	NaF4	(C)	ZrF4	(D)	NaSiF ₄ .		
71.	Photo	Detector is a								
	(A)	friangular devi	ce	•	(B)	Square Law d	evice			
•	(C) 1	Linear device		• .	(D)	Linear Compo	nent.			
72.	The in	iformation c ont	ent of	f a message with	ı occur	rence probabili	t y 1/ 8 i	s		
	(A)	L/8 bits	(B)	8 bits	(C)	1/4 bits	(D)	3 bits.	•	
73.	In the hierarchy of SONET, OC-12 data rate corresponds to									
	(A) (622 Mbps	(B)	622.08 Mbps	(C)	466.56 Mbps	(D)	466 Mbps	•	
74.	If the	closed loop tran	sfer :	function of a sys	stem is	$1/(s^2 + a^2)^2$ then	ı the sy	ystem is		
	(A) S	Stable			(B)	Unstable				
	(C) (Conditionally S	table		(D) .	Marginally St	able.			
75 .	Find t	he Z transform	of δ(1	n)	•		•			
	(A) 1	l	(B)	0	(C)	∞	(D)	-1.		
76.	Given	$h(t)=e^{-t}u(t)$. Fi	nd H	(s)						
	(A) 1	L/s	(B)	1/(s+1)	(C)	1/(s-1)	(D)	1/(s-1)-1		
77.				architecture is		result of pro	tocol	research	and	
	(A) (Circuit Switche	d		(B)	Burst Switche	d			
	(C) I	Packet Switcher	i		(D)	None of the ab	oove.			
78.	E _b /N ₀	is related to SN	R, se	lect the correct	one fr	om the following	g.			
	(A) I	$E_b/N_0 = E_b/N_0$		•	(B)	$E_b/N_0 = N_0/SN$	TR.	•		
	(C) 1	$E_b/N_0 = 1/(N_0.S)$	NR)		(D)	$E_b/N_0 = SNR/$	N 0.			
79.	What	type of approac	h is t	used in DECT?						
	(A) .	T DD	(B)	FDD	(C)	WDM	(D)	OFDM.		
80.	The ga	ain of an isotrop	oic an	tenna is						
	_	B dB	(B)	10 dB	(C)	1 dB	(D)	0 dB.		
304				8						

81. For a short circuited and open circuited line if their impedances are 5 of 20 ohm, then characteristic impedance is									ınd		
	(A)	4 ohm	(B)	100 ohm	(C)	10 ohm	(D)	25 ohm.			
82.		order to properl imum Vce requir		erse bias the	collector	base junction	n of sili	con transist	or,		
	(A)	0.3 V	(B)	1 V	(C)	0.5 V	(D)	0.8V.			
83.	B is	said to be linear	rif								
	(A)	B and H are pa	arallel	•	(B)	B and H are	perpend	licular			
	(C)	E and H are pa	arallel	.	(D)	E and H are	perpend	icular.			
84.	Whe	en the both junc le	tion o	f NPN diode	is revers	se biased, ther	the die	ode is in wh	ich		
	(A)		(B)	Cutoff	(C)	Saturation	(D)	inverted.			
85.		e voltage or cur mplitude with in						d is decreas	ing		
	(A)	Incident wave			(B)	Medium wav	e				
	(C)	Reflected wave			(D)	None of abov	e.				
86.		ee bulbs of 60 w bulb burns out	atts e	ach are conne	cted in p	parallel across	220v, 5	0 Hz supply	. If		
	(A)	Only remaining	g two	will operate	-		•				
	(B)	Remaining two will not operate									
	(C)	All of three will operate									
	(D)	· · · · · · · · · · · · · · · · · · ·									
87.	Two	16:1 and one 2:	1 mult	iplexers can b	e connec	ted to form a					
	(A)	64:1 multiplexe	er	•	(B)	32:1multiple:	xer				
	(C)	16:1 multiplexe	er		(D)	8:1 multiplex	ær.				
88.	A sy	stem with gain 1	margii	a close to unity	y or a ph	ase margin clo	se to ze:	ro is			
	(A)	Highly stable			(B)	Highly oscilla	atory				
	(C)	Relatively stab	le	•	(D)	None of the a	ibove .				
89.	Hun	nan system can l	be cons	sidered as							
	(A)	Open loop syst	em								
	(B)	Closed loop sys	stem w	ith single feed	łback						
	(C)	Closed loop sys	stem w	ith multivaria	able feed	back					
	(D)	None of these.			•						

90.	A system has the transfer function (1-s)/(1+s); It is known as									
-	(A)	Low pass system	m,		(B)	All pass systen	ı			
	(C)	High pass syste	370 0		. (D)	None of the ab	ove.			
91.	In a single stage transistor amplifier, if input signal is 1 mV (rms), $R_{AC} = 2$ K ohm $R_{in} = 1$ K ohm and Beta = 50, then output voltage is									
	(A)	25 mV	(B)	50 mV	(C)	75 mV	(D)	100 mV.		
92.		ree stage amplif l gain is	ier ha	as individual s	stage gai	n of 10 dB, 5 dB	and :	12 dB, then t	he	
	(A)	12 dB	(B)	600 dB	(C)	27 dB	(D)	17 dB.		
93.	-	wer supply has a load voltage is	ı volta	age regulation	of 1%. I	f the no load vol	tage is	30 V, then t	he	
	(A)	30 V	(B)	29.7 V	(C)	30.3 V	(D)	45 V.		
94.	If th	e input to a diffe	renti	ating circuit is	a saw-to	ooth wave, then	outpu	t will be		
	(A)	Saw-tooth wave	•		(B)	Square wave				
	(C)	Rectangular wa	ıve		(D)	Triangular wa	ve.			
95.	When V_{GS} of a FET changes from -3.1 V to -3 V, the drain current changes from 1 m to 1.3 mA, then the value of transconductance is									
	(A)	30 micro mhos	(B)	30 m A/V	(C)	3 micro mhos	(D)	3 m A/V .		
96.		nijunction transis , then the value (ases. If the intri	nsic st	and off ratio	is	
	(A)	6.5 V	(B)	0.065 V	(C)	10.65 V	(D)	9.35 V.		
97.	Wha	ıt is the ratio of r	nodul	lating power t	o total po	ower at 100% mo	dulat	ion?		
•	(A)		(B)	1:2	(C)	2:3	(D)	1:1.		
98.	An I	M signal with a	modi	ılation index ı	n _f is pass	sed through a fre	equen	ey tripler.		
	The	wave in the outp	ut of	the tripler wil	ll have a	modulation inde	x of			
	(A)	$m_f/3$	(B)	$\mathbf{m_f}$	(C)	$3 m_f$	(D)	$9 m_{\rm f}$		
99.	How	many NAND ga	ites a	re needed to r	ealize OI	R gate?		·		
	(A)	1	(B)	2	(C)	3	(D)	4.	٠	
100.	If th	e signal level is	1 mW	, power gain i	s	1				
	(A)	0 dBm	(B) ⁻	1 dBm	(C)	0.01 dBm	(D)	10 dBm.		
				the state of the s						