ENTRANCE EXAMINATION FOR ADMISSION, MAY 2010. M.Tech. (ENVIRONMENTAL ENGINEERING AND MANAGEMENT) COURSE CODE: 393 | Register Number: | | | | |------------------|--|----------------|-------------------------------------| | | | | | | | | Signatur
(ı | re of the Invigilator
vith date) | | | | | | COURSE CODE: 393 Time: 2 Hours Max: 400 Marks ## Instructions to Candidates: - Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen. - Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification. - 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil. - Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks. - Do not write anything in the question paper. Use the white sheets attached at the end for rough works. - 6. Do not open the question paper until the start signal is given. - 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature. - 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them. - 9. Use of Calculators, Tables, etc. are prohibited. | | 1. | | Of the following quantities, which one has dimensions different from the remaining three? | | | | | | | | | |----|--------|---|--|---------------------------------------|--------------|--|-----------------|--|--|--|--| | | | (A) | Energy per unit volume | | | | | | | | | | | | (B) | B) Force per unit area | | | | | | | | | | | | (C) | C) Product of voltage and charge per unit volume | | | | | | | | | | | | (D) | Angular momentum per | unit mass | | | | | | | | | 2. | If the | If the unit of velocity and force are doubled then the units of Power will be | | | | | | | | | | | | | (A) | doubled | (H | 3) | halved | | | | | | | | | (C) | quadrupled | (I |)) | remain unaffected | | | | | | | | 3. | and | From the top of the building a ball is thrown straight upwards with an initial speed
and at the same time another ball is thrown straight downwards with the same initial
speed. Neglecting air resistance, which one of the following statements in correct | | | | | | | | | | | | (A) | Both balls hit lie groun | d at the same tin | ne | | | | | | | | | | (B) | Both the balls in it the | ground with sam | e s | peed | | | | | | | | | (C) | (C) The ball thrown downwards hits the ground with larger speed | | | | | | | | | | | | (D) The ball thrown upwards hits the ground with larger speed | | | | | | | | | | | | 4. | Whi | Which of the following is not an example of linear motion? | | | | | | | | | | | | (A) | a hook at rest | | | | | | | | | | | | (B) | a body in uniform circu | ılar motion | | | | | | | | | | | (C) | wheel rotating at unifo | rm speed on road | ł | | | | | | | | | | (D) | a body rolling down an | inclined plane | | | | | | | | | | 5. | An i | insect crawls a distance
ng east in 5 seconds. The | of 4 m along nort
average velocity | h in
of t | n 10 seconds and then
the insect is | distance of 3 n | | | | | | | | (A) | 7/15 m/sec | | (B) | 1/5 m/sec | | | | | | | | | (C) | 5/15 m/sec | | (D) | 12/15 m/sec | | | | | | | | 6. | An | nan in a lift will weigh m | ore when | | | | | | | | | | | (A) | the lift beings to go up | | | | | | | | | | | | (B) | the lift is going up ste | adily | | | | | | | | | | | (C) | the live a slowing dow | n while ascendin | g | | | | | | | | | | (D) | the lift is a cending f | reely | | | | | | | | | 7. | A cyclist turns around a cure at 15 miles per hour. If he turns at double the speed, the tendency to overturn is | | | | | | | | | |-----|---|--|------------|----------------|------------------------|--|--|--|--| | | (A) | doubled (B) quadrupled | (C) | halved | (D) unchanged | | | | | | 8. | - | int mass m is placed at the origins at a point distant x from it is prop | | | ntial due to the point | | | | | | | (A) | x^0 (B) x^{-1} | (C) | x^{+1} | (D) x^{-2} | | | | | | 9. | If yo | u float on your back on water, your | weight is | 3 | | | | | | | | (A) | Zero | | | | | | | | | | (B) | Equal to your normal weight | | | | | | | | | | (C) | Half your normal weight | | | | | | | | | | (D) | Greater than the weight of water | you displa | ace | | | | | | | 10. | A boy carries a fish in one hand and a bucket of water in the other. If he transfers the fish to the bucket of water, the total weight carried by him | | | | | | | | | | | (A) | Is less than before | (B) | Is more than | before | | | | | | | (C) | Is the same as before | (D) | Depends on the | he mode of travel | | | | | | 11. | Streamline flow is more likely for liquids with | | | | | | | | | | | (A) | High density and low viscosity | (B) | Low density a | and high viscosity | | | | | | | (C) | High density and high viscosity | (D) | Low density a | and low viscosity | | | | | | 12. | Вуі | ncreasing the temperature of a liqu | uid its | | | | | | | | | (A) | Volume and density decrease | | | | | | | | | | (B) | Volume and density increase | | | | | | | | | | (C) | Volume increases and density dec | creases | | | | | | | | | (D) | Volume decreases and density inc | creases | | | | | | | | 13. | Whi | ich of the following is the smallest t | temperatu | are? | | | | | | | | (A) | 1°F (B) 1°R | (C) | 1°K | (D) 1°C | | | | | | 14. | A cold coke bottle is left open on the pan of a balance and its weight observed from time to time. The weight | | | | | | | | m | |-----|---|--|---------|-------------------|---------|-------------------------------|---------|---------------------------|----| | | (A) | increases | | | | | | | | | | (B) | decreases | | | | | | | | | | (C) | increases, reac | hes a 1 | maximum and t | hen sta | arts decreasing | | | | | | (D) | remains station | nary | | | | | | | | 15. | The | saturation vapor | ur pre | ssure of water a | at 100° | °C is | | | | | | (A) | 739 mm of mer | cury | | (B) | 750 mm of me | rcury | | | | | (C) | 760 mm of me | rcury | | (D) | 772 mm of men | cury | | | | 16. | | normal temperater boil at a temperater | | | ater bo | oils at 100°C. D | eep d | own the min | e, | | | (A) | 100°C | | | (B) | greater than 10 | 00°C | | | | | (C) | less than 100°C | 2 | | (D) | will not boil at | all | | | | 17. | The | en a large bubble
atmospheric pre
ne lake is | | | | | 3.5 | | | | | (A) | H | (B) | 2H | (C) | 7H | (D) | 8H | | | 18. | Int | he equation PV = | RT, V | V stands for the | volum | e of | | | | | | (A) | any amount of | gas | | (B) | one gram of ga | S | | | | | (C) | one gram mole | of ga | s | (D) | one litre of gas | | | | | 19. | A fl | ube of length L ar
uid is flowing th
, then the pressu | rough | this tube. If the | he pre | ssure difference | | | | | | (A) | 16 P/3 | (B) | 4 P/3 | (C) | P | (D) | 3 P/16 | | | 20. | | uid of density 'r'
ocity 'v'. Reynold | | | owing | through a pipe o | of dian | neter 'd' with | a | | | (A) | $R = 2rdv/\eta$ | (B) | $R = rdv/\eta$ | (C) | $R=\operatorname{rdv}/\eta^2$ | (D) | $R = 2 \eta \text{rv/d}$ | | | | | | | | | | | | | | 21. | The | viscous force between two liquid layers is | | | | | | | |-----|------------------------|---|--|--|--|--|--|--| | | (A) | Radial | | | | | | | | | (B) | Normal to the liquid surface | | | | | | | | | (C) | Tangential to the liquid surface | | | | | | | | | (D) | Neither purely tangential nor purely normal | | | | | | | | 22. | Their
heig
in ti | re is a hole of area A at the bottom of a cylindrical vessel. Water is filled upto a $ht\ h$ and water flows out in t sec. If water is filled to a height $4\ h$, it will flow out me | | | | | | | | | (A) | t (B) 4t (C) 2t (D) t/4 | | | | | | | | 23. | at th | er is flowing through a tube of non-uniform cross-section. If the radius of the tube he entrance and exit is in the ratio 3: 2 then the ratio velocity of liquid entering leaving the tube is | | | | | | | | | (A) | 8:27 (B) 4:9 (C) 1:1 (D) 9:4 | | | | | | | | 24. | Acco | ording to the kinetic theory of gases, which of the following statements is wrong? | | | | | | | | | (A) | All molecules of a gas are identical | | | | | | | | | (B) | Collisions between the molecules of a gas and that of the molecules with the walls of the containers are perfectly elastic | | | | | | | | | (C) | The molecules do not exert appreciable force on one another except during collision | | | | | | | | | (D) | The pressure exerted by a gas is due to the collisions between the molecules of the gas | | | | | | | | 25. | | all and a highly stretched spring are made of the same metal and have the same ss. They are heated so that the melt. The latent heat required | | | | | | | | | (A) | Is the same for both | | | | | | | | | (B) | Is greater for the ball | | | | | | | | | (C) | Is greater for the spring | | | | | | | | | (D) | May or may not he same depending on the metal | | | | | | | | 26. | | what extent must a given solution containing 40 mg AgNO ₃ per ml be diluted to d a solution containing 16 mg AgNO ₃ per mL? | | | | | | | | | (A) | To 1 mL solution add 1.5 mL of water | | | | | | | | | (B) | To 1 mL of solution 2.5 mL of water should be added | | | | | | | | | (C) | To 1.5 mL of solution 2 mL of water should be added | | | | | | | | | (D) | To 1.5 mL of solution 1.5 mL of water should be added | | | | | | | | | | 5 393 | | | | | | | | 27. | According to Raoult's law the relative lowering of vapour pressure of a solution of non-volatile substance is equal to? | | | | | | | | | |-----|---|---|---------|---|--|--|--|--|--| | | (A) | Mole fraction of solute | (B) | Mole fraction of solvent | | | | | | | | (C) | Weight percent of solute | (D) | Weight percent of solvent | | | | | | | 28. | Whi | ch of the following is not a colligative p | roper | ty? | | | | | | | | (A) | Lowering of vapour pressure | (B) | Freezing point | | | | | | | | (C) | Osmotic pressure | (D) | Elevation of poiling point | | | | | | | 29. | The | vant Hoff factor i for a 0.1 M Molal aq | ueous | solution of an ideal solute is? | | | | | | | | (A) | 0.1 (B) 1 | (C) | 0 (D) 0.2 | | | | | | | 30. | In a | 0.1 M solution of NaCl in water, which | n one | of the following will be closest to 0.1? | | | | | | | | (A) | Mole-fraction of NaCl | (B) | Mole-fraction of water | | | | | | | | (C) | Percent wt. of NaCl | (D) | Molality | | | | | | | 31. | | The concentrations of two HCl solutions are 0.5 N and 0.1 N. The volumes of A and B required to prepare 2 liters of 0.2 N HCl will be [KCET 1993] | | | | | | | | | | (A) | 0.5 L of A + 1.5 L of B | (B) | 1.5 L of A + 0.5 L of B | | | | | | | | (C) | 1.0 L of A + 1.0 L of B | (D) | $0.75~\mathrm{L}$ of A + $1.25~\mathrm{L}$ of B | | | | | | | 32. | The pressure under which liquid and vapour can co-exist in equilibrium is known as? | | | | | | | | | | | (A) | Normal vapour pressure | (B) | Saturated vapour pressure | | | | | | | | (C) | Real vapour pressure | (D) | Limiting vapour pressure | | | | | | | 33. | The formula weight of $\mathrm{Al}_2(\mathrm{SO}_4)_3$ is 342. A solution containing 342 of $\mathrm{Al}_2(\mathrm{SO}_4)_3$ is | | | | | | | | | | | (A) | One litre of solution of one molar | (B) | One litre of solution of 2 molar | | | | | | | | (C) | 1000 gm of water in 3 normal | (D) | 2 litre of solution in 3 molar | | | | | | | 34. | Tha | t colloidal particles carry charge is der | nonsti | rated by | | | | | | | | (A) | Tyndall effect | (B) | Cataphoresis | | | | | | | | (C) | Brownian Movement | (D) | Dialysis | | | | | | | 35. | | the coagulation of positively charged commum coagulating power? | olloida | al solution which of the following has | | | | | | | | (A) | SO ₄ ²⁻ (B) Cl ⁻ | (C) | PO_4^{3-} (D) $[Fe(CN)_6]^{4-}$ | | | | | | | 36. | Lyon | philic sols are more stable than lyo | phobic coll | loids because? | |-----|------|---|-------------|---| | | (A) | Colloidal particles have positive | charge | | | | (B) | Colloidal particles have negative | charge | | | | (C) | Colloidal particles are solvated | | | | | (D) | There are strong electrostatic particles | repulsion | s between the negatively charged | | 37. | The | extent of adsorption of a gas on a | solid deper | nds on? | | | (A) | Nature of gas | (B) | Pressure of gas | | | (C) | Temperature of the system | (D) | All are correct | | 38. | Whe | en a reversible reaction is in equili | brium, opp | oosing forces? | | | (A) | Stop acting | (B) | Are shifted to the right | | | (C) | Are in constant operation | (D) | Go to one end | | 39. | | Kc for the reaction $A + B \leftrightarrow C + D$
there is no change in volume the | | ne mole of each of A and B are mixed moles of C formed is? | | | (A) | 0.50 (B) ·0.75 | (C) | 0.90 (D) 1.5 | | 40. | | the reaction $A + B \leftrightarrow AB$, if the ction will be? | concentr | ation of A is doubled, the rate of | | | (A) | Doubled | (B) | Decreased to one half | | | (C) | Remains unaffected | (D) | Increased to 4 times | | 41. | | rate law for a reaction $A + B \rightarrow 1$ following statements is false? | Product is | rate = $K[A]^1[B]^2$. Then which one of | | | (A) | If [B] is held constant while [A] fast |] is double | d, the reaction will proceed twice as | | | (B) | If [A] is held constant while [B] i | s reduced | to one quarter, the rate will be halved | | | (C) | If [A] and [B] are both doubled, t | he reaction | n will proceed 8 times as fast | | | (D) | This is a third order reaction | | | | 42. | | | | stage is a slow second order reaction.
tion. The overall order of the reaction | | | (A) | First order | (B) | Second order | | | (C) | Third order | (D) | Zero order | | | | | | | | 43. | For | a reaction, $2A + B \leftrightarrow C + D$, $\frac{-d[A]}{dt} = k$ | [A] ² [B |]. The expression for $\frac{-d[B]}{dt}$ will be? | | | | |-----|--|---|---------------------|---|--|--|--| | | (A) | k[A] ² [B] | (B) | 1/2 k[A ²][B] | | | | | | (C) | k[A] ² [2B] | (D) | k[2A] ² [B] | | | | | 44. | | rate of a reaction is doubled for every
as a result of increase in temperature | | | | | | | | (A) | 112 (B) 512 | (C) | 400 (D) 256 | | | | | 45. | Effic | ciency of a catalyst depends on its | | | | | | | | (A) | Particle size | (B) | Solubility | | | | | | (C) | Molecular weight | (D) | None | | | | | 46. | 6. The rate of a certain biochemical reaction when enzyme catalysed in the human body
is 10 ⁴ times faster than when it carried out in the laboratory. The activation energy
of this reaction | | | | | | | | | (A) | Is zero | | | | | | | | (B) | Is different in two eases | | | | | | | | (C) | Is the same in both the cases | | | | | | | | (D) | Can only he determined if temperatu | re of t | he reaction is known | | | | | 47. | For | a spontaneous process | | | | | | | | (A) | G increases | (B) | G decreases | | | | | | (C) | S decreases | (D) | S = 0 | | | | | 48. | In a | galvanic cell | | | | | | | | (A) | Chemical energy is converted into ele | ectrici | ty | | | | | | (B) | Chemical energy is converted into he | eat | | | | | | | (C) | Electrical energy is converted into ch | emica | l energy | | | | | | (D) | Electrical energy is converted into he | eat | | | | | | 49. | | pH of a solution is 5.0. To this solution. | n suffi | cient acid is added to decrease the pH | | | | | | (A) | Increases 1000 times | (B) | Decreases 1000 times | | | | | | (C) | Increases 100 times | (D) | Decreases 100 times | | | | | 50. | If the solubility of $\operatorname{Ca}(\operatorname{OH}_2)$ is $\sqrt{3}$, what will be the solubility product? | | | | | | | | | | |-----|--|--|--------------------------|-------------------------------------|--------------------------------|---------|--------------------|-----------|---------------------|--------| | | (A) | 3 | (B) | 27 | | (C) | $\sqrt{3}$ | (D) | $12\sqrt{3}$ | | | 51. | | ne heat conduction a liquid heated | | | | | | | ume, are | filled | | | (A) | The spherical v | essel | | | (B) | The cylindric | al vesse | 1 | | | | (C) | The rectangula | r vess | el | | (D) | The ellipsoid | al vessel | | | | 52. | The | indefinite integr | al of a | dx is | | | | | | | | | (A) | x | (B) | x^2 | | (C) | $\frac{x^2}{2}$ | (D) | $\frac{x^2}{2} + c$ | | | 53. | | ee is broken by v
of the tree and r
is | | | _ | | | | | | | | (A) | 15 metres | | | | (B) | 20 metres | | | | | | (C) | $10(1+\sqrt{2})$ metr | es. | | | (D) | $10(1+\sqrt{3}/2)$ | metres | | | | 54. | The | value of $\frac{i^{592} + i^{5}}{i^{582} + i^{5}}$ | $\frac{90}{80} + i^{58}$ | $i^{8} + i^{586}$ $i^{8} + i^{576}$ | $\frac{+i^{584}}{+i^{574}}$ -1 | = | | | | | | | (A) | -1 | (B) | -2 | | (C) | -3 | (D) | -4 | | | 55. | The | triangle joining | the po | ints (2, | 7), (4, -1 | 0), (-2 | 2, 6) is | | | | | | (A) | equilateral | | | | (B) | right angled | | | | | | (C) | isosceles | | | | (D) | none of these | | | | | 56. | The | distance between | n the l | ines 32 | c + 4y = 9 | , and | 6x + 8y = 15 is | i | | | | | (A) | 3/2 | | | | (B) | 3/10 | | | | | | (C) | 6 | | | | (D) | None of these | е | | | | 57. | Loci | us of a point such | that | the rati | o of its di | stanc | es from two fix | ed point | s is const | ant is | | | (A) | a circle | | | | (B) | a straight lin | ie | | | | | (C) | an ellipse | | | | (D) | none of these | е | | | | 58. | lim- | $\{(1-\cos 2x)/x\}$ is | | | | | | | | | | | (A) | 0 | (B) | 1 | | (C) | 2 | (D) | 4 | | | | | | | | | | | | | | - 59. Let $f(x) = \frac{x(1+a\cos x) b\sin x}{x^3}$, $x \neq 0$, f(0) = 1. If f(x) is continuous at x = 0, then a and b are - (A) 5/2, 3/2 (B) -5, -3 (C) -5/2, -3/2 (D) None of these - 60. The value of $\frac{d}{dx}(x^x)$ is - (A) xxxx-1 (B) $x^x \log ex$ (C) $x^x \log x$ - (D) None of these - 61. If $x = \sin \theta \sqrt{(\cos 2\theta)}$, $y = \cos \theta \sqrt{(\sin 2\theta)}$, then dy/dx at $\theta = \pi/4$ is - (A) 1 - (B) -1 - (C) 0 - (D) Not exist - 62. If $\Delta_1 = \begin{vmatrix} x & a & a \\ b & x & a \\ b & b & x \end{vmatrix}$ and $\Delta_2 = \begin{vmatrix} x & a \\ b & x \end{vmatrix}$, then - (A) $\frac{d}{dx}\Delta_1 = \Delta_2$ (B) $\frac{d}{dx}\Delta_1 = 3\Delta_2$ (C) $\frac{d}{dx}\Delta_2 = \Delta_1 - \Delta_2$ - (D) None of these - 63. The derivative of $\sin^{-1} x$ w.r.t. $\cos^{-1} \sqrt{(1-x^2)}$ is - (A) $1/\sqrt{[(1-x^2)]}$ (B) $\cos^{-1} x$ (C) 1 - (D) None of these - 64. If u = f(y-z, z-x, x-y) then $\partial u/\partial x + \partial u/\partial y + \partial u/\partial z =$ - (A) 3 (B) 0 (C) $\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z}$ - (D) None of these - 65. If $u = (x^{1/4} + y^{1/4})/(x^{1/6} + y^{1/6})$ and $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = ku$, then $k = \frac{1}{2} \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \right)$ - (A) 1/4 - (B) 1/12 - (C) 1/24 - (D) 1/6 | 66. | The maximum possible area that can be enclosed by a wire of length 20 cm by bending it into the form of a sector in square cm is | | | | | | | | |-----|--|--|----------|---|--|--|--|--| | | (A) 10 | | (B) | 25 | | | | | | | (C) 30 | | (D) | None of these | | | | | | 67. | _ | | | s in metres is a function of time t in c are constants. It is known that at | | | | | | | | position of the particular, The value of a, b | | en by $s = 7$ m, velocity is 7 m/s and | | | | | | | (A) -3, 2, 7 | | (B) | 3, -2, 5 | | | | | | | (C) 3, 2, 1 | | (D) | None of these | | | | | | 68. | $\int x^2 e^{2x} dx =$ | | | | | | | | | | (A) $e^{2x}[2x^2 - 2x +$ | ·1]+c | (B) | $\frac{1}{2}e^{2x}[2x^2-2x+1]+c$ | | | | | | | (C) $\frac{1}{4}e^{2x}[2x^2+2x$ | -1]+c | (D) | None of these | | | | | | 69. | The area enclosed l | by the curve $y^2 = 4x$ | and the | line $y = x$ is | | | | | | | (A) 2/3 | (B) 4/3 | (C) | 1/2 (D) 8/3 | | | | | | 70. | Solution of the diff. | eqn. $\frac{dy}{dx} + \frac{3x + 2y - 5}{2x + 3y - 5}$ | = 0 is | | | | | | | | (A) $3x^2 + 4xy + 3y$ | $y^2 - 10x - 10y = c$ | (B) | $x^2 + 4xy - y^2 - 4x + 6y = c$ | | | | | | | (C) $(x+2y)^2+3y$ | =c | (D) | none of these | | | | | | 71. | The vector $ax(bxa)$ | is | | | | | | | | | (A) perpendicular | r to a | (B) | perpendicular to b | | | | | | | (C) null vector | | | perpendicular to both a and b | | | | | | 72. | If the angle between | en a and b is $\pi/6$, the | en angle | between $2a$ and $3b$ is | | | | | | | (A) π/3 | | (B) | $\pi/2$ | | | | | | | (C) π/6 | | (D) | None of these | | | | | | 73. | | and B are given $\vec{B} \cdot i = 2$ then $ \vec{OB} - 4\vec{B} $ | | curve $y = 2^{(x+2)}$ being such that | | | | | | | (A) 100 | | (B) | 10 | | | | | | | (C) √10 | | (D) | None of these | | | | | | | | | | | | | | | | 74. | If - | $x^2 + 3x + 4 > 0$, then | | | |-----|------|--|-----------|---| | | (A) | -1 < x < 4 | (B) | x < -1 and $x > 4$ | | | (C) | $-1 \le x \le 4$ | (D) | $x \le -1$ or $x \ge 4$ | | 75. | | ordinary cube has 4 blank faces, one
probability of obtaining 12 in 5 throw | | arked 2 and another marked 3. Then | | | (A) | 5/1296 | (B) | 5/1944 | | | (C) | 5/2592 | (D) | None of these | | 76. | The | theory of 'Survival of the fittest' was | put for | th by | | | (A) | Lamarck | (B) | Darwin | | | (C) | De vries | (D) | Roentgen | | 77. | Bino | ominal nomenclature of scientific nam | es was | introduced by | | | (A) | Linnaeus | (B) | Rastogi | | | (C) | Darwin | (D) | Lamarck | | 78. | The | process used to kill bacteria in the m | ilk (to p | prevent spoiling of the milk) is called | | | (A) | fermentation | (B) | freezing | | | (C) | preservation | (D) | pasteurization | | 79. | The | December 2004 Tsunami was caused | by | | | | (A) | Global warming | (B) | Ozone hole | | | (C) | Earth quake | (D) | Hurricane | | 80. | Glol | bal warming will not cause | | | | | (A) | Rise in sea level | (B) | Extinction of some species | | | (C) | Change in weather | (D) | AIDS | | 81. | In t | he field of pollution control AS P stan | ds for | | | ٠, | (A) | Active scale prevention | (B) | Activated sludge process | | | (C) | Alternative sludge production | (D) | Ammonia stripping polarimetry | | 82. | In t | he field of environmental analysis. A | AS is th | e acronym for | | | (A) | Atomic absorption spectrometry | | | | | (B) | Advance atomization system | | | | | (C) | Advanced analytical spectroscopy | | | | | (D) | Alternative analytical solutions | | | | 83. | In a relation between two individuals, the individual which receives benefit at the expense of the other individual is called | | | | | | | | | |-----|---|-------------------|----------|------------------|----------|-----------------|-----------|-------------|--| | | (A) | host | (B) | parasite | (C) | predator | (D) | prey | | | 84. | Of t | he following, wh | nich ca | tegory of anima | ls face | highest possibi | lity of e | extinction? | | | | (A) | Threatened | (B) | Endangered | (C) | Vulnerable | (D) | Rare | | | 85. | Whi | ch one is a prov | en car | cinogen? | | | | | | | | (A) | DTB | (B) | TNT | (C) | DDT | (D) | NIT | | | 86. | Nan | ne the gas prese | nt in a | erated drinks li | ke sod | a water | | | | | | (A) | O_2 | (B) | H_2 | (C) | CO_2 | (D) | N_2 | | | 87. | Amo | ong the followin | g which | h is least damag | ging to | envirnment? | | | | | | (A) | Nuclear power | | | (B) | Hydroelectric | ity | | | | | (C) | Electricity fro | m coal | | (D) | | | | | | 88. | 8. Among the following which one is not a source of biomass energy | | | | | | | | | | | (A) | Municipal was | ste | | (B) | Coal | | | | | | (C) | Biogas | | | (D) | Agricultural | residu | es | | | 89. | Ana | erobic bacteria | are so | called because | | | | | | | | (A) | They can't sur | vive w | ithout free oxyg | en | | | | | | | (B) | They can't sur | vive w | ith free oxygen | | | | | | | | (C) | They can't sur | vive in | cold climate | | | | | | | | (D) | They can't rea | ct with | water | | | | | | | 90. | The | settling velocity | y of a p | ollutant particl | e in a l | iquid medium | will dep | end on | | | | (A) | Its chemical co | omposi | tion | (B) | Its density | | | | | | (C) | Its colour | | | (D) | None of the a | bove | | | | 91. | Whi | ch of the follow | ing 'pol | lutant' can caus | se eutr | ophication in a | water l | oody | | | | (A) | Mercury | (B) | Copper | (C) | Iron | (D) | Phosphorous | | | 92. | Whi | ch of the follow | ing is n | ot used for disi | nfection | n of water? | | | | | | (A) | Chlorine | | | (B) | Potassium, pe | ermang | anate | | | | (C) | Sodium chlori | de | | (D) | Iodine | | | | | 93. | . The substance responsible for the 'Minimata' disaster was | | | | | | | | | |---|--|------------------------------------|-------|-----------------|-----|----------------|--------|------------|--| | | (A) | Copper | (B) | Chromium | (C) | Mercury | (D) | Zinc | | | 94. Which of the following is a free-floating aquatic weed? | | | | | | | | | | | | (A) | Hydrilla vertici | llate | | (B) | Microcystis pe | rifyra | | | | | (C) | Salvinia molest | sa | | (D) | Ipomea aquati | ca | | | | 95. | 95. BOD level of a water sample is indicative of | | | | | | | | | | | (A) concentration of pathogens | | | | | | | | | | | (B) | 3) concentration of organic matter | | | | | | | | | | (C) | concentration of trace elements | | | | | | | | | | (D) concentration of facultative bacteria | | | | | | | | | | 96. | Ozo | Ozone hole is caused by | | | | | | | | | | (A) | CVC | (B) | BBC | (C) | CDC | (D) | CFC | | | 97. | Which one of the following gases in implicated with greenhouse effect | | | | | | | | | | | (A) | Chlorine | | | (B) | Fluorine | | | | | | (C) | CFC | | | (D) | Methane | | | | | 98. | Vehicular traffic introduces which of the following pollutant in the environment | | | | | | | | | | | (A) | E.Coli | (B) | Ozone | (C) | Lead | (D) | Heptachlor | | | 99. | Bho | hopal gas tragedy as caused by | | | | | | | | | | (A) | CFC | (B) | MIC | (C) | LIC | (D) | PVC | | | 100. | 0. Which of the following is a product of anaerobic digest on of biomass? | | | | | | | | | | | (A) | HCL | (B) | CH ₄ | (C) | N_2 | (D) | O_2 | | | | | | | | | | | | |