

ENTRANCE EXAMINATION FOR ADMISSION, MAY 2010. M.Tech. (ENVIRONMENTAL ENGINEERING AND MANAGEMENT) COURSE CODE: 393

Register Number:			
		Signatur (ı	re of the Invigilator vith date)

COURSE CODE: 393

Time: 2 Hours

Max: 400 Marks

Instructions to Candidates:

- Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

	1.		Of the following quantities, which one has dimensions different from the remaining three?								
		(A)	Energy per unit volume								
		(B)	B) Force per unit area								
		(C)	C) Product of voltage and charge per unit volume								
		(D)	Angular momentum per	unit mass							
2.	If the	If the unit of velocity and force are doubled then the units of Power will be									
		(A)	doubled	(H	3)	halved					
		(C)	quadrupled	(I))	remain unaffected					
	3.	and	From the top of the building a ball is thrown straight upwards with an initial speed and at the same time another ball is thrown straight downwards with the same initial speed. Neglecting air resistance, which one of the following statements in correct								
		(A)	Both balls hit lie groun	d at the same tin	ne						
		(B)	Both the balls in it the	ground with sam	e s	peed					
		(C)	(C) The ball thrown downwards hits the ground with larger speed								
		(D) The ball thrown upwards hits the ground with larger speed									
	4.	Whi	Which of the following is not an example of linear motion?								
		(A)	a hook at rest								
		(B)	a body in uniform circu	ılar motion							
		(C)	wheel rotating at unifo	rm speed on road	ł						
		(D)	a body rolling down an	inclined plane							
	5.	An i	insect crawls a distance ng east in 5 seconds. The	of 4 m along nort average velocity	h in of t	n 10 seconds and then the insect is	distance of 3 n				
		(A)	7/15 m/sec		(B)	1/5 m/sec					
		(C)	5/15 m/sec		(D)	12/15 m/sec					
	6.	An	nan in a lift will weigh m	ore when							
		(A)	the lift beings to go up								
		(B)	the lift is going up ste	adily							
		(C)	the live a slowing dow	n while ascendin	g						
		(D)	the lift is a cending f	reely							

7.	A cyclist turns around a cure at 15 miles per hour. If he turns at double the speed, the tendency to overturn is								
	(A)	doubled (B) quadrupled	(C)	halved	(D) unchanged				
8.	-	int mass m is placed at the origins at a point distant x from it is prop			ntial due to the point				
	(A)	x^0 (B) x^{-1}	(C)	x^{+1}	(D) x^{-2}				
9.	If yo	u float on your back on water, your	weight is	3					
	(A)	Zero							
	(B)	Equal to your normal weight							
	(C)	Half your normal weight							
	(D)	Greater than the weight of water	you displa	ace					
10.	A boy carries a fish in one hand and a bucket of water in the other. If he transfers the fish to the bucket of water, the total weight carried by him								
	(A)	Is less than before	(B)	Is more than	before				
	(C)	Is the same as before	(D)	Depends on the	he mode of travel				
11.	Streamline flow is more likely for liquids with								
	(A)	High density and low viscosity	(B)	Low density a	and high viscosity				
	(C)	High density and high viscosity	(D)	Low density a	and low viscosity				
12.	Вуі	ncreasing the temperature of a liqu	uid its						
	(A)	Volume and density decrease							
	(B)	Volume and density increase							
	(C)	Volume increases and density dec	creases						
	(D)	Volume decreases and density inc	creases						
13.	Whi	ich of the following is the smallest t	temperatu	are?					
	(A)	1°F (B) 1°R	(C)	1°K	(D) 1°C				

14.	A cold coke bottle is left open on the pan of a balance and its weight observed from time to time. The weight								m
	(A)	increases							
	(B)	decreases							
	(C)	increases, reac	hes a 1	maximum and t	hen sta	arts decreasing			
	(D)	remains station	nary						
15.	The	saturation vapor	ur pre	ssure of water a	at 100°	°C is			
	(A)	739 mm of mer	cury		(B)	750 mm of me	rcury		
	(C)	760 mm of me	rcury		(D)	772 mm of men	cury		
16.		normal temperater boil at a temperater			ater bo	oils at 100°C. D	eep d	own the min	e,
	(A)	100°C			(B)	greater than 10	00°C		
	(C)	less than 100°C	2		(D)	will not boil at	all		
17.	The	en a large bubble atmospheric pre ne lake is					3.5		
	(A)	H	(B)	2H	(C)	7H	(D)	8H	
18.	Int	he equation PV =	RT, V	V stands for the	volum	e of			
	(A)	any amount of	gas		(B)	one gram of ga	S		
	(C)	one gram mole	of ga	s	(D)	one litre of gas			
19.	A fl	ube of length L ar uid is flowing th , then the pressu	rough	this tube. If the	he pre	ssure difference			
	(A)	16 P/3	(B)	4 P/3	(C)	P	(D)	3 P/16	
20.		uid of density 'r' ocity 'v'. Reynold			owing	through a pipe o	of dian	neter 'd' with	a
	(A)	$R = 2rdv/\eta$	(B)	$R = rdv/\eta$	(C)	$R=\operatorname{rdv}/\eta^2$	(D)	$R = 2 \eta \text{rv/d}$	

21.	The	viscous force between two liquid layers is						
	(A)	Radial						
	(B)	Normal to the liquid surface						
	(C)	Tangential to the liquid surface						
	(D)	Neither purely tangential nor purely normal						
22.	Their heig in ti	re is a hole of area A at the bottom of a cylindrical vessel. Water is filled upto a $ht\ h$ and water flows out in t sec. If water is filled to a height $4\ h$, it will flow out me						
	(A)	t (B) 4t (C) 2t (D) t/4						
23.	at th	er is flowing through a tube of non-uniform cross-section. If the radius of the tube he entrance and exit is in the ratio 3: 2 then the ratio velocity of liquid entering leaving the tube is						
	(A)	8:27 (B) 4:9 (C) 1:1 (D) 9:4						
24.	Acco	ording to the kinetic theory of gases, which of the following statements is wrong?						
	(A)	All molecules of a gas are identical						
	(B)	Collisions between the molecules of a gas and that of the molecules with the walls of the containers are perfectly elastic						
	(C)	The molecules do not exert appreciable force on one another except during collision						
	(D)	The pressure exerted by a gas is due to the collisions between the molecules of the gas						
25.		all and a highly stretched spring are made of the same metal and have the same ss. They are heated so that the melt. The latent heat required						
	(A)	Is the same for both						
	(B)	Is greater for the ball						
	(C)	Is greater for the spring						
	(D)	May or may not he same depending on the metal						
26.		what extent must a given solution containing 40 mg AgNO ₃ per ml be diluted to d a solution containing 16 mg AgNO ₃ per mL?						
	(A)	To 1 mL solution add 1.5 mL of water						
	(B)	To 1 mL of solution 2.5 mL of water should be added						
	(C)	To 1.5 mL of solution 2 mL of water should be added						
	(D)	To 1.5 mL of solution 1.5 mL of water should be added						
		5 393						

27.	According to Raoult's law the relative lowering of vapour pressure of a solution of non-volatile substance is equal to?								
	(A)	Mole fraction of solute	(B)	Mole fraction of solvent					
	(C)	Weight percent of solute	(D)	Weight percent of solvent					
28.	Whi	ch of the following is not a colligative p	roper	ty?					
	(A)	Lowering of vapour pressure	(B)	Freezing point					
	(C)	Osmotic pressure	(D)	Elevation of poiling point					
29.	The	vant Hoff factor i for a 0.1 M Molal aq	ueous	solution of an ideal solute is?					
	(A)	0.1 (B) 1	(C)	0 (D) 0.2					
30.	In a	0.1 M solution of NaCl in water, which	n one	of the following will be closest to 0.1?					
	(A)	Mole-fraction of NaCl	(B)	Mole-fraction of water					
	(C)	Percent wt. of NaCl	(D)	Molality					
31.		The concentrations of two HCl solutions are 0.5 N and 0.1 N. The volumes of A and B required to prepare 2 liters of 0.2 N HCl will be [KCET 1993]							
	(A)	0.5 L of A + 1.5 L of B	(B)	1.5 L of A + 0.5 L of B					
	(C)	1.0 L of A + 1.0 L of B	(D)	$0.75~\mathrm{L}$ of A + $1.25~\mathrm{L}$ of B					
32.	The pressure under which liquid and vapour can co-exist in equilibrium is known as?								
	(A)	Normal vapour pressure	(B)	Saturated vapour pressure					
	(C)	Real vapour pressure	(D)	Limiting vapour pressure					
33.	The formula weight of $\mathrm{Al}_2(\mathrm{SO}_4)_3$ is 342. A solution containing 342 of $\mathrm{Al}_2(\mathrm{SO}_4)_3$ is								
	(A)	One litre of solution of one molar	(B)	One litre of solution of 2 molar					
	(C)	1000 gm of water in 3 normal	(D)	2 litre of solution in 3 molar					
34.	Tha	t colloidal particles carry charge is der	nonsti	rated by					
	(A)	Tyndall effect	(B)	Cataphoresis					
	(C)	Brownian Movement	(D)	Dialysis					
35.		the coagulation of positively charged commum coagulating power?	olloida	al solution which of the following has					
	(A)	SO ₄ ²⁻ (B) Cl ⁻	(C)	PO_4^{3-} (D) $[Fe(CN)_6]^{4-}$					

36.	Lyon	philic sols are more stable than lyo	phobic coll	loids because?
	(A)	Colloidal particles have positive	charge	
	(B)	Colloidal particles have negative	charge	
	(C)	Colloidal particles are solvated		
	(D)	There are strong electrostatic particles	repulsion	s between the negatively charged
37.	The	extent of adsorption of a gas on a	solid deper	nds on?
	(A)	Nature of gas	(B)	Pressure of gas
	(C)	Temperature of the system	(D)	All are correct
38.	Whe	en a reversible reaction is in equili	brium, opp	oosing forces?
	(A)	Stop acting	(B)	Are shifted to the right
	(C)	Are in constant operation	(D)	Go to one end
39.		Kc for the reaction $A + B \leftrightarrow C + D$ there is no change in volume the		ne mole of each of A and B are mixed moles of C formed is?
	(A)	0.50 (B) ·0.75	(C)	0.90 (D) 1.5
40.		the reaction $A + B \leftrightarrow AB$, if the ction will be?	concentr	ation of A is doubled, the rate of
	(A)	Doubled	(B)	Decreased to one half
	(C)	Remains unaffected	(D)	Increased to 4 times
41.		rate law for a reaction $A + B \rightarrow 1$ following statements is false?	Product is	rate = $K[A]^1[B]^2$. Then which one of
	(A)	If [B] is held constant while [A] fast] is double	d, the reaction will proceed twice as
	(B)	If [A] is held constant while [B] i	s reduced	to one quarter, the rate will be halved
	(C)	If [A] and [B] are both doubled, t	he reaction	n will proceed 8 times as fast
	(D)	This is a third order reaction		
42.				stage is a slow second order reaction. tion. The overall order of the reaction
	(A)	First order	(B)	Second order
	(C)	Third order	(D)	Zero order

43.	For	a reaction, $2A + B \leftrightarrow C + D$, $\frac{-d[A]}{dt} = k$	[A] ² [B]. The expression for $\frac{-d[B]}{dt}$ will be?			
	(A)	k[A] ² [B]	(B)	1/2 k[A ²][B]			
	(C)	k[A] ² [2B]	(D)	k[2A] ² [B]			
44.		rate of a reaction is doubled for every as a result of increase in temperature					
	(A)	112 (B) 512	(C)	400 (D) 256			
45.	Effic	ciency of a catalyst depends on its					
	(A)	Particle size	(B)	Solubility			
	(C)	Molecular weight	(D)	None			
46.	6. The rate of a certain biochemical reaction when enzyme catalysed in the human body is 10 ⁴ times faster than when it carried out in the laboratory. The activation energy of this reaction						
	(A)	Is zero					
	(B)	Is different in two eases					
	(C)	Is the same in both the cases					
	(D)	Can only he determined if temperatu	re of t	he reaction is known			
47.	For	a spontaneous process					
	(A)	G increases	(B)	G decreases			
	(C)	S decreases	(D)	S = 0			
48.	In a	galvanic cell					
	(A)	Chemical energy is converted into ele	ectrici	ty			
	(B)	Chemical energy is converted into he	eat				
	(C)	Electrical energy is converted into ch	emica	l energy			
	(D)	Electrical energy is converted into he	eat				
49.		pH of a solution is 5.0. To this solution.	n suffi	cient acid is added to decrease the pH			
	(A)	Increases 1000 times	(B)	Decreases 1000 times			
	(C)	Increases 100 times	(D)	Decreases 100 times			

50.	If the solubility of $\operatorname{Ca}(\operatorname{OH}_2)$ is $\sqrt{3}$, what will be the solubility product?									
	(A)	3	(B)	27		(C)	$\sqrt{3}$	(D)	$12\sqrt{3}$	
51.		ne heat conduction a liquid heated							ume, are	filled
	(A)	The spherical v	essel			(B)	The cylindric	al vesse	1	
	(C)	The rectangula	r vess	el		(D)	The ellipsoid	al vessel		
52.	The	indefinite integr	al of a	dx is						
	(A)	x	(B)	x^2		(C)	$\frac{x^2}{2}$	(D)	$\frac{x^2}{2} + c$	
53.		ee is broken by v of the tree and r is			_					
	(A)	15 metres				(B)	20 metres			
	(C)	$10(1+\sqrt{2})$ metr	es.			(D)	$10(1+\sqrt{3}/2)$	metres		
54.	The	value of $\frac{i^{592} + i^{5}}{i^{582} + i^{5}}$	$\frac{90}{80} + i^{58}$	$i^{8} + i^{586}$ $i^{8} + i^{576}$	$\frac{+i^{584}}{+i^{574}}$ -1	=				
	(A)	-1	(B)	-2		(C)	-3	(D)	-4	
55.	The	triangle joining	the po	ints (2,	7), (4, -1	0), (-2	2, 6) is			
	(A)	equilateral				(B)	right angled			
	(C)	isosceles				(D)	none of these			
56.	The	distance between	n the l	ines 32	c + 4y = 9	, and	6x + 8y = 15 is	i		
	(A)	3/2				(B)	3/10			
	(C)	6				(D)	None of these	е		
57.	Loci	us of a point such	that	the rati	o of its di	stanc	es from two fix	ed point	s is const	ant is
	(A)	a circle				(B)	a straight lin	ie		
	(C)	an ellipse				(D)	none of these	е		
58.	lim-	$\{(1-\cos 2x)/x\}$ is								
	(A)	0	(B)	1		(C)	2	(D)	4	

- 59. Let $f(x) = \frac{x(1+a\cos x) b\sin x}{x^3}$, $x \neq 0$, f(0) = 1. If f(x) is continuous at x = 0, then a and b are
 - (A) 5/2, 3/2

(B) -5, -3

(C) -5/2, -3/2

(D) None of these

- 60. The value of $\frac{d}{dx}(x^x)$ is
 - (A) xxxx-1

(B) $x^x \log ex$

(C) $x^x \log x$

- (D) None of these
- 61. If $x = \sin \theta \sqrt{(\cos 2\theta)}$, $y = \cos \theta \sqrt{(\sin 2\theta)}$, then dy/dx at $\theta = \pi/4$ is
 - (A) 1
- (B) -1
- (C) 0
- (D) Not exist

- 62. If $\Delta_1 = \begin{vmatrix} x & a & a \\ b & x & a \\ b & b & x \end{vmatrix}$ and $\Delta_2 = \begin{vmatrix} x & a \\ b & x \end{vmatrix}$, then
 - (A) $\frac{d}{dx}\Delta_1 = \Delta_2$

(B) $\frac{d}{dx}\Delta_1 = 3\Delta_2$

(C) $\frac{d}{dx}\Delta_2 = \Delta_1 - \Delta_2$

- (D) None of these
- 63. The derivative of $\sin^{-1} x$ w.r.t. $\cos^{-1} \sqrt{(1-x^2)}$ is
 - (A) $1/\sqrt{[(1-x^2)]}$

(B) $\cos^{-1} x$

(C) 1

- (D) None of these
- 64. If u = f(y-z, z-x, x-y) then $\partial u/\partial x + \partial u/\partial y + \partial u/\partial z =$
 - (A) 3

(B) 0

(C) $\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z}$

- (D) None of these
- 65. If $u = (x^{1/4} + y^{1/4})/(x^{1/6} + y^{1/6})$ and $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = ku$, then $k = \frac{1}{2} \left(\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} \right)$
 - (A) 1/4
- (B) 1/12
- (C) 1/24
- (D) 1/6

66.	The maximum possible area that can be enclosed by a wire of length 20 cm by bending it into the form of a sector in square cm is							
	(A) 10		(B)	25				
	(C) 30		(D)	None of these				
67.	_			s in metres is a function of time t in c are constants. It is known that at				
		position of the particular, The value of a, b		en by $s = 7$ m, velocity is 7 m/s and				
	(A) -3, 2, 7		(B)	3, -2, 5				
	(C) 3, 2, 1		(D)	None of these				
68.	$\int x^2 e^{2x} dx =$							
	(A) $e^{2x}[2x^2 - 2x +$	·1]+c	(B)	$\frac{1}{2}e^{2x}[2x^2-2x+1]+c$				
	(C) $\frac{1}{4}e^{2x}[2x^2+2x$	-1]+c	(D)	None of these				
69.	The area enclosed l	by the curve $y^2 = 4x$	and the	line $y = x$ is				
	(A) 2/3	(B) 4/3	(C)	1/2 (D) 8/3				
70.	Solution of the diff.	eqn. $\frac{dy}{dx} + \frac{3x + 2y - 5}{2x + 3y - 5}$	= 0 is					
	(A) $3x^2 + 4xy + 3y$	$y^2 - 10x - 10y = c$	(B)	$x^2 + 4xy - y^2 - 4x + 6y = c$				
	(C) $(x+2y)^2+3y$	=c	(D)	none of these				
71.	The vector $ax(bxa)$	is						
	(A) perpendicular	r to a	(B)	perpendicular to b				
	(C) null vector			perpendicular to both a and b				
72.	If the angle between	en a and b is $\pi/6$, the	en angle	between $2a$ and $3b$ is				
	(A) π/3		(B)	$\pi/2$				
	(C) π/6		(D)	None of these				
73.		and B are given $\vec{B} \cdot i = 2$ then $ \vec{OB} - 4\vec{B} $		curve $y = 2^{(x+2)}$ being such that				
	(A) 100		(B)	10				
	(C) √10		(D)	None of these				

74.	If -	$x^2 + 3x + 4 > 0$, then		
	(A)	-1 < x < 4	(B)	x < -1 and $x > 4$
	(C)	$-1 \le x \le 4$	(D)	$x \le -1$ or $x \ge 4$
75.		ordinary cube has 4 blank faces, one probability of obtaining 12 in 5 throw		arked 2 and another marked 3. Then
	(A)	5/1296	(B)	5/1944
	(C)	5/2592	(D)	None of these
76.	The	theory of 'Survival of the fittest' was	put for	th by
	(A)	Lamarck	(B)	Darwin
	(C)	De vries	(D)	Roentgen
77.	Bino	ominal nomenclature of scientific nam	es was	introduced by
	(A)	Linnaeus	(B)	Rastogi
	(C)	Darwin	(D)	Lamarck
78.	The	process used to kill bacteria in the m	ilk (to p	prevent spoiling of the milk) is called
	(A)	fermentation	(B)	freezing
	(C)	preservation	(D)	pasteurization
79.	The	December 2004 Tsunami was caused	by	
	(A)	Global warming	(B)	Ozone hole
	(C)	Earth quake	(D)	Hurricane
80.	Glol	bal warming will not cause		
	(A)	Rise in sea level	(B)	Extinction of some species
	(C)	Change in weather	(D)	AIDS
81.	In t	he field of pollution control AS P stan	ds for	
٠,	(A)	Active scale prevention	(B)	Activated sludge process
	(C)	Alternative sludge production	(D)	Ammonia stripping polarimetry
82.	In t	he field of environmental analysis. A	AS is th	e acronym for
	(A)	Atomic absorption spectrometry		
	(B)	Advance atomization system		
	(C)	Advanced analytical spectroscopy		
	(D)	Alternative analytical solutions		

83.	In a relation between two individuals, the individual which receives benefit at the expense of the other individual is called								
	(A)	host	(B)	parasite	(C)	predator	(D)	prey	
84.	Of t	he following, wh	nich ca	tegory of anima	ls face	highest possibi	lity of e	extinction?	
	(A)	Threatened	(B)	Endangered	(C)	Vulnerable	(D)	Rare	
85.	Whi	ch one is a prov	en car	cinogen?					
	(A)	DTB	(B)	TNT	(C)	DDT	(D)	NIT	
86.	Nan	ne the gas prese	nt in a	erated drinks li	ke sod	a water			
	(A)	O_2	(B)	H_2	(C)	CO_2	(D)	N_2	
87.	Amo	ong the followin	g which	h is least damag	ging to	envirnment?			
	(A)	Nuclear power			(B)	Hydroelectric	ity		
	(C)	Electricity fro	m coal		(D)				
88.	8. Among the following which one is not a source of biomass energy								
	(A)	Municipal was	ste		(B)	Coal			
	(C)	Biogas			(D)	Agricultural	residu	es	
89.	Ana	erobic bacteria	are so	called because					
	(A)	They can't sur	vive w	ithout free oxyg	en				
	(B)	They can't sur	vive w	ith free oxygen					
	(C)	They can't sur	vive in	cold climate					
	(D)	They can't rea	ct with	water					
90.	The	settling velocity	y of a p	ollutant particl	e in a l	iquid medium	will dep	end on	
	(A)	Its chemical co	omposi	tion	(B)	Its density			
	(C)	Its colour			(D)	None of the a	bove		
91.	Whi	ch of the follow	ing 'pol	lutant' can caus	se eutr	ophication in a	water l	oody	
	(A)	Mercury	(B)	Copper	(C)	Iron	(D)	Phosphorous	
92.	Whi	ch of the follow	ing is n	ot used for disi	nfection	n of water?			
	(A)	Chlorine			(B)	Potassium, pe	ermang	anate	
	(C)	Sodium chlori	de		(D)	Iodine			

93.	. The substance responsible for the 'Minimata' disaster was								
	(A)	Copper	(B)	Chromium	(C)	Mercury	(D)	Zinc	
94. Which of the following is a free-floating aquatic weed?									
	(A)	Hydrilla vertici	llate		(B)	Microcystis pe	rifyra		
	(C)	Salvinia molest	sa		(D)	Ipomea aquati	ca		
95.	95. BOD level of a water sample is indicative of								
	(A) concentration of pathogens								
	(B)	3) concentration of organic matter							
	(C)	concentration of trace elements							
	(D) concentration of facultative bacteria								
96.	Ozo	Ozone hole is caused by							
	(A)	CVC	(B)	BBC	(C)	CDC	(D)	CFC	
97.	Which one of the following gases in implicated with greenhouse effect								
	(A)	Chlorine			(B)	Fluorine			
	(C)	CFC			(D)	Methane			
98.	Vehicular traffic introduces which of the following pollutant in the environment								
	(A)	E.Coli	(B)	Ozone	(C)	Lead	(D)	Heptachlor	
99.	Bho	hopal gas tragedy as caused by							
	(A)	CFC	(B)	MIC	(C)	LIC	(D)	PVC	
100.	0. Which of the following is a product of anaerobic digest on of biomass?								
	(A)	HCL	(B)	CH ₄	(C)	N_2	(D)	O_2	