Mitech

ENTRANCE EXAMINATION FOR ADMISSION, MAY 2011. M.Tech. (ENVIRONMENTAL ENGINEERING MANAGEMENT) COURSE CODE: 393

Register Number:	
	Signature of the Invigilator (with date)
	(com date)

COURSE CODE: 393

Time: 2 Hours Max: 400 Marks

Instructions to Candidates:

- Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET <u>using HB pencil</u>.
- 4. Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- Do not open the question paper until the start signal is given.
- Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	If in	n a triangle <i>AB</i>	C, cos A	$A/a = \cos B$	$a/b = \cos C/c$	c, then the tria	ngle is		
	(A)	Right angled			(B)	Obtuse angles	S		
	(C)	Equilateral			(D)	Isosceles			
2.	dist com	ance of 100 m	t from the san	its base is	45°. If th	nplete vertical e angle of eleva nen the height o	ation o	of the top o	of the
	(A)	$50\sqrt{2}$ mt.			(B)	100 mt			
	(C)	100 $(\sqrt{3} - 1)$ r	nt		(D)	100 $(\sqrt{3} + 1)$ n	nt		
3.	If 3	+(a+ib) = 5 +	8 <i>i</i> , the	n					
	(A)	a = 5			(B)	<i>b</i> = 8			
	(C)	a=2,b=8			(D)	a = 8, b = 2			
4.		point (1,1), (-1 ngle is	,-1) and	$\frac{1}{2} \left(-\sqrt{3}, \sqrt{3}\right)$) are the a	ingular points o	f a tri	angle, ther	ı the
	(A)	Right angled			(B)	Isosceles			
	(C)	Equilateral			(D)	None of these			
5.		d Q are the po Then the mid-p			ining A (-2	, 5) and B (3,1)	such	that $AP = I$	⁰ Q =
	(A)	(1/2, 3)	(B)	(-1/2, 4)	(C)	(2,3)	(D)	(-1,4)	
6.	The	distance betwee	en the p	parallel line	es y = 2x + 4	4 and 6x = 3y + 5	5 is		
	(A)	$17/\sqrt{3}$			(B)	1			
	(C)	$3/\sqrt{5}$			(D)	$17\sqrt{5}/\!15$			
7.		uare inscribed i				+ 3 = 0. Its sid	es are	parallel to	the
	(A)	$\left(1+\sqrt{2},-2\right)$			(B)	$\left(1-\sqrt{2},-2\right)$			
	(C)	$(1, -2 + \sqrt{2})$			(D)	None of these			
8.	If $\lim_{x\to a}$	$\frac{1}{a} = \frac{a^x - x^a}{x^x - a^a} = -$	1, then	a is equal	to				
	(A)	1	(B)	0	(C)	e	(D)	None of th	ese

1.	If i	n a triangle <i>AB</i>	C, cos	$A/a = \cos A$	B/b =	cos C	/c, then the tris	ingle is	
	(A)	Right angled				(B)	Obtuse angle	es	
	(C)	Equilateral				(D)	Isosceles		
2.	dist com	ance of 100 m	t from the sar	its base i	s 45°.	If th	mplete vertical ne angle of elev hen the height	ation of th	ne top of the
	(A)	$50\sqrt{2}$ mt.				(B)	100 mt		
	(C)	100 $(\sqrt{3} - 1)$ r	nt			(D)	100 $(\sqrt{3} + 1)$	mt	
3.	If 3	+ (a + ib) = 5 +	8 <i>i</i> , the	n					
	(A)	a = 5		a 1, a 1		(B)	b = 8		
	(C)	a = 2, b = 8				(D)	a = 8, b = 2		
4.		point (1,1), (-1 ngle is	,-1) an	d (-√3, √	3) are	the a	angular points	of a triang	le, then the
	(A)	Right angled				(B)	Isosceles		
	(C)	Equilateral				(D)	None of these		
5.		d Q are the po			oining	A (-2	2, 5) and B (3,1)	such that	AP = PQ =
	(A)	(1/2, 3)	(B)	(-1/2, 4)		(C)	(2,3)	(D) (-1	1,4)
6.	The	distance betwe	en the	parallel lir	nes y =	2x +	4 and 6x = 3y +	5 is	
	(A)	$17/\sqrt{3}$				(B)	1		
	(C)	$3/\sqrt{5}$				(D)	$17\sqrt{5}/15$		
7.		uare inscribed linate axes. Th					+ 3 = 0. Its sid	des are par	allel to the
	(A)	$(1+\sqrt{2},-2)$				(B)	$(1-\sqrt{2},-2)$		
	(C)	$\left(1,-2+\sqrt{2}\right)$				(D)	None of these		
8.	If $\lim_{x\to a}$	$a_{\alpha} = \frac{a^x - x^a}{x^x - a^a} = -$	1, ther	a is equal	l to				
	(A)	1	(B)	0		(C)	e	(D) No.	ne of these
393					2				

16.	For	the curve $y = 2x + 3x^{2/3}$		
	(A)	max. at $x = -1$, min. at $x = 0$	(B)	max. at $x = -1$, and neither at $x = 0$
	(C)	min. at $x = -1$	(D)	none of these
17.		e distance s in metres described by a p acceleration of the particle at time t is		e in t seconds is given by $s = ae^{t} + be^{-t}$.
	(A)	8	(B)	as
	(C)	-bs	(D)	None of these
18.	mov	maximum height is reached in 3 sec ving under the equation $s=u$ t - 4.9 t^2 , on u =		
	(A)	58.8 m/s	(B)	14.7 m/s
	(C)	29.4 m/s	(D)	None of these.
				*
19.	The	value of $\int e^x \sin e^x$ is		
	(A)	cos ex	(B)	-cos e ^x
	(C)	$(\cos e^x)^{-1}$	(D)	$\sin e^x$
20.	Area	a bounded by the curve $xy^2 = a^2(a-x)$ and	l y-ax	is is
	(A)	$\pi a^2/2$	(B)	$\pi \alpha^2$
	(C)	$3\pi\alpha^2$	(D)	$3\pi a^2/2$
21.	Solu	tion of the diff. eq. $\sin 2x (dy/dx) - y =$	tan x	is
	(A)	$y = \tan x + c \sqrt{(\tan x)}$	(B)	x - $y \sin x = c$
	(C)	$xy \tan x = c$	(D)	None of these
22.	The a is	point with position vectors 10i + 3j, 12	i-5j aı	nd ai+11j are collinear if the value of
	(A)	- 8	(B)	4
	(C)	8	(D)	12
23.	If θ	be the angle between the vectors 4(i-k)	and i	$+j+k$, then θ is
	(A)	$\pi/4$	(B)	$\pi/3$
	(C)	$\pi/2$		$\cos^{2}\left(1\sqrt{3}\right)$
	101		1	

24.	Th	e set of values for which	$h x^3 + 1 \ge x$	$x^2 + x$ is					
	(A)	<i>x</i> ≤0		(B)	$x \ge 0$			
	(C)	$x \ge -1$		()	D)	$-1 \le x \le 1$			
25.	The	e smallest value of x^2 –	-3x + 3 in t	he interv	al ((-3, 3/2) is			
	(A)	3/4		()	B)	5			
	(C)	- 15		(1	D)	- 20			
26.	ML	² T ^{.2} represents							
	(A)			(I	B)	Acceleration	n		
	(C)	Force		(I	D).	Momentun	1		
27.		bodies of different m							eights o
	(A)	a : b		(H	3)	m_a/m_b : b/a			
	(C)	$\sqrt{(a)}$: $\sqrt{(b)}$		(I	0)	$a^2:b^2$			
28.		coordinates of a movined of the particle at tin			me	t are given	by x = c	t² and y =	bt², the
	(A)	2t(c+b)		(E	3)	$\sqrt{\left(c^2+b^2\right)}$			
	(C)	$2t\sqrt{\left(c^2+b^2\right)}$		(I))	$2t\sqrt{(c^2-b^2)}$	j		
29.	decr	velocity of a body in eases until it comes ined is							
	(A)	straight line		(B	3)	circle			
	(C)	trapezium		(D))	square			
30.		clist taking a turn hea wn outwards. The rea		s while a	ca	r passenger	taking	the same	turn is
	(A)	That car is heavier th	nan cycle						
	(B)	That car has four wh	eels, while	the cycle	ha	s only two			
	(C)	That cyclist has to co	ounteract tl	he centrif	fug	al force, wh	ile the p	assenger	is only
	(D)	The difference in the	speed of tw	70					

31.		fan is rotating at 1200 r.p.m.		neasured from the axis of rotation. I ion of a point on the tip of the blade i
	(A)	1600 meter per sec ²	(B)	4740 meter sec ²
	(C)	2370 meter per sec ²	(D)	5055 meter per sec ²
32.	The		tion to go out	from the earth's gravitational pull is
	(A)	Terminal velocity	(B)	Escape velocity
	(C)	Angular velocity	(D)	Orbital velocity
33.				ats 40 gm. wt. in air and 20 gm. wt. in gm/cm ³ then volume of the cavity is
	(A)	Zero	(B)	15 cm ³
	(C)	5 cm ³	(D)	20 cm ³
34.	but		r times that in	and contain water to the same height, in B. The ratio of the liquid thrust at
	(A)	4:1	(B)	2:1
	(C)	1:1	(D)	16:1
35.	Visc	osity is the property of liquids	by virtue of w	hich
	(A)	Liquid oppose the relative m	otion of its par	rts
	(B)	Liquid pushes neighbouring	molecules	
	(C)	Liquid attracts other molecu	les	
	(D)	Liquid becomes conducting		
36.		n ideal gas of density d, the p ortional to	ressure exerte	d at a temperature T is P. Then P is
	(A)	d	(B)	d-1/2
	(C)	d ⁰	(D)	$d^{\cdot 2}$
37.	Five	liters of benzene weigh		
	(A)	More in summer than in win	ter (B)	More in winter than in summer
	(C)	Equal in winter and summer	(D)	None of the above

38.	imr		readin	gs of	al intervals of 80° and 120°. When 20° and 30°. If y measures the
	(A)	55°		(B)	65°
	(C)	75°		(D)	80°
39.	Wh	ich of the following produces mor	e sever	e bur	rns?
	(A)	Boiling water		(B)	Steam
	(C)	Hot air		(D)	Sun rays
40.	Hea	t required to convert 1 gm of ice	at 0°C	into s	steam at 100°C is
	(A)	100 cal		(B)	716 cal
	(C)	0.01 kilo calorie		(D)	1 kilo-calorie
41.	It is	difficult to cook at high altitude	, becaus	se	
	(A)	there is less oxygen in the air			
	(B)	due to fall in temperature, one	has to	give r	nore heat
	(C)	due to decrease in atmospheric	pressu	re, th	e boiling point of water decreases
	(D)	of high moisture content at high	her alti	tudes	3
42.	The	factor not need to calculate heat	lost or	gaine	ed when there is a change of state is
	(A)	Weight		(B)	Latent heat
	(C)	Nature of the substance		(D)	Temperature change
43.	Whe	n a soluble impurity is added to	a liquid	l, the	freezing point of the liquid
	(A)	remains unchanged		(B)	rises
	(C)	falls		(D)	may rise or fall
44.	volu	me of fluid flowing through the	tube is	16 c	I to a pressure head of height h, then m^3 . If a tube of length l and radius
	$\frac{a}{\sqrt{2}}$	is connected to the same press	ure he	ad, th	hen the volume of the fluid flowing
		ugh this tube is			
	(A)	16 cm^3 (B) 4 cm^3		(C)	1 cm ³ (D) 8 cm ³
45.	The	flow of fluid is laminar or stream	line is	deter	mined by
	(A)	Rate of flow of fluid		(B)	Density of fluid
	(C)	Radius of tube		(D)	Coefficient of viscosity of liquid

46.		ter is flowing through a horizontal pip he pipe	e in st	tream line flow.	At the na	arrowest part				
	(A)	(A) Velocity is maximum is maximum and pressure is minimum								
	(B) Pressure is maximum and velocity is minimum									
	(C)	Both the pressure and velocity are n	naxim	um						
	(D)	Both the velocity and pressure are n	ninim	um						
17.		terminal speed of a rain drop of radio iscosity of air is 18 × 10.5 poise, then the				ne coefficient				
	(A)	101.73 × 10 ⁻⁴ dyne	(B)	101.73×10^{-5}	dyne					
	(C)	16.59×10^{-5} dyne	(D)	$16.95 \times 10^{-4} d$	yne					
48.	thar	all rise to surface at a constant velocit in that of the material of the ball. Th ing ball and its weight is	-	-						
	(A)	3:1 (B) 4:1	(C)	1:3	(D) 1	: 4				
49.	The	kinetic theory of gases assumes that t	he mo	lecules of a give	en gas are					
	(A)	All identical								
	(B)	All different		12						
	(C)	Some identical with each other but d	iffere	nt from others						
	(D)	Exactly 50% identical								
50.	secon	entainer A has an ideal gas at a pro- nd container B has the same gas at The ratio of the mass of gas in A and	press							
	(A)	1:1 (B) 1:2	(C)	1:4	(D) 1	: 8				
51.	BOD	level of a water sample is indicative	of							
	(A)	concentration of pathogens								
	(B)	concentration of organic matter								
	(C)	concentration of trace elements								
	(D)	concentration of facultative bacteria								
52.	The I	December 2004 Tsunami was caused b	у							
	(A)	Global warming	(B)	Ozone hole						
	(C)	Earth quake	(D)	Hurricane						

53.	The	theory of 'Survival of the fittest' was p	out for	th by
	(A)	Lamarck	(B)	Darwin
	(C)	De vries	(D)	Roentgen
54.	Bine	ominal nomenclature of scientific name	es was	introduced by
	(A)	Linnaeus	(B)	Rastogi
	(C)	Darwin	(D)	Lamarck
55.	Glob	oal warming will not cause		
	(A)	Rise in sea level	(B)	Extinction of some species
	(C)	Change in weather	(D)	AIDS
56.	In th	he field of pollution control ASP stands	s for	
	(A)	Active scale prevention	(B)	Activated sludge process
	(C)	Alternative sludge production	(D)	Ammonia stripping polarimetry
57.	The	process used to kill bacteria in the mi	lk (to p	prevent spoiling of the milk) is called
	(A)	fermentation .	(B)	freezing
	(C)	preservation	(D)	pasteurization
58.	In th	he field of environmental analysis, AA	S is th	e acronym for
	(A)	Atomic absorption spectrometry	(B)	Advance atomization system
	(C)	Advanced analytical spectroscopy	(D)	Alternative analytical solutions
59.	In a	relation between two individuals, thense of the other individual is called	ne ind	ividual which receives benefit at the
	(A)	host	(B)	parasite
	(C)	predator	(D)	prey
60.	Of t	he following, which category of animal	s face	highest possibility of extinction?
	(A)	Threatened	(B)	Endangered
	(C)	Vulnerable	(D)	Rare
61.	Whi	ch one is a proven carcinogen?		
	(A)	DTB	(B)	TNT
	(C)	DDT	(D)	NIT

62.	Nar	ne the gas present in aerated drinks li	ke sod	a water
02.	(A)	O ₂	(B)	H_2
	(C)	CO ₂	(D)	N_2
CO.	000.000	ong the following which is least damag	ing to	environment?
63.			(B)	Hydroelectricity
	(A)	Nuclear power		
	(C)	Electricity from coal	(D)	Hydrogen energy
64.	Amo	ong the following which one is not a so	urce of	f biomass energy
	(A)	Municipal waste	(B)	Coal
	(C)	Biogas	(D)	Agricultural residues
65.	Ana	erobic bacteria are so called because		
	(A)	They can't survive without free oxyge	en	
	(B)	They can't survive with free oxygen		
	(C)	They can't survive in cold climate		
	(D)	They can't react with water		
66.	The	settling velocity of a pollutant particle	inal	iquid medium will depend on
	(A)	Its chemical composition	(B)	Its density
	(C)	Its colour	(D)	None of the above
67.	Whi	ch of the following 'pollutant' can caus	e eutr	ophication in a water body?
	(A)	Mercury	(B)	Copper
	(C)	Iron	(D)	Phosphorous
68.	Whi	ch of the following is not used for disir	fection	n of water?
	(A)	Chlorine	(B)	Potassium permanganate
	(C)	Sodium chloride	(D)	Iodine
69.	The	substance responsible for the 'Minima	ta' dis	aster was
09.	(A)	Copper	(B)	Chromium
	07	Mercury	(D)	Zinc
	(C)	Wercury	(2)	
70.	Whi	ch of the following is a free-floating aq	uatic v	
	(A)	Hydrilla verticillate	(B)	Microcystis perifyra
	(C)	Salvinia molestsa	(D)	Ipomea aquatica

71.	Wh	ich of the following is a product of ana	erobio	e digestion of biomass?
	(A)	HCL	(B)	CH ₄
	(C)	N ₂	(D)	O ₂
72.	Ozo	one hole is caused by		
	(A)	CVC	(B)	BBC
	(C)	CDC	(D)	CFC
73.	Wh	ich one of the following gases in implic	ated v	with greenhouse effect?
	(A)	Chlorine	(B)	Fluorine
	(C)	CFC	(D)	Methane
74.	Veh	icular traffic introduces which of the f	ollowi	ng pollutant in the environment
	(A)	E. Coli	(B)	Ozone
	(C)	Lead	(D)	Heptachlor
75.	Bho	pal gas tragedy was caused by		
	(A)	CFC	(B)	MIC
	(C)	LIC	(D)	PVC
76.		nL of N/2 HCL, 30 mL of N/10 HN nality of resulting solution is	O ₃ , 75	5 mL of N/5 H_2SO_4 are mixed. The
	(A)	0.4 N	(B)	0.1 N
	(C)	0.5 N	(D)	0.2 N
77.	Osm	otic pressure of solution is		
	(A)	Directly proportional to pressure		
	(B)	Directly proportional to the concentra	ation (of solute
	(C)	Inversely proportional to concentration	on of s	solute
	(D)	Directly proportional to concentration	n of so	lvent
78.	Solul	bility of solutes which dissolve with th	e libe	ration of heat decreases with
	(A)	Decrease in temperature	(B)	Increase in temperature
	(C)	No change in temperature	(D)	None

19.	1116	congative properties depend on		
	(A)	Relative number of solute molecule solvent.	s irres	spective of the nature of solute and the
	(B)	Relative number of solute molecules	s in sol	lution and nature of solvent.
	(C)	Relative number of solute molecules	s and t	he nature of solute and solvent.
	(D)	Relative number of solvent molecule	es.	
80.		he coagulation of –vely charged arsen the minimum coagulating power?	ious su	alphide solution, which of the following
	(A)	PO_2 3-	(B)	SO ₄ ² -
	(C)	Na ⁺	(D)	SO ₃ ² -
81.	For		(g) + 1	14.6 k. Cals, increase of temperature
	(A)	Favour the formation of N ₂ O ₄	(B)	Favour the decomposition of N_2O_4
	(C)	Not affect the equilibrium	(D)	Stop the reaction
82.		versible reaction $H_2 + Cl_2 \leftrightarrow 2HCL$ ition is carried out in two litre flak, the		ied out in one litre flask. If the same ibrium constant will be
	(A)	Doubled	(B)	Decreased
	(C)	Halved	(D)	Same
83.	In wl	hich of the following case will the leas	st time	be required to arrive at equilibrium?
	(A)	Kc is very small	(B)	Kc is nearly one
	(C)	Kc is very large	(D)	Difficult to predict
84.	Ice ←	→ water is at equilibrium. What hap	pens if	pressure is applied?
	(A) .	Water changes to vapour	(B)	Large amount of ice forms
	(C)	No change	(D)	Large amount of water forms
85.	reacta	a certain decomposition, the rate is (ant is 0.20 M. If the reaction is sometiment of the state of the contraction is increased 3-fold is		
	(A)	0.30	(B)	0.90
	(C)	0.60	(D)	2.70
393		12		

86.	A 10° rise in temperature doubles the rate of reaction. This is because more molecules obtain					
	(A)	Activation energy	(B)	A catalyst		
	(C)	A new reaction path	(D)	The rate-determining step		
87.		In the reaction $X+Y \rightarrow XY$, if the concentration of X and Y are doubled, the rate of reaction will				
	(A)	Increase four times	(B)	Increase two times		
	(C)	Decrease two times	(D)	Decrease to one half		
88.	What is the half life of a radioactive substance if 75% of any given amount of the substance disintegrates in 60 minutes?					
	(A)	2 hours	(B)	30 minutes		
	(C)	45 minutes	(D)	20 minutes		
89.	The	value of activation energy of a chemica	al read	ction is primarily determined by		
	(A)	Nature of reacting species				
	(B)	Temperature				
	(C)	Concentration of species				
	(D) Number of collisions per unit time or collision frequency					
90.	Unit of rate constant depends on					
	(A)	Order of reaction	(B)	Molecularity of the reaction		
	(C)	Concentrations terms	(D)	Number of reactants		
91.	The number of atoms or molecules whose concentration alters during a chemical change is its					
	(A)	Molecularity	(B)	Order of reaction		
	(C)	Change in reaction	(D)	None		
92.	Consider the reaction $2A + B \rightarrow C + D$. If the concentrations of the reactants are increased by three times, the rate of the reaction will increase by					
	(A)	9 times	(B)	81 times		
15.0	(C)	64 times	(D)	27 times		
93.	A finely divided state of catalyst in more efficient because in this state					
	(A)	Less active centers are formed	(B)	More surface area is available		
	(C)	More energy is stored in the catalyst	(D)	All are correct		

94.	In those reactions, where enthalpy value determination is difficult by experiments, in such cases, the enthalpy value can be calculated by						
	(A)	Kirchoff's equation	(B)	Hess's law			
	(C)	Henry's law	(D)	Clapeyron equation			
95.	An isolated system is one						
	(A) That can transfer neither matter nor energy to and from its surroundings						
	(B)	That can transfer both energy and n	natter				
	(C)	That can transfer matter only					
	(D)	That can transfer energy only					
96.	Entropy is a measure of disorder. For perfect crystalline substances at 0°K, it is said that entropy becomes						
	(A)	Minus	(B)	Zero			
	(C)	Constant	(D)	Very low			
97.	On dissolving NaCl in water there is						
	(A)	Increase in free energy	(B)	Increase in entropy			
	(C)	Decrease in entropy	(D)	No change in entropy			
98.	The pH value of 0.1 mole/litre HCL is approximately 1. The approximate pH value of 0.05 mole/litre $\rm H_2SO_4$ is most likely to be						
	(A)	0.05	(B)	2			
	(C)	0.5	(D)	1			
99.		degree of dissociation of acetic aci	id in	an aqueous solution of the acid is			
	(A)	Adding some NaCl	(B)	Adding a drop of conc. HCl			
	(C)	Diluting with water	(D)	Raising the temperature			
100.	Solubility of gases in liquids						
	(A)	(A) Increase with increase in temperature					
	(B) Decreases with increase in temperature						
	(C)	(C) Decreases with decrease in temperature					
	(D)	(D) Unaffected by in temperature					