

ENTRANCE EXAMINATION FOR ADMISSION, MAY 2010.

M.Tech. (GREEN ENERGY TECHNOLOGY)

COURSE CODE: 307

Register Number :		
	- <u>s</u>	Signature of the Invigilator (with date)
		(with date)

COURSE CODE: 307

Time: 2 Hours Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET <u>using HB pencil</u>.
- 4. Avoid blind guessing. A wrong answer will fetch you -1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	Whe	en one operates with d2/dx2 on the fun	ction 8	sin(2x), one finds that							
	(A)	the function is an eigen function with	th the	eigen value -32							
	(B)	the function is an eigen function with	th the	eigen value 4							
	(C)	the function is an eigen function with	th the	eigen value -4							
	(D)	the function is not an eigen function	1								
2.	The	reason for normalizing a wave functi	on Ψ i	s							
	(A)	to guarantee that Ψ is square-integ	rable								
	(B)	to make $\Psi^* \Psi$ equal to the probabil	ity dis	tribution of the particle							
	(C)	to make Ψ an eigenfunction of the $\mathbb R$	Hamilt	onian operator							
	(D)	to make Ψ display the proper symm	netry c	haracteristics							
3.	The	integral $\int \sin(x) \cos(x) dx$ in the inter-	val –a	to +a							
	(A)	is zero for any value of a and cos(x)	is anti	symmetric in this range							
	(B)	is not zero except for certain values of a and cos(x) is symmetric in this range									
	(C)	is zero for any value of a and cos(x)	is sym	metric in this range							
	(D)	is zero for any value of a and sin(x)	is sym	metric in this range							
4.	The energy gap between the n and n+1 level in the particle in a sphere										
	(A)	increase with increasing in n	(B)	decrease with increasing in n							
	(C)	independent of the value of n	(D)	goes to negative							
5.	The	energy of the particle in a box is inde	epende	nt of							
	(A)	length of the box	(B)	potential energy barrier of the box							
	(C)	mass of the particle	(D)	width of the box							
6.	The	energy of hydrogen atom is a functio	n of								
	(A)	primary quantum number n	(B)	azimuthal quantum number l							
	(C)	magnetic quantum number m	(D)	all of the above							
7.	The	equation $(x^2/a^2) - (y^2/b^2) = 1$ describe	s a								
	(A)	straight line (B) circle	(C)	parabola (D) hyperbola							

8.	If three Persons A, B and C toss a coin in the same order repeatedly till somebody gets a head, what is the probability of A getting the head?									
	(A)			(C)		(D) 4/7				
9.	In th	ne differential equatio	n 3(d²y/dx²) + (d	y/dx)3	= x, the degree	e and order is				
			1, 2		2, 1	(D) 3, 2				
10.	The	translational analogu	e of force in rota	tional	motion is					
	(A)	Moment of Inertia		(B)	Angular mon	nentum				
	(C)	Angular velocity		(D)	Torque					
11.	Zero	point energy is zero i	n							
	(A)	particle in a box		(B)	particle in a ring					
	(C)	particle in a sphere		(D)	harmonic osc	illator				
10	Dah	r's atomic model does	not agree with							
12.			-	(B)	Heisenberg's	nvincinlo				
	(A)	Line spectra of hydr	ogen atom							
	(C)	Plank's theory		(D)	Pauli's princi	ipie				
13.	Whi	ch of the following set	of quantum nu	mbers	is possible?					
	(A)	n=2, l=1, m=0, s=+1	/2	(B)	n=2, l=0, m=0, s=+1/2					
	(C)	n=2, l=1, m=0, s=0		(D)	n=2, l=1, m=	-2, s= $+1/2$				
14.	Mat	hematically, Heisenb	erg's uncertainly	princ	ciple can best b	e represented by				
	(A)	$\Delta x \geq \Delta p x / 4 \pi h$		(B)	$\Delta x \times \Delta p x \ge h/\tau$	τ				
	(C)	$\Delta x \times \Delta px \ge h/4\pi$		(D)	$\Delta x \times h \ge \Delta px/4$	4π				
15.		correct Schrodinger's	s equation for a	n elect	tron with total	energy E and po	otential			
	(A)	$\partial^2 \Psi / \partial x^2 + \partial^2 \Psi / \partial y^2 +$	$\partial^2 \Psi / \partial z^2 + E = V - ($	8π ² m/	'h²)Ψ					
	(B)	$\partial^2 \Psi/\partial x^2 + \partial^2 \Psi/\partial y^2 +$	∂²Ψ/∂z²+8π²m⁄h	2(E-V)	$\Psi = 0$					
	(C)	$\partial^2 \Psi/\partial x^2 + \partial^2 \Psi/\partial y^2 +$	$\partial^2 \Psi / \partial z^2 + 8\pi^2 / n^2$	n²(E-V	$0 = \Psi$					
	(D)	∂2Ψ/∂x2+ ∂2Ψ/∂v2+	д2Ψ/дz2+8π2m/l	$n^2 = (1$	E-V)					

16.	Identify combination of metals which form alloys readily										
	(A)	sodium-potassium	(B)	beryllium-tungsten							
	(C)	rubidium-caesium	(D)	tin-lead							
17.	Ider	ntify the alloy among the following wh	ich is	super conducting at 24 K							
	(A)	niobium-titanium	(B)	nickel-aluminium							
	(C)	copper-gold	(D)	niobium-germanium							
18.		Solids where there is only moderate difference in energy between valence band and conduction band are known as									
	(A)	transistors	(B)	conductors							
	(C)	semiconductors	(D)	rectifiers							
19.	Whi	ch of the following transformation is f	easibl	e to isolate the metal from its oxide?							
	(A)	$2\text{HgO} + \text{heat} \rightarrow 2\text{Hg} + \text{O}_2$	(B)	$2\text{Fe}_2\text{O}_3 + \text{heat} \rightarrow 4\text{Fe} + 3\text{O}_2$							
	(C)	$2CaO + heat \rightarrow 2Ca + O_2$	(D)	$2MgO + heat \rightarrow 2Mg + O_2$							
20.	Which one of the following is the molecular formula of Kaolinite clay?										
	(A)	Na[AlSi ₃ O ₈]	(B)	$Ca[Al_2Si_2O_8]$							
	(C)	$Al_2(OH)_4[Si_2O_5]$	(D)	$Ba[Al_2Si_2O_8]$							
21.	Heating sulfur monochloride S ₂ Cl ₂ with ammonium chloride yields a bright orange solid A which is insoluble in water. When A can be reduced with metallic potassium to yield a salt B. This salt obeys Huckel's rule of aromaticity. A can be oxidized with chorine to form stable trichloride C. A, B and C respectively are										
	(A)	S ₄ N ₄ , S ₃ N ₃ K, S ₃ N ₃ Cl ₃	(B)	S ₃ N ₂ , S ₃ N ₂ K, S ₂ N ₂ Cl ₃							
	(C)	$S_{11}N_3$, S_4N_2K , $S_4N_3Cl_3$	(D)	S_5N_6 , S_4N_6K , $S_4N_5Cl_3$							
22.	as		pling	710 configuration. It is used extensively reactions. It can be oxidized to the							
	(A)	Nickel	(B)	Palladium							
	(C)	Platinum	(D)	Gold							

23.	Whi	ch one of the foll	owing	compounds is	planar	at room temp	erature:	
	(A)	N(CH ₃) ₃	(B)	$N(SiH_3)_3$	(C)	P(CH ₃) ₃	(D)	P(Cl) ₃
24.	The	crystal field stal	oilizat	ion energy (Cl	FSE) for	low spin coba	alt(III) cor	nplex is
	(A)	$2.4~\Delta_o-3p$			(B)	$2.4~\Delta_o-2p$		
	(C)	$2.4 \; \Delta_o - p$			(D)	$2.4~\Delta_o$		
25.	The	oxygen molecule	in its	ground state	is			
	(A)	diamagnetic			(B)	paramagnet	ic	
	(C)	ferromagnetic			(D)	antiferroma	gnetic	
20	W/L:	ah of the followin	ag ic o	n inort goe?				
26.	(A)	ch of the followin Nitrogen	(B)		(C)	Chlorine	(D)	Argon
	(A)	Nitrogen	(D)	Oxygen	(0)	Ciliorine	(2)	- and one
27.	Wh	ich one of the fol	lowin	g isotopes is r	adio acti	ve?		
	(A)	13C	(B)	14C	(C)	¹ H	(D)	$^{2}\mathrm{H}$
28.	Solu	ibility of common	n salt	(NaCl) in wat	er is			
	(A)	exothermic						
	(B)	endothermic						
	(C)	depends on the	amou	int of NaCl di	ssolved			
	(D)	no change in h	eat					
29.	Whi	ich one of the fol	lowing	will be close	to ideal	gas behavior?	>	
	(A)	Carbon dioxide	e, CO ₂		(B)	Dinitrogen a	gas, N ₂	
	(C)	Helium gas, H	е		(D)	Dioxygen ga	as, O ₂	
30.	Whi	ich one of the fol	lowing	g combination	gives bu	uffer solution	?	
	(A)	NaCl + HCl			(B)	NaOH + Na	Cl	
	(C)	CH ₃ COOH + C	CH ₃ CC	OONa	(D)	BaCl ₂ + HC	1	
31.	The	second law of th	nermo	dynamics can	be repre	esented as		
	(A)	$ds \geq \frac{dq}{T}$	(B)	$ds \leq \frac{dq}{T}$	(C)	$ds = \frac{dq}{T}$	(D)	ds = 0

32.	At triple point of water, the number of degrees of freedom for the system is									
	(A)	zero	(B)	one	(C)	two	(D) three			
33.	Hyd	lrolysis of an est	ter in e	xcess acid is an	exam	ple of				
	(A)	First order kin	netics		(B)	Zero order kin	netics			
	(C)	Second order	kinetic	s	(D)	Half order kin	netics			
34.	The	empirical form	ula for	Arrhenius theo	ry can	be written as				
	(A)	$A=ke^{-E\alpha/RT}$	(B)	$k = Ae^{-Ea/RT}$	(C)	$A=ke^{+Ea/RT}$	(D) $k = Ae^{+Ea/RT}$			
35.	The	half-life of a fir	st orde	r chemical reac	tion					
	(A) is independent of initial concentrations of reactants									
	(B) is directly proportional to initial concentration of reactants									
	(C)	(C) is inversely proportional to initial concentration of reactants								
	(D)	is directly pro	portion	al to square ro	ot of in	itial concentrat	tion of reactants			
36.	A pl	hotochemical re	action							
	(A)	is initiated by	y the e	excitation of at	least	one reactant to	o its electronic excited			
	(B)	is initiated by state	the e	xcitation of at	least o	one reactant to	its vibrational excited			
	(C)	is initiated by	y the e	excitation of at	least	one reactant to	o its excited rotationa			
	(D)	is initiated du	e to in	crease in kineti	c ener	gy of at least on	e reactant			
37.	The	instrument use	ed to id	entify the cryst	al stru	cture of a mate	erial is			
	(A)	Scanning Elec	etron M	Iicroscope	(B)	X-ray diffract	ometer			
	(C)	Transmission	Electro	on Microscope	(D)	Fluorescence	spectroscopy			
38.	Wh	ich of the follow	ing is	bio-mass source	e(s)?					
	(1)	Gobar gas; (2)	Coal;	(3) Wood; (4) N	uclear	energy				
	(A)	(1,2,3)	(B)	(1,2,4)	(C)	(2,3,4)	(D) (1,3,4)			

39.	Whi	ch of the following	ng pro	duces least p	pollution v	when burn	t?			
	(A)	Petrol	(B)	Diesel	(C)	Coal	(D)	Hydrogen		
40.	Effic	ciency of solar co	oker c	an be increa	sed by pla	acing a				
	(A)	plane mirror			(B)	convex m	irror			
	(C)	concave lens			(D)	convex le	ns			
41.	The	element which i	s used	l in making a	a solar cel	l is				
	(A)	silicon			(B)	titanium				
	(C)	magnesium			(D)	cerium				
42.	Floa	ting generators	are us	sed in coasta	l areas of	sea to har	ness			
	(A)	depth energy		*	(B)	wave ene	rgy			
	(C)	hydel energy			(D)	energy fr	om surface	wind		
43.	The	molten materia	l mixe	d with gases	in the ma	antle of the	e earth is ca	alled		
	(A)	core	(B)	lava	(C)	geyser	(D)) magma		
44.	Very rough terrain or nearby large obstacles near a wind mill may create									
	(A)	smooth air			(B)	turbulen	ce			
	(C)	damage blade			(D)	pollution				
45.	The	best place for a	wind	turbine is						
	(A)	valleys			(B)	forest				
	(C)	foot hills			(D)	near sea	shore			
46.	Maj	or drawback of	wind p	ower is						
	(A)	variability			(B)	meltdow	ns			
	(C)	pollution			(D)	cluttered	scenery			
47.	Wha	at is the line of l	atitud	e 23.5 degre	es north o	f the equa	tor called?			
	(A)	Tropic of Canc	er		(B)	Tropic of	Capricorn			
	(C)	Temperate			(D)	Equatori	al			

- 48. The best way to determine the wind conditions at a site is by measuring the wind speed. What duration of time would be at least required?
 - (A) At least a day

(B) At least a month

(C) At least a year

- (D) At least three years
- 49. Match the element and its oxidation state
 - A. Phosphorus in phosphorus pentachloride
- E. +3
- B. Chromium in potassium dichromate
- F. +4

C. Boron in boric acid

G. +5

D. Lead in lead tetra-acetate

H. +6

- (A) A = G; B = H; C = E; D = F
- (B) A = H; B = G; C = F; D = E
- (C) A = F; B = G; C = H; D = E
- (D) A = G; B = F; C = H; D = E
- 50. Match the ionic compounds with the geometry around the metal
 - A. ammonium zirconium heptafluoride
- E. tetrahedral

B. wurzite

F. trigonal prism

C. zinc blende

G. octahedral

D. rutile

H. cubic

- (A) A = G; B = H; C = E; D = F
- (B) A = H: B = G: C = F: D = E
- (C) A = F; B = E; C = H; D = G
- (D) A = G; B = F; C = H; D = E
- 51. Match the standard electron potential (at 25 °C; volts) with the reduction of metal salts.
 - A. $Ni^{2+} + 2e \rightarrow Ni$

E. -1.18

B. $Fe^{3+} + e \rightarrow Fe^{2+}$

F. -0.25

C. $Mn^{2+} + 2e \rightarrow Mn$

G. + 0.35

D. $Cu^{2+} + 2e \rightarrow Cu$

- · H. + 0.77
- (A) A = F; B = H; C = E; D = G
- (B) A = H; B = G; C = F; D = E
- (C) A = F: B = E: C = H: D = G
- (D) A = G; B = F; C = H; D = E

52. Which of the following compounds or mixture is readily soluble in toluene at 25 °C?

A. KMnO₄; B. Equimolar mixture of KMnO₄ and 18-crown-6; C. tetra-n-butylammonium bromide; D. barium hydroxide

- (A) A and D
- (B) B and C
- (C) D alone
- (D) A alone
- 53. Arrange the following bases according to their strength

A. n-BuLi; B. Al(OH)3; C. NaOH; D. Cyclohexanol

(A) B > C > A > D

(B) D > C > A > B

(C) A > B > D > C

- (D) A > C > B > D
- 54. Match the following hydrides with the reaction that they are used for as reagents
 - A. calcium hydride
- E. for ionic hydrogenation of double bonds
- B. sodium borohydride
- F. for dehydration of solvents
- C. sodium hydride
- G. for reduction of an aldehyde to alcohol
- D. triethylsilylhydride
- H. as a strong base
- (A) A = G; B = H; C = E; D = F
- (B) A = F; B = G; C = H; D = E
- (C) A = H; B = E; C = F; D = G
- (D) A = G; B = F; C = H; D = E
- 55. Match the following compounds with the symmetry element
 - A. sulphur tetrafluoride

- E. C4v
- B. pentafluorotellurate(IV) anion
- F. C_{2h}
- C. tetrachloroiodate(III) anion
- G. C_{2v}
- D. E-1,2-dichloroethylene
- H. D_{4h}
- (A) A = G; B = H; C = E; D = F
- (B) A = F; B = G; C = H; D = E
- (C) A = H; B = E; C = F; D = G
- (D) A = G; B = E; C = H; D = F
- 56. Match the following compounds with moles of water of hydration
 - A. FeSiF₆
- E. 5H₂O
- B. Na₄XeO₆
- F. 6H₂O
- C. Na₂SO₄
- G. 8H₂O
- D. CuSO₄
- H. 12H₂O
- (A) A = G; B = H; C = E; D = F
- (B) A = F; B = G; C = H; D = E
- (C) A = H; B = E; C = F; D = G
- (D) A = G; B = E; C = H; D = F

	A. S	iO ₂ ; B. CaO; C. AsH ₃ ;	D. GaH ₃		*				
	(A)	C only (B)	A only	(C)	B an	d C	(D)	D only	
58.	Mat	ch the coordination co	omplexes with t	heir pr	operty				
	A.	bis(benzoylacetonate	o)beryllium		E.	square p	olanar c	omplex	
	B.	tris(trimethylphosp) perchlorate	hinesulfide)copp	per(I)	F. trigonal bipyramidal				
	C.	cis-diaminedichloro	olatinum(II)		G.	coordina metal is		nber of	
	D.	Iron(0) pentacarbon	yl		H.	can exis		ntiomers and	
	(A)	A = G; B = H; C = E	D = F	(B)	A = 1	F; B = G;	C = H; I	O = E	
	(C)	A = H; $B = G$; $C = E$	D = F	(D)	A = (G; B = E;	C = H; I	D = F	
59.		electron in a hydrog and state. Which of th					n excite	ed state to the	
	(A)	a) Its kinetic energy increases and its potential and total energy decreases							
	(B)	Its kinetic energy remains the same	decreases, pote	ntial e	nergy	increase	s and it	ts total energ	
	(C)	Its kinetic energy ar	nd total energy	decreas	ses and	d its poter	ntial en	ergy increases	
	(D)	Its kinetic, potential	and total ener	gy decr	eases				
60.	Whi	ch of the following is	not a mode of ra	adioact	ive dec	eay?			
	(A)	Position emission		(B)	Elect	tron captu	ıre		
	(C)	Fusion		(D)	Alph	a decay			
61.		iece of copper and ar . The resistance of	other of germa	nium	are co	oled from	room	temperature t	
	(A)	each of these decrea	ses						
	(B)	copper strip increase	es and that of g	ermani	um de	creases			
	(C)	copper strip decreas	es and that of g	erman	ium in	creases			

57. Identify Lewis acids among the following compounds

(D) each of these increases

62.	The	P-n function h	as a thic	kness of the	order of					
	(A)	1 cm	(B)	1 mm	(C)	10 ⁻⁶ m	(D)	$10^{-12}{\rm cm}$		
63.	Tf [A	a,B] = C then [A	A f(B)1=	9						
00.						df(A)		df(B)		
	(A)	$c \frac{df(B)}{dB}$	(B)	$\frac{1}{c} \frac{df(B)}{dB}$	(C)	$c \frac{df(A)}{dA}$	(D)	dB dB		
64.	Spir	n-orbit coupling	g results	in						
	(A)	Bohr model			(B)	Land shift				
	(C)	Fine structur	re		(D)	Hyperfine str	ructure			
65.		article is confir ted state, then					1	le is in the first		
	(A)	x = L/6			(B)	x = L/2				
	(C)	x = L/3			(D)	x = L/4 and 3	L/4			
66.	Whi	ch of the follow	wing qua	ntity has the	e same di	mensions as tl	he latent	heat?		
	(A)	Work per un	it mass		(B)	Specific heat	per unit	mass		
	(C)	Force per un	it velocit	У	(D)	Acceleration	per unit	displacement		
67.	An electron propagating along the x axis passes through a slit of width $\Delta y > 1$ nm. The uncertainty in the y-component of its velocity after passing through the slit is									
	(A)	$7.322 \times 10^{5} \mathrm{n}$	n/s		(B)	1.166 × 10 ⁵ m	ı/s			
	(C)	$3.346 \times 10^{5} \mathrm{n}$	n/s		(D)	$2.326 \times 10^5 \text{ n}$	n/s			
68.	A p		gy E is	incident on	a potent	ial barrier of	height V	o and width b.		
	(A)	the reflection	n coeffici	ent for E <vo< td=""><td>tends to</td><td>be unity as b</td><td>tends to</td><td>be infinity</td></vo<>	tends to	be unity as b	tends to	be infinity		
	(B)	the reflection	n coeffici	ent is zero fo	r some sj	pecific values o	of E>Vo			
	(C)	the transmis	sion coe	fficient is alv	vays zero	for E <vo< td=""><td></td><td></td></vo<>				
	(D)	the transmis	ssion coe	fficient is zer	o for son	ne specific valu	ies of E>	Vo		
69.	The	value of sin 3	30° is							
	(A)	-1/2	(B)	1/2	(C)	1/4	(D)	-1/4		

70.	The solutions of	10x2-27x+	5=0 are				
	(A) $\frac{-1}{5}, \frac{5}{2}$	(B)	$\frac{-5}{2},\frac{1}{5}$	(C)	$\frac{-5}{2}$, $\frac{-1}{5}$	(D)	$\frac{5}{2}$, $\frac{1}{5}$
71.	Following equation	ion represe	ent x ² +4y ² +116	x+2y+	4xy+259=0		
	(A) circle	(B)	straight line	(C)	parabola	(D)	ellipse
72.	The value of the	integral 6	S ^x dx is				
	(A) $\frac{6^x}{\log_e 6}$	(B)	$\frac{6^{x-1}}{\log_e 12}$	(C)	$\frac{12^*}{\log_e 3}$	(D)	$\frac{-6^{x/2}}{\log_e 6}$
73.	The value of $\int_{0}^{\infty} x^{-x}$	dx is					
	(A) ∞	(B)	-00	(C)	0	(D)	1
74.	Which of the foll	owing is a	scalar?				
	(A) Displaceme	ent		(B)	Kinetic energy		
	(C) Couple			(D)	Momentum		
75.	The magnitudes $A + B = C$. The				12, 5 and 13 ur	nits r	espectively and
	(A) 0	(B)	π	(C)	π/2	(D)	$\pi/4$
76.	When milk is ch	urned, cre	am separate ou	ıt beca	use of the		
	(A) cohesive fo	rce		(B)	gravitational for	rce	
	(C) frictional fe	orce		(D)	centrifugal force	е	
77.	Thermodynamic entropy and pres		which is mini	mum	for system at equ	ilibri	um at constan
	(A) Internal E	nergy		(B)	Enthalpy		
	(C) Helmholtz	free energ	У	(D)	Gibb's free ener	gy	

78.	Some materials such as camphor does not have a liquid phase at ambient pressure why?										
	(A)	Triple point pr	essure	is greater t	han ambi	ent pressure					
	(B)	Triple point pr	essure	is less than	ambient	pressure					
	(C)	Critical point	oressu	re is greater	than aml	pient pressure					
11.10	(D)	Critical point	oressu	re is less tha	an ambien	t pressure					
79.		Thermal energy shared by each degree of freedom of a system obeying equipartition theorem is									
	(A)	KT	(B)	2 KT	(C)	1/2 KT	(D)	3/2 KT			
80.	Max	cimum number o	f phas	es that can	coexist for	a K-compone	nt systen	n is			
	(A)	K	(B)	K+2	(C)	K-2	(D)	K+1			
81.	In Vander Walls equation of state, the constant correction to pressure is proportional to										
	(A)	N^2	(B)	N	(C)	1/N	(D)	$1/N^2$			
82.	Pres	ssure exerted by	a phot	on gas is rel	lated to e	nergy density	u as				
	(A)	1/2 u	(B)	2/3 u	(C)	3/5 u	(D)	1/3 u			
83.	Latt	Lattice specific heat of solids at low temperatures varies with temperature as									
	(A)	Т	(B)	T^2	(C)	T^3	(D)	$\bar{e}^{\theta T}$			
84.		ch of the following transit?	ng the	rmodynamic	variables	are discontin	uous acro	oss a first order			
	(A)	Volume			(B)	A Gibb's free	energy				
	(C)	Specific heat			(D)	Bulk modula	r				
85.	Whe	en the temperatu	ire of a	blackbody i	is doubled	the total pow	er radiat	ed increases by			
	(A)	2 times	(B)	4 times	(C)	16 times	(D)	32 times			
86.	Ent	ropy in a free exp	pansio	n of a gas							
	(A)	increases									
	(B)	decreases									
	(C)	remains same									
	(D)	increases initia	llyon	d than doore	9606						

87.	Nun	nber of atoms per un	nit cell of Face Cen	ntered	Cubic (FCC) str	ructure is			
	(A)	2 (I	3) 4	(C)	1	(D) 3			
88.	Whi	ch of the following s	tructure is a close	packe	ed structure?				
	(A)	FCC		(B)	Hexagonal				
	(C)	BCC		(D)	Orthorhombic				
89.	Nun	nber of point group o	operations in thre	e dime	ensional crystal	structures			
	(A)	17 (I	3) 5	(C)	32	(D) 230			
90.) corresponding to cture is	first peak in 2θ	versu	as intensity of	XRD pattern of BCC			
	(A)	111 (I	3) 110	(C)	100	(D) 200			
91.	Whi	ch of the following s	tructures have sn	nallest	packing fraction	n?			
	(A)	Hexagonal close pa	acked	(B)	BCC				
	(C)	SC		(D)	Diamond				
92.	Mol	ecular process assoc	iated with infrare	ed regi	on are				
	(A)	Change of orientat	ion	(B)	Change of elec	tron distribution			
	(C)	Change of configur	ration	(D)	Change of nuclear spin				
93.	Among CH, CF, CCl, and CBr series, which group gives lowest frequency in Fourier Transform infrared (FT-IR) spectra?								
	(A)	CH (1	B) CF	(C)	CCl	(D) CBr			
94.		photoelectron spectree of	roscopy resulting	from	the core electro	ons requires excitation			
	(A)	UV		(B)	X-ray				
	(C)	Either UV or X-ray	y	(D)	Microwave				
95.	The	appropriate order o	f magnitude of ele	ectroni	c, molecular and	d rotational is			
	(A)	$\Delta\epsilon_{elec}\times 10^6\approx \Delta\epsilon_{vib}\times$	$10^3 pprox \Delta \epsilon_{ m rot}$						
	(B)	$\Delta \epsilon_{\rm elec} = \Delta \epsilon_{\rm vib} \approx \Delta \epsilon_{\rm rot}$	\times 10 ²			•			
	(C)	$\Delta\epsilon_{elec}\!\approx\!\Delta\epsilon_{vib}\!\times 10^3\!\approx\!$	$\Delta \epsilon_{ m rot} imes 10^6$						
	(D)	$\Delta\epsilon_{elec} \approx (\Delta\epsilon_{vib} \times 10^3)^{-3}$	$^{-1} \approx (\Delta \epsilon_{\rm rot} \times 10^6)^{-1}$						

96.	Nuc	Nuclei with both p and n even have spin equal to				
	(A)	integral	(B)	half-integral		
	(C)	zero	(D)	all are correct		
97.	The	Raman shift of the first stokes or antis	tokes	s from the exciting line is		
	(A)	$6B \text{ cm}^{-1}$ (B) $4B \text{ cm}^{-1}$	(C)	2B cm ⁻¹ (D) 8B cm ⁻¹		
98.	Larmor frequency is given by					
	(A)	(Magnetic moment) (Applied field street		h along z-axis)		
	(B)	(B) (Angular momentum) (Applied field strength along z-axis) Magnetic moment				
	(C)	(C) $\frac{\text{(Applied field strength along z - axis)}}{\text{(Angular momentum) (Magnetic moment)}}$				
	(D) (Angular momentum) (Magnetic moment) (Applied field strength along z-axis)					
99.	A sequence of atoms having the same number of extra nuclear electrons are known as					
	(A)	Ionization sequence	(B)	Zeeman sequence		
	(C)	Spin-relativity sequence	(D)	Isoelectronic sequence		
100.	-	ctroscopy based on the deviation of d leus from spherical symmetry is	istri	ibution of the positive charge in th		
	(A)	Nuclear Magnetic Resonance				
	(B)	Mass Spectrometry				
	(C)	Nuclear quadrupole Resonance				
	(D)	Mossbauer spectroscopy				