ENTRANCE EXAMINATION FOR ADMISSION, MAY 2010.

M.Tech. (NANO SCIENCES AND TECHNOLOGY)

COURSE CODE: 305

Register Nu	mber:		· ·
			Signature of the Invigilator (with date)

COURSE CODE: 305

Time: 2 Hours

Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

- 1. Select all correct matches for the elements and the type of group to which they belong
 - A. Cesium
 - B. Barium
 - C. Cerium
 - D. Palladium
 - (A) A = E; B = H; C = F; D = G
 - (C) A = G; B = F; C = H; D = E

- E. Transition Metal
- F. Lanthanide Metal
- G. Alkali metal
- H. Alkaline Earth metal
- (B) A = G; B = H; C = F; D = E
- (D) A = F; B = H; C = G; D = E
- 2. Bond angle between A. HCH in methane, B. HOH in water, C. HNH in ammonia. D. OCO in carbon dioxide respectively are (Select all correct matches):
 - (A) A = 180°; B = 107°; C = 104°; D = 109°
 - A = 107°; B = 109°; C = 107°; D = 180°
 - A = 109°; B = 104°; C = 107°; D = 180°
 - A = 109°; B = 107°; C = 104°; D = 180°
- 3. Match the bio-systems with the metal that they contain
 - A. hemocyanin
 - B. rubridoxin
 - C. carboxypeptidase A
 - D. aldehyde oxydase
 - (A) A = G; B = H; C = E; D = F
 - (C) A = H; B = G; C = E; D = F

- E. copper
- F. zinc
- G. molybdinum
- H. iron
- (B) A = F; B = G; C = H; D = E
- (D) A = E; B = H; C = F; D = G
- 4. Match the following compounds with their shape
 - A. triiodide anion
 - B. borohydride anion
 - C. boron tribromide
 - D. sulphur tetrafluoride
 - (A) A = G; B = H; C = F; D = E
 - (C) A = G; B = F; C = H; D = E

- E. trigonal bipyramidal
- F. trigonal
- G. linear
- H. tetrahedral
- (B) A = G; B = E; C = F; D = H
- (D) A = F; B = H; C = G; D = E

- 5. Match the compounds with the hybridization of the element indicated.
 - A. S in SO3

E. sp

B. P in PCl₅

F. sp3d

C. carbon in H₂C=CH₂

G. sp²

D. carbon in HC≡ CH

- H. sp³
- (A) A = G; B = H; C = F; D = E
- (B) A = G; B = E; C = F; D = H
- (C) A = F; B = G; C = H; D = E
- (D) A = H; B = F; C = G; D = E
- Match the electric conductivity of solids with the their values in ohm cm⁻¹
 - A. sodium

- E. 1.7×10^{5}
- B. sodium chloride
- F. 10-14

C. quartz

G. 10⁻⁷

D. zinc

- H. 2.4×10^{5}
- (A) A = G; B = H; C = F; D = E
- (B) A = H; B = G; C = F; D = E
- (C) A = F; B = G; C = H; D = E
- (D) A = F; B = H; C = G; D = E
- 7. Match the metals with their melting points given in degrees centigrade (°C)
 - A. Beryllium

E. 30

B. Potassium

F. 64

C. Magnesium

G. 650

D. Gallium

- H. 1277
- (A) A = G: B = H: C = F: D = E
- (B) A = H; B = G; C = F; D = E
- (C) A = F; B = G; C = H; D = E
- (D) A = H; B = F; C = G; D = E
- 8. Correct molecular orbital representation for carbon monoxide is
 - (A) $\sigma_g(1s)$, $\sigma_u^*(1s)$, $\sigma_g(2s)$, $\sigma_u^*(2s)$, $\pi_u(2p)$, $\pi_u(2p)$, $\sigma_g(2p)$
 - (B) $\sigma_g(1s)$, $\sigma_u(1s)$, $\sigma_g(2s)$, $\sigma_u^*(2s)$, $\sigma_g(2p)$, π_u (2p), $\pi_u(2p)$, $\pi_u^*(2p)$, $\pi_u^*(2p)$
 - (C) $\sigma_g(2s)$, $\sigma_u^*(2s)$, $\sigma_g(1s)$, $\sigma_u(1s)$, $\sigma_g(2p)$, $\pi_u(2p)$, $\pi_u(2p)$
 - (D) $\sigma_u(1s)$, $\sigma_g^*(1s)$, $\sigma_g(2s)$, $\sigma_u^*(2s)$, $\sigma_g(2p)$, $\pi_u(2p)$, $\pi_u(2p)$, $\pi_u^*(2p)$, $\pi_u^*(2p)$
- 9. The dimension of Plank's constant is
 - (A) MLT-1
- (B) ML²T
- (C) M²L²T⁻¹
- (D) ML²T⁻¹

10.	The	normalized wave	e func	tion can be re	present	ed as		
	(A)	$\int_{0}^{+\infty} \Psi^2 d\tau = 0$	(B)	$\int_{-1}^{+1} \Psi^2 d\tau = 0$	(C)	$\int_{-\infty}^{+\infty} \Psi^2 d\tau = 0$	(D)	$\int_{-\infty}^{0} \Psi^2 d\tau = 0$
11.	The	ground state ter	m syn	abol of d ⁹ conf	iguratio	on is		
	(A)	2 D $_{52}$	(B)	2 D $_2$	(C)	$^{2}\mathrm{D}$ 3/2	(D)	$^2{ m D}_{\ 1/2}$
12.	Whi	ich one of the foll	owing	orbital does	not ha	ve the angular r	node?	
		Py orbital	(B)			1s orbital		dx²-y² orbital
13.	The	Schrodinger way	e fun	ction Ψ repres	sents			
	(A)	Probability den	sity		(B)	Probability am	plitude	
	(C)	Probability dist	ributi	on .	(D)	Radical probab	bility	
14.	If th	ne radius of Ist Bo	hr's o	rbit is a ₀ then	the rad	ius of 3 rd Bohr's	orbit is	3
		3 a ₀	(B)			9 a ₀		19 a ₀
15.	The	splitting of spect	ral lir	nes under the	influenc	ce of magnetic fi	ield is k	nown as
	(A)	Stearic effect			(B)	Zeeman effect		
	(C)	Photoelectric ef	fect		(D)	Crompton effe	ct	
16.	In h	ydrogen spectrui wn as	n, the	series of line	s appea	ring in visible 1	region o	of spectrum are
	(A)	Lyman	(B)	Paschen	(C)	P fund	(D)	Balmer
17.	Azin	nuthal quantum	numb	er determines	the			
	(A)	spin			(B)	angular mome	ntum o	f orbitals
	(C)	size			(D)	orientation		
18.	The	spectrum of He+	is exp	ected to be sin	nilar to	that of		
	(A)	Hydrogen atom			(B)	He		
	(C)	Li+			(D)	Li		
19.	In 1	eV energy is equ	ivalen	t to a photon	with a v	wavelength abou	ıt	
	(A)	30000 Å	(B)	3000 Á	(C)	12000 Å	(D)	1200 Å
305				4				

20.	Among the following, conjugate pair of variable is								
	(A)	momentum and	l ener	gy	(B)	potential energ	y and p	position	
	(C)	linear moments	ım an	d distance	(D)	time and energ	y		
21.	The	maximum exten	t of hy	drogen bondin	g is sh	own by			
	(A)	H_2O	(B)	HF	(C)	H_2Se	(D)	H_2S	
22.	Whi	ch of the followir	ig pro	perty does not	have	any unit?			
	(A)	Ionization pote	ntial		(B)	Electro-negativity			
	(C)	Atomic radii			(D)	Electron affini	ty		
23.	Amo	ong the following	radia	tions the larges	st freq	uency is of			
	(A)	Radio wave	(B)	Micro wave	(C)	X-rays	(D)	IR	
24.	4. The number of replaceable protons in methanesulfonic acid is								
	(A)	one	(B)	two	(C)	three	(D)	four	
25.	The	dimension of a fi	rst or	der chemical k	inetics	is			
	(A)	S-1	(B)	$M^{-1}S^{-1}$	(C)	M^{-1}	(D)	MS	
26.	Ach	nemical reaction i	s said	to be spontane	eous if				
	(A)	$\Delta G < 0$	(B)	$\Delta G = 0$	(C)	$\Delta G > 0$	(D)	$\Delta G \geq \Delta H$	
27.	Whi	ch of the followir	ng will	have the maxi	mum	conductivity?			
	(A)	1 M NaCl	(B)	1 M Na ₂ SO ₄	(C)	2 M NaCl	(D)	1 M BaCl ₂	
28.	The	freezing of point	wate	r will					
	(A)	decrease on add	ding c	ommon salt					
	(B)	increase on add	ling co	ommon salt					
	(C)	does not change	e on a	dding common	salt				
	(D)	depends on the	amou	int of common s	salt ad	ded			
29.	The	heat capacities of	of an i	deal gas is desc	ribed	as			
	(A)	C_p - $C_v = R$			(B)	$C_{p+} C_{v} = R$			
	(C)	$C_p = \frac{R}{C}$			(D)	$C_v = \frac{R}{C}$			

30.	The	process of isolating petrol from crude	oil is	
	(A)	distillation	(B)	fractional distillation
	(C)	sublimation	(D)	crystallization
31.	Any	two gases mix spontaneously at all co	onditio	ons, because
	(A)	entropy of mixing is always positive		
	(B)	entropy of mixing is always negative	Э	
	(C)	entropy of mixing is always zero		
	(D)	free energy of mixing is always posit	tive	
32.	Ten	perature is a measure of		
	(A)	melting point of a substance	(B)	boiling point of a substance
	(C)	kinetic energy of an ideal gas	(D)	potential energy of an ideal gas
33.	The	ozone depletion potential is largest fo	r	
	(A)	CF ₂ Cl ₂ (B) CF ₃ Cl	(C)	CF ₃ Br (D) CCl ₃ F
34.	Whi	ich of the following is not a definition	of glas	s?
	(A)	A glass has glass transition tempera	ature	
	(B)	A glass is a X-ray amorphous mater	ial	
	(C)	A glass is supercooled liquid		
	(D)	A glass is an amorphous material pr	repare	d by quenching the melt
35.	The	formula of yttrium iron garnet is		
	(A)	$Y_3Fe_5O_{12}$ (B) $Y_2Fe_5O_{12}$	(C)	$Y_3Fe_4O_{12}$ (D) $YFeO_3$
36.	Whi		terizes	s phase transition from liquid to gas
	(A)	Helmholtz equation	(B)	Clayperon equation
	(C)	Clausius-Clapeyron equation	(D)	Gibbs-Helmholtz equation
37.		Derivation of Debye formula for spe owing fact?	ecific h	eat of solids is based on which of the
	(A)	The internal energy of a solid reside	s in th	ne standing waves in the solids
	(B)	The internal energy is due to the inc	dividu	al atomic vibrations
	(C)	The internal energy is due to the ph	onon	
	(D)	The internal energy is due to the ter	mpera	ture, T

38.	The	unit cell recipr	ocal lat	tice is known a	as				
	(A)	Bravis lattice			(B)	First Brillouin	zone		
	(C)	Second Brillo	iin zone	9	(D)	Wigner Seitz ce	ell		
39.	For	a ferromagnetic	mater	ial the 'Hyster	esis los	s' is proportiona	l to		
	(A)	Coercively			(B)	Retentively			
	(C)	Area of the lo	ор		(D)	Saturation mag	gnetiza	tion	
40.	For	a diffusing part	icle wh	ich of the follo	wing re	elation is true?			
	(A)	$< z^2 > = 2 D$ diffusion	t, z is	total distance	e cover	red in time t, as	nd D i	s coefficien	t of
	(B)	$< z^2 > = 2 D$ diffusion	² t , z is	s total distance	e cove	red in time t, a	nd D i	is coefficien	t of
	(C)	$< z^2 > = 2 Dr$ diffusion, τ re			e cover	red in time t, a	nd D i	is coefficien	t of
	(D)	$\langle z \rangle = 2 Dt$,	z is tota	l distance cove	ered in	time t, and D is	coeffici	ient of diffus	sion
41.	Wh	ich of the follow	ving is a	not a quasi p	article?				
	(A)	Polaron	(B)	Electron	(C)	Phonon	(D)	Magnon	
42.	Whi	ch of the follow	ing is n	ot a color cent	re?				
	(A)	F-centre	(B)	V_k -centre	(C)	$V_{h}\text{-centre}$	(D)	Aliovalenc	У
43.	The	total number o	f Bravis	s lattices in tw	o (2)-di	mension is			
	(A)	4	(B)	5	(C)	6	(D)	7	
44.	Whi	ch of the follow	ing is n	ot a thermoele	ectric ef	fect?			
	(A)	Thomson effe	ct		(B)	Seebeck effect			
	(C)	Peltier effect			(D)	Meissner effect	t		
45.	Hig	h T _C -supercond	uctors a	are					
	(A)	defect perovsl	cites		(B)	defect spinels			
	(C)	ferromagnetic	materi	ials	(D)	antiferromagne	etic ma	terials	

	F777								
46.	The	stacking fault in		rials is					
	(A)	0-dimensional d	efect		(B)	1-dimensional d	lefect		
	(C)	2-dimensional d	efect		(D)	3-dimensional d	lefect		
47.		perovskite oxide	A2+	B³+O₃ structure	if th	e cations are in	tercha	nged in	lattice
	(A)	the structure wi	ll be	a garnet structu	ıre				
	(B)	the structure wi	ll be	a perovskite str	uctur	е			
	(C)	the structure wi	ll be	a spinel structu	re				
	(D)	the structure wi	ll be	pyrochlore struc	cture				
48.	In th	ne case of polyhed	ral s	tructures, the m	ost st	able configuratio	n is di	ue to	
	(A)	corner-shared p	olyhe	dra	(B)	interpenetratin	g poly	hedra	
	(C)	face-shared poly	hedr	a	(D)	edge-shared pol	yhedr	a .	
49.	At tl	he superconducti	ng sta	ate a material is					
	(A)	paramagnetic			(B)	ferromagnetic			
	(C)	antiferromagne	tic		(D)	diamagnetic			
50.	The	specific conductiv	vity is	3					
	(A)	Conductivity of	a uni	t cube	(B)	Resistively of a	unit c	ube	
	(C)	1/Resistance			(D)	1/Capacitance			
51.	In so	olid argon the ato	ms a	re held together	by				
	(A)	Ionic bond			(B)	Van der Waals	forces		
	(C)	Hydrogen bonds	;		(D)	Crystal field eff	ects		
52.	Whi	ch of the followin	g doe	s not exhibit me	tallic	character?			
	(A)	Hf	(B)	Fr	(C)	Si	(D)	Pb	
	3		15 52		100000000		1500		
53.	For	a hexagonal unit	cell t	he number of M	iller i	ndices is			
	(A)	2	(B)	3	(C)	4	(D)	5	

54.	Wha	at is the dimensi	onal fo	ormula of spe	cific hea	t?			
	(A)	$[M L^{-2} T^{-2}]$			(B)	$[M^0\;L^2T^{-2}K^{-1}]$			
	(C)	$[M^0 L T^{-2}]$			(D)	M L T-2]			
55.	Fran	unhoffer diffract	ion is	observed					
	(A)	source and ima	ige are	at infinite d	istance				
	(B)	image is at fini	te dist	tance and sou	rce is in	finite			
	(C)	source is at inf	inite d	listance and i	mage is	at infinite dista	nce		
	(D)	source and ima	ige are	e at finite dist	tance				
56.	An e	electron with a v	elocity	of 1.5x10 ⁷ m	/s has a	de-Broglie wave	elength o	of	
	(A)	$9.1\times10^{-57}~\text{m}$			(B)	$6.5 \times 10^{-18} \text{ m}$			
	(C)	$4.9 \times 10^{-11} \text{ m}$			(D)	$4.9\times10^{-10}~\mathrm{m}$			
57.	apa	ouble slit is illurt a distance of les will we have	3.56 µ	. If the light				_	
	(A)	4.2°	(B)	5.23°	(C)	7.3°	(D)	9.2°	
58.	Whi	ch of the followi	ng phe	enomenon is r	not possi	ble for sound wa	aves in a	ir?	
	(A)	Polarisation	0.		(B)	Diffraction			
	(C)	Refraction			(D)	Reflection			
59.		imple harmonic			eriod of	0.1 sec and am	plitude	of 0.2 m. T	he
	(A)	100 ms ⁻¹	(B)	$4~\pi~ms^{-1}$	(C)	$100~\pi~ms^{-1}$	(D)	$20~\pi~ms^{-1}$	
60.		ground state en electron in this s		of hydrogen a	tom is -	13.6 eV. What i	s the ki	netic energy	of
	(A)	-13.6 eV	(B)	-27.2 eV	(C)	0 eV	(D)	13.6 eV	
61.	redu	article in a box uced to L by s pability of findin	udden	perturbation	n, in wl	hich state of t			
	(A)	Ground state			(B)	First excited s	tate		
	(C)	Second excited	state		(D)	Third excited	state		

62.	As t	temperature incre	eases,	the Fermi level	of an	intrinsic semi	conducto	or	
	(A)	moves towards	the co	onduction band	(B)	moves toward	ds the va	lence band	1
	(C)	stays close to e	ther	of the bands	(D)	stays at the	niddle of	the band	gap
63.	An	emitter bypass ca	pacit	or is used in a C	E am	plifier to elimi	nate the		
	(A)	AC component	of out	put	(B)	DC componer	nt of out	put	
	(C)	AC drop across	$R_{\rm E}$		(D)	DC drop acro	ss Re		
64.	Emi	ission of light wa	ves fr	om moving atom	is lead	ds to			
	(A)	Natural broade	ning		(B)	Doppler broa	dening		
	(C)	Crystal broader	ning		(D)	No broadenin	ng		
65.	We	can measure —		coherence	usin	g Michelson in	terferom	eter.	
	(A)	temporal			(B)	spatial			
	(C)	both (A) and (B)		(D)	none of the a	bove		
66.		aration between 8nm with mirror					um-Neor	n operatin	g at
	(A)	$3.73 \times 10^{-9} \text{ s}$			(B)	$6.62 \times 10^{-9} \text{ s}$			
	(C)	$3.73\times10^9~\mathrm{s}$			(D)	$6.62\times10^9~\mathrm{s}$			
67.	The	Lagrangian of a	Simp	le Harmonic Osc	illato	r is			
	(A)	(1/2)mv _x + $(1/2)$	kx		(B)	(1/2)mv _x ² + (1	/2)kx ²		
	(C)	(1/2)mv _x ² - (1/2)	kx^2		(D)	mv_x^2 - kx^2			
68.	The	speed of a partic	le wit	h momentum m	oc is				
	(A)			0.5 с	(C)	0.71 c	(D)	0	
69.	The	Debye's frequence	y of a	metal with Deb	ye te	mperature 450	K is		
	(A)	$10^3\mathrm{Hz}$	(B)	$10^{10}~\mathrm{Hz}$	(C)		(D)	$10^{15}\mathrm{Hz}$	
70.	per	uniform line char meter is located in is thus	ge dis l at x	tribution with li =3 meters and	inear y=4	charge density meters. The el	of 3.30 pectric fie	nano Could eld strengt	ombs th at
	(A)	$-7.13 \ i - 9.50 \ j \ V$	//m		(B)	+7.13 I - 9.50	j V/m		

(C) +7.13 I + 9.50 j V/m

(D) -7.13 I + 9.50 j V/m

71.	The	number of atoms	per u	unit cell of the	recipro	cal of bcc struct	ure is	
	(A)	1	(B)	2	(C)	3	(D)	4
72.		one is let fall fro ected vertically u						
	(A)	1 sec	(B)	2 sec	(C)	3 sec	(D)	4 sec
73.		r balls A, B, C ar and 75° respectiv						
	(A)	Ball A	(B)	Ball B	(C)	Ball C	(D)	Ball D
74.	_	ole 5 m long is o		-				
	(A)	90 kg, 10 kg	(B)	55 kg, 45 kg	(C)	$50~\mathrm{kg},50~\mathrm{kg}$	(D)	45 kg, 55 kg
75.		ll points along a s remains consta					, total	energy per uni
	(A)	Archimedes' pri	inciple	е	(B)	Bernoulli's pri	nciple	
	(C)	Poiseuille's law			(D)	Stoke's law		
76.		ne temperature o				e V is raised fr	om 27	°C to 627°C a
	(A)	2 V	(B)	3 V	(C)	4 V	(D)	10 V.
77.	One	method of determ	ninin	g specific heat	of a ga	s at constant vo	lume is	by using
	(A)	Joule's calorime	eter		(B)	Nernst calorin	neter	
	(C)	Joly's calorimet	er		(D)	Clement and I	esorm	e's apparatus
78.	figu	open loop gain re is 100,000 the uit is			_		100 kΩ .////	100 kΩ
	(A)	1			(B)	2		_ v _o
	(C)	50,000			(D)	200,000	V _{in}	

79.	Curi	ie temperature i	s the t	emperature ab	ove wh	ich			
	(A)	a paramagneti	ic mate	erial becomes d	iamagı	netic			
	(B)	a ferromagnet	ic mate	erial becomes d	iamag	netic			
	(C)	a paramagneti	ic mate	erial becomes fe	rroma	gnetic			
	(D)	a ferromagnet	ic mate	erial becomes p	arama	gnetic			
80.		ee electron is p		20.70	field of	strength 1.3T.	If g=2	.0023 the	n the
	(A)	$36.43~\mathrm{Hz}$	(B)	$36.43~\mathrm{kHz}$	(C)	$36.43~\mathrm{MHz}$	(D)	36.43 GI	Ηz
81.		as has 300 mol ain the gas is	ecules	with 250 deg	rees of	freedom. A su	uitable	phase spa	ace to
	(A)	h ³⁰⁰	(B)	h^{250}	(C)	h ⁵⁰⁰	(D)	h ⁶⁰⁰	
82.		change of oriestrum.	ntation	n takes place i	n —	reg	ion of e	lectromag	gnetic
	(A)	X-ray	(B)	Visible	(C)	γ-ray	(D)	Microwa	ive
83.		half-life of an i			is 5 da	ays. The mass o	of a 10 g	gram sam	ple of
	(A)	$0.312~\mathrm{grams}$	(B)	$0.625~\mathrm{grams}$	(C)	1.25 grams	(D)	2.50 gra	ms
84.	The	electric field E	at the	centre of a unif	ormly	charged conduc	tor is —		—.
	(A)	Infinite	(B)	$\frac{q}{4\pi \in_0 R^2}$	(C)	$\frac{qr}{4\pi \in_0 R^3}$	(D)	Zero	
85.	ther	all has two laye mal conductivit perature differe r A is	ies of	A and B are in	the r	atio of 2: 1. D	uring st	eady stat	e, the
	(A)	6°C	(B)	12°C	(C)	18°C	(D)	24°C	
86.	Half	f-life of a radioa	ctive e	lement depends	s upon				12.
	(A)	the amount of		· · · · · · · · · · · · · · · · · · ·	(B)	temperature			
	(C)	pressure		Ø.	(D)	nature of mat	erial		
305	1	- Topics and the second second		12	1				

87.	Whi	ch of the following is not transducer?				
	(A)	Loudspeaker (B) Amplifier	(C)	Microphone	(D)	Diode
88.	An a	antenna behaves as a resonant circuit	only v	when its length		
	(A)	equal $\lambda/4$	(B)	equal $\lambda/2$		
	(C)	equal $\lambda/2$ or its integral multiple	(D)	equal 2λ		
89.	Wha	at is the cause of 'Greenhouse effect'?				
	(A)	Infra-red rays	(B)	Ultraviolet rays		
	(C)	X-rays	(D)	Radio waves		
90.	Loss	ses in optical fibers in caused by				
	(A)	impurities in the glass				
	(B)	imperfect transparency of the glass				
	(C)	area of cross-section				
	(D)	stepped index structure				
91.		system having an odd number of unp be at least two fold degenerate are kn			ro fie	ld ground stat
	(A)	Zeeman splitting	(B)	Kramer doublet	S	
	(C)	Regular doublets	(D)	Irregular double	ets	
92.	The	fine independent equation of a system	ı, repi	resent the conserv	ation	of the
	(A)	total binding energy of system				
	(B)	total kinetic energy of the system				
	(C)	total potential energy of the system				
	(D)	total energy of the system				
93.	A p-	n diode is a ———.				
	(A)	linear device	(B)	unidirectional d	evice	
	(C)	unipolar device	(D)	active device		

94.		sider a series LC ent (I _{rms}) flowing					nd C-1µF. The rms
	(A)	10 mA	(B)	0 mA	(C)	5 mA	(D) 7.07 mA
95.	The	negative number	of 23	H in 8 bit signe	d arit	chmetic is ———	 .
	(A)	32H	(B)	DDH	(C)	DCH	(D) 97H
96.		ransistor is com	nected	l in ———		configuration to	design an emitter
	(A)	common base			(B)	common emitter	
	(C)	common collecto	or		(D)	base and emitter	shorted
97.		sistor of length 'L oubled in length,			esista	nce 'R'. If the some	e volume of internal
	(A)	R	(B)	2R	(C)	3R	(D) 4R
98.		input impedance			ıt imp –.	pedance (Zout) of a	n ideal operational
	(A)	Zin = 0 & Zout =	= 0		(B)	Zin = 0 & Zout =	00
	(C)	$Zin = \infty \& Zout =$	= 0		(D)	$Zin = \infty \& Zout =$	00
99.						ve clock pulses wer this flip-flop are –	re given to its clock
	(A)	0,0	(B)	1,0	(C)	0,1	(D) 1,1
100.	Whi	ch of the following	g logic	gates are said	to be	universal gates?	
	(A)	OR gate & AND	gate		(B)	OR gate & NOR g	gate
	(C)	NOR gate & NA	ND g	ate	(D)	EX-OR gate & EX	K-NOR gate