ENTRANCE EXAMINATION FOR ADMISSION, MAY 2011. M.Tech. (NETWORK AND INTERNET ENGINEERING) COURSE CODE: 394

Register Nur	nber:	
		Signature of the Invigilator (with date)

COURSE CODE: 394

Time: 2 Hours

Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) or (E) in the relevant box of the ANSWER SHEET <u>using HB pencil</u>.
- 4. Avoid blind guessing. A wrong answer will fetch you -1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.		ch memory is capable to determine whereas is	nether	a given datum is exists in one of its					
	(A)	ROM	(B)	PROM					
	(C)	CAM	(D)	RAM					
	(E)	None of the above							
2.	Whi	ch is the memory management system	?						
	(A)	Buddy system	(B)	Bridgeware					
	(C)	Broadband coaxial system	(D)	All of the above					
	(E)	None of the above							
3.		A plastic card similar to a credit card but having some memory and a microprocessor embedded within it is							
	(A)	Punched paper tape	(B)	Chip card					
	(C)	Card punch	(D)	Magnetic tape					
	(E)	None of the above							
4.		ch user programmable terminal corroprocessor?	ntains	the VDT hardware with built-in					
	(A)	Kips	(B)	PC					
	(C)	Mainframe	(D)	Intelligent terminals					
	(E)	None of the above							
5.	The	number of characters that can be store	ed in g	iven physical space is defined as					
	(A)	Word length	(B)	Byte					
	(C)	Data density	(D)	Field					
	(E)	None of the above							
6.	In w	which access method the access time is	depen	ds upon the location of the data?					
	(A)	Random access	(B)	Serial access					
	(C)	Sequential access	(D)	Transaction access					
	(E)	None of the above		,					
7.	The	complexity of merge sort algorithm is							
	(A)	O(n)	(B)	O(log n)					
	(C)	O(n2)	(D)	O(n log n)					
	(E)	None of the above							

8.	Arra	ays are best data structures						
	(A)	for relatively permanent collect	tions o	of data				
	(B)	for the size of the structure changing	and	the da	ata in the structure are constantly			
	(C)	for relatively temporary collect	ions o	f data				
	(D)	all of the above						
	(E)	none of the above						
9.	Which is not applicable for Binary search algorithm?							
	(A)	sorted linked list		(B)	sorted binary trees			
	(C)	sorted linear array		(D)	pointer array			
	(E)	none of the above						
10.	Poin	nt the signal which is not include	d in F	RS-232	-C standard signals categories.			
	(A)	VDR		(B)	RTS			
	(C)	CTS		(D)	DSR			
	(E)	None of the above						
11.	Which of the following statement is incorrect?							
	(A) Multiplexers are designed to accept data from several I/O devices and transmit a unified stream of data on one communication line							
	(B)	HDLC is a standard synchronous communication protocol.						
	(C)	RTS/CTS is the way the DTE is way the DCW indicates that it			at it is ready to transmit data and the accept data			
	(D)	RTS/CTS is the way the termin	nal in	dicates	ringing			
	(E)	None of the above						
12.	A bridge filters traffic using which type of address?							
	(A)	IP address		(B)	MAC address			
	(C)	TCP address		(D)	All of the above			
	(E)	None of the above						
13.		ich data communication methormunication link?	od is	used	to transmit the data over a serial			
	(A)	simplex		(B)	half-duplex			
	(C)	full-duplex		(D)	only (B) and (C)			
	(E)	none of the above						

14.	A ———— is created when a unique IP address and port number are used to connect two computers.								
	(A)	SAP		(B)	Media transfer coefficient				
	(C)	Socket		(D)	All of the above				
	(E)	None of the above							
15.	Inte	rrupts which are initiated b	y an I/O di	rive ar	e				
	(A)	internal		(B)	external				
	(C)	software		(D)	all of the above				
	(E)	none of the above							
16.	Pipe	eline implementation includ	е						
	(A)	decode instruction		(B)	fetch operand				
	(C)	calculate operand		(D)	all of the above				
	(E)	none of the above							
17.	A se	et of programs that handle a	firm's dat	abase	responsibilities is called				
	(A)	a) Database Management System (DBMS)							
	(B)	Database Processing Syst	em (DBPS))					
	(C)	Data Management System	n (DMS)						
	(D)	All of the above							
	(E)	None of the above							
18.	Are	ecord management system							
	(A)	(A) can handle many files of information at a time							
	(B)	can be used to extract info	ormation s	tored i	n a computer file				
	(C)	always uses a list as its m	nodel						
	(D)	all of the above							
	(E)	none of the above							
19.	A tr	ransparent DBMS							
	(A)	Cannot hide sensitive info	ormation fi	rom us	sers				
	(B)	Keeps its logical structure	e hidden fr	om us	ers				
	(C)	Keeps its physical structu	ıre hidden	from t	users				
	(D)	All of the above							
	(E)	None of the above							

20.	Whi	ch of the following is most oriented to	scient	ific programming?
	(A)	FORTRAN	(B)	COBOL
	(C)	BASIC	(D)	PL/1
	(E)	None of the above		
21.	All	of the following are disadvantages of R	PG ex	cent:
	(A)	it is a very machine dependent langu		
	(B)	it is very limited in scope	go	
	(C)	is not suited for complex problems re	auirin	g extensive programming logic
	(D)	it has larger storage requirements	1	B owners brokenmand tolte
	(E)	none of the above		
22.	Whi	ch OSI layer responsible for mail and	file tra	ansfers?
	(A)	Transport	(B)	Data link
	(C)	Application	(D)	Presentation
	(E)	None of the above	\-/	
23.		ng the TCP/IP protocol, if the destinati packet is sent to the	ion of	the packet is outside the subnet, then
	(A)	switch	(B)	bridge
	(C)	default gateway	(D)	router
	(E)	none of the above		
24.	The	two files may be joined into a third file	e if	8.
	(A)	they have a row in common		
	(B)	they have a field in common		
	(C)	they have no records with the same	value i	n the common field
	(D)	all of the above		
	(E)	none of the above		
25.	Wha	at is the language used by most of tha?	e DBI	MSs for helping their users to access
	(A)	High level language	(B)	Query language
	(C)	SQL	(D)	4GL
	(E)	None of the above		

26.		ntabase management system might c tage called	onsist o	f application program and a software
	(A)	FORTRAN	(B)	AUTOFLOW
+	(C)	BPL	(D)	TOTAL
1	(E)	None of the above		
27.		regular expression denote a languath over the alphabet (0,1)	age cor	nprising all possible strings of even
	(A)	1/0 (1/0)*	(B)	(0/1)(1/0)*
	(C)	(1/0)	(D)	(00/01 11/10)*
	(E)	None of the above		
28.	An a	automata in which the output depend	s only	on input is called an
	(A)	Automata with a finite memory	(B)	Moore machine
	(C)	Mealy machine	(D)	Automata without a memory
	(E)	None of the above		
29.	An a	automata in which the output depend	s on the	e states also is called automata with a
	(A)	Automata without a memory	(B)	Finite memory
	(C)	Moore machine	(D)	Mealy machine
	(E)	None of the above		
30.	In a	A hit weighted register D/A converte	r the r	esister value corresponding to LSB is
50.		Ω . the resister value corresponding t		•
	(A)	1 kΩ	(B)	$2 \text{ k}\Omega$
	(C)	$4~\mathrm{k}\Omega$	(D)	$16~\mathrm{k}\Omega$
	(E)	None of the above		
31.		ne memory chip size is 256×1 bits, the bytes of memory is	hen the	number of chips required to make up
	(A)	32	(B)	24
	(C)	12	(D)	8
	(E)	None of the above		

32.		a six bit ladder D/A conssume 0 = 0V and 1 = -		has dig	ital input of	101001, the a	analog value
	(A)	0.423		(B)	0.552		
	(C)	0.641		(D)	0.923		
	(E)	None of the above					
33.	Whi	ch of these protocols ac	ljust its block	size bas	ed on the li	ne error rate?	
	(A)	XMODEM		(B)	YMODEM		
	(C)	ZMODEM		(D)	WXMODE	M	
	(E)	None of the above					
34.	Whi	ch of the following Bis	Sync control co	odes is 1	not defined	in the EBCDI	(C character
	(A)	STX		(B)	ACK0		
	(C)	ENQ		(D)	TTX		
	(E)	None of the above					
35.	How	v many messages can b	e outstanding	(unack	nowledged)	on a BiSync li	nk?
	(A)	1		(B)	2		
	(C)	4		(D)	8		
	(E)	None of the above					
36.	Whi	ich of the following rep	resents parts o	of a URI	1.2		
	(A)	protocol					
	(B)	host name					
	(C)	directory and filenan	ne				
	(D)	all of the above					
	(E)	none of the above					
37.	Tur	naround time refers to	the				
	(A)	interval between the	submission of	a job a	nd its compl	etion	
	(B)	interval between sub	mission of a re	equest,	and the firs	t response to t	that request
	(C)	overall waiting time					
	(D)	overall execution tim					
	(E)	none of the above					

```
What will be output if you will execute the following c code?
38.
     #include<stdio.h>
     #include<math.h>
     typedef struct{
       char *name;
       double salary;
     job;
     void main(){
       static job a={"TCS",15000.0};
       static job b={"IBM",25000.0};
       static job c={"Google",35000.0};
       int x=5;
       job * arr[3]={&a,&b,&c};
       printf("%s %f\t",(3,x>>5-4)[*arr]);
     double myfun(double d){
         d-=1;
         return d:
     (A) TCS 15000.000000
                                                (B) IBM 25000.000000
     (C) Google 35000.000000
                                                (D) Compilation error
          None of the above
     What will be output if you will execute following c code?
     #include<stdio.h>
     enum power{
       Dalai,
       Vladimir=3,
       Barack.
       Hillary
     };
     void main(){
     float leader[Dalai+Hillary]={1.f,2.f,3.f,4.f,5.f};
       enum power p=Barack;
       printf("%0.f",leader[p>>1+1]);
     (A) 1
                                                (B)
     (C)
         5
                                                (D) Compilation Error
     (E)
          None of the above
```

0.	Wha	t will be output of following c code?
	void	main()
	{	
	stru	ct bitfield
	{	
	unsi	gned a:5;
	unsi	gned c:5;
	unsi	gned b:6;
	}bit;	
	char	*p:
		ct bitfield *ptr,bit1={1,3,3};
		bit1;
	p++;	COLORS CO.
	clrsc	
		tf("%d",*p);
	getc	
	}	
	(A)	34 (B) 12 (C) 13 (D) 10
	(E)	None of the above
	(2)	THE LIBERT AND THE LI
1.	Each	list item in an ordered or unordered list has which tag?
	(A)	list tag (B) li tag (C) ls tag (D) ol tag
	(E)	none of the above
2.	Whe	on the RET instruction at the end of subroutine is executed,
	(A)	the information where the stack is initialized is transferred to the stack pointer
	(B)	the memory address of the RET instruction is transferred to the program
	(2)	counter
	(C)	two data bytes stored in the top two locations of the stack are transferred to the program counter
	(D)	two data bytes stored in the top two locations of the stack are transferred to the stack pointer
	(E)	none of the above

43.		refers to the part of	the netw	ork th	at is sepa	arated by re	outers, brid	ges, or		
		witches.								
	(A)	Partition		(B)	Node					
	(C)	Segment		(D)	Link					
	(E)	None of the above								
44.		What is the main advantage to classical Vector Systems (VS) compared with RISC based systems (RS)?								
	(A)	VS have significantly highe	r memory	y band	width the	an RS				
	(B)	VS have higher clock rates	than RS							
	(C)	VS are more parallel than I	RS							
	(D)	VS have more disk space th	an RS.							
	(E)	None of the above								
45.	The	performance of a pipelined p	rocessor	suffers	if					
	(A)	The pipeline stages have di	fferent de	elays						
	(B)	Consecutive instructions ar	e depend	ent on	each oth	er				
	(C)	The pipeline stages share h	ardware	resour	ces					
	(D)	All of the above								
	(E)	None of the above								
46.	com	w many 8 – bit characters ca munication link using async a bits and two stop bits?								
	(A)	1100		(B)	800					
	(C)	880		(D)	3000					
	(E)	None of the above								
47.	Wha	at is the difference between X	ML and	HTML	?	-				
	(A)	HTML is used for exchanging	ng data, l	XML is	not.					
	(B)	XML is used for exchanging	g data, H'	TML is	s not.					
	(C)	HTML can have user define	ed tags, X	ML ca	nnot					
	(D)	Both (B) and (C) above								

None of the above

48.	wnici	n of the following statements about	AIVIL SC.	nemas is incorrect:
	(A)	Schemas are defined by xsd tag		
	(B)	Schemas can specify integer values	;	
	(C)	Schemas provide data oriented dat	a types	
	(D)	All xml documents must have a sch	nema	
	(E)	None of the above		
49.	Whiel	h directory implementation is used	in most	Operating System?
	(A)	Single level directory structure	(B)	Two level directory structure
	(C)	Tree directory structure	(D)	Acyclic directory structure
	(E)	None of the above		
50.	What	would be the output of following c	code?	
	void r	main()		
	{			
		structbitfield		
		{		
		unsigned a:5;		
		unsigned c:5;		
		unsigned b:6;		
		}bit;		
	char	*p;		
	struc	tbitfiels *ptr,bit1=(1,3,3);		
	p=&b	pit1;		
	p++;			
	clrsci	r();		
	print	f("%d",*p);		
	getch	1();		
	}			
	(A)	11	(B)	13
	(C)	12	(D)	15
	(E)	None of the above		

51.	Ban	kers algorithm is used							
	(A)	(A) to prevent deadlock in operating systems							
	(B)	B) to detect deadlock in operating systems							
	(C)	to rectify a deadlocked	state						
	(D)	all of the above							
	(E)	none of the above							
52.	A de	eclaration of float a,b; in	c language occ	cupies	of me	mory			
	(A)	1 byte		(B)	4 bytes				
	(C)	8 bytes		(D)	16 bytes				
	(E)	None of the above							
53.	In b	inary representation, the	e value 5.75 w	ould b	e represented as				
	(A)	1100.1010		(B)	0101.1100				
	(C)	1010.1110		(D)	1101.1001				
	(E)	None of the above							
54.	Whi IBM	ich of the following code i	is used in pres	ent da	y computing, which	was developed by			
	(A)	ASCII		(B)	Hollerith Code				
	(C)	Baudot code		(D)	EBCDIC code				
	(E)	None of the above							
55.	The complexity of Binary search algorithm is								
	(A)	O(n)		(B)	O(log n)				
	(C)	O(n2)		(D)	O(n log n)				
	(E)	None of the above							
56.	Buff	fering is							
	(A)	the process of tempora speeds	rily storing th	e data	to allow for small	variation in device			
	(B)	a method to reduce cro	ss talks						
	(C)	storage of data within receive.	n transmittin	ng med	lium until the rec	eiver is ready to			
	(D)	a method to reduce rou	iting overhead	l.					
	(E)	none of the above							

57.	Whi	Which of the following statement is not true?							
	(A)	(A) Multiprogramming implies multitasking							
	(B)	(B) Multi-user does not imply multiprocessing							
	(C)	Multitasking does not imply multipro	cessii	ng					
	(D)	Multithreading implies multi-user							
	(E)	None of the above							
58.	Eth	ernet is related to							
	(A)	Application Layer	(B)	Transport Layer					
	(C)	Data link Layer	(D)	All of the above					
	(E)	None of the above							
59.	The	mask for Class B address is							
	(A)	255.0.0.0	(B)	255.255.0.0					
	(C)	255.255.255.0	(D)	All of the above					
	(E)	None of the above							
60.	An e	example for error detection code is							
	(A)	Parity bit method	(B)	Cyclic redundancy code					
	(C)	Hamming code	(D)	All of the above					
	(E)	None of the above							
61.	The	transport protocol used by DNS is							
	(A)	Transmission Control Protocol	(B)	User Datagram Protocol					
	(C)	Internet Protocol	(D)	All of the above					
	(E)	None of the above							
62.	The	Base 32 equivalent for the binary num	ber (1	0110011100011110000) is					
	(A)	22 14 23 16	(B)	11 9 23 31					
	(C)	11 9 7 16	(D)	All of the above					
	(E)	None of the above							
63.	The	IEEE standard used for wireless LAN	is						
	(A)	803.1	(B)	820.11					
	(C)	802.11	(D)	All of the above					
	(E)	None of the shove							

64.	DM	A stands for		
	(A)	Dual Mode Access	(B)	Double Memory Access
	(C)	Direct Memory Access	(D)	All of the above
	(E)	None of the above		Tu T
65.	Whi	ch of the following is distributed opera	ting s	ystem?
	(A)	Amoeba	(B)	MAC
	(C)	UNIX	(D)	All of the above
	(E)	None of the above		
66.	The	protocol CSMA/CD is related to		
	(A)	Data link layer	(B)	Network layer
	(C)	Physical layer	(D)	All of the above
	(E)	None of the above		
67.	In I	nternet, the mapping from logical add	ress to	physical address is taken care by
	(A)	DNS	(B)	ARP
	(C)	RARP	(D)	All of the above
	(E)	None of the above		
68.	Dat	a items grouped for storage purposes a	re cal	led a
00.	(A)	Record	(B)	Title
	(C)	List	(D)	String
	(E)	None of the above		
69.	An a	assertion is a condition which a ———		
	(A)	database	(B)	table
	(C)	attribute	(D)	all of the above
	(E)	none of the above		
70.	Pick	the odd one out		
	(A)	Bubble sort and Selection sort	(B)	Heap sort and Merge sort
	(C)	Quick sort and Insertion sort	(D)	All of the above
	(E)	None of the above		

71.	MM	C is an acronym for							
	(A)	Microsoft Management (Console						
	(B)	Multimedia Managemen	t and Control						
	(C)	Microsoft Media Console	9						
	(D)	Microsoft Motion Contro	01						
	(E)	None of the above							
72.	Whi	ch tool can be used to find	the broken li	nks in	n a Web site?				
	(A)	NT Explorer		(B)	Site Server Express				
	(C)	User Manager		(D)	Performance Monitor				
	(E)	None of the above							
73.	Whi	Which of the following network devices translates between data formats?							
	(A)	Repeater		(B)	Switch				
	(C)	Gateway		(D)	Router				
	(E)	None of the above							
74.	Whi	Which of the following is Class C IP address?							
	(A)	10.10.14.118		(B)	135.23.112.57				
	(C)	191.200.199.199		(D)	204.67.118.54				
	(E)	None of the above							
75.	Wha	What protocol is used between E-Mail servers?							
	(A)	HTTP		(B)	POP3				
	(C)	SNMP		(D)	SMTP				
	(E)	None of the above							
76.	Which of the following network topologies have each computer connected to a centra point?								
	(A)	Bus		(B)	Ring				
	(C)	Star		(D)	Mesh				
	(E)	None of the above							
77.	Which of the following network topologies is the most fault tolerant?								
	(A)	Bus		(B)	Mesh				
	(C)	Star		(D)	Ring				
	(E)	None of the above							

78.	A Hub operates at which of the following layers of the OSI model?							
	(A)	Physical	(B)	Session				
	(C)	Transport	(D)	Application				
	(E)	None of the above						
79.	The	terms "red book", "yellow book", and "	orange	e book" refer to:				
	(A)	SCSI standards	(B)	IDE standards				
	(C)	RAID standards	(D)	CD-Rom standards				
	(E)	None of the above						
80.	In 8	085, the addressing mode of ADD M i	nstruc	tion is				
	(A)	Immediate addressing mode	(B)	Indirect addressing mode				
	(C)	Direct addressing mode	(D)	All of the above				
	(E)	None of the above						
81.	What does XMS and EMS refer to?							
	(A)	extended memory, expanded memory	y					
	(B)	expanded memory, extended memory	y					
	(C)	(C) extra memory systems, expanded memory status						
	(D) expanded memory status, extra memory systems							
	(E)	none of the above						
82.	Virtual memory is composed of:							
	(A)	A ram and sub-system	(B)	A bios extension and RAM Chip				
	(C)	Ram and a swap file	(D)	DOS extensions and RAM				
	(E)	None of the above						
83.	Page-Stealer process							
	(A)	(A) makes rooms for the incoming pages, by swapping the memory pages that are not the part of the working set of a process						
	(B)	cannot steal the page, which is being	faulte	ed in				
	(C)	(C) created by the Kernel at the system initialization and invokes it throughout the lifetime of the system						
	(D)	all of the above						
	(E)	none of the above						

84.	Whic		d in autoexec.ba	t to	halt its processing until a key is				
	(A)	stop		(B)	hold				
	(C)	pause		(D)	interrupt				
	(E)	none of the above							
85.	A cli	uster is the minimum fi	le allocation unit	. A c	cluster is composed of:				
00.	(A)	off-set code		(B)	conventional ram				
	(C)	sectors		(D)	clutters				
	(E)	none of the above		, ,					
86.	"Hot	"Hot Docking" means that:							
	(A)	(A) power must be off to remove\install a device							
	(B)	(B) power can be on to remove\install a device							
	(C)	(C) a warm boot must be done before a device is removed\installed							
	(D)	a hot boot must be do	ne before a device	e is r	removed\installed				
	(E)	none of the above							
87.	Re-entrancy means that								
	(A) a process queuing technique for multi-programmed timesharing systems								
	(B) a memory-saving technique for multi-programmed timesharing systems								
	(C)								
	(D)	a substitute process systems	scheduling techn	niqu	e for multi-programmed timesharing				
	(E)	none of the above							
88.	What is the Output of the program?								
	main()								
		{							
		static int var = 5;							
		printf("%d ",var);							
		if(var)							
		main();							
		}							
	(A)	4		(B)	5				
	(C)	54321		(D)	Error				
	(E)	None of the above		10206					

0.0							
89.		ators are also known as		(70)	m		
	(A)	Modifiers		(B)	Test inputs		
	(C)	Redundant values		(D)	All of the above		
	(E)	None of the above					
90.	How	v many null branches are	there in a bin	ary tr	ree with 20 nodes?		
	(A)	20		(B)	21		
	(C)	4		(D)	5		
	(E)	None of the above					
91.	A R	outer operates in which la	yer of the OS	I mod	el?		
	(A)	The Network Layer		(B)	The Data Link Layer		
	(C)	The Transport Layer		(D)	The Application Layer		
	(E)	None of the above					
92.	Whi	ich of the following layers	of the OSI mo	odel d	oes a Bridge operate in?		
	(A)	The Data Link Layer		(B)	The Network Layer		
	(C)	The Transport Layer		(D)	The Session Layer		
	(E)	None of the above	3.				
93.	One	important difference be	tween routers	s and	bridges is that when a bridge can		
	locate the destination address in its table it ————?						
	(A)	sends the transmission	to the default	gatev	vay		
	(B)	dumps the packet					
	(C)	broadcasts the transmis	sion to all por	rts			
	(D)	sends the error message	to the sender	r	70 198 50 98 50		
	(E)	none of the above					

94.	Bela	ady's anomaly also known	as					
	(A)	FIFO anomaly		(B)	Waiting Queue Anomaly			
	(C)	Low level scheduling an	omaly	(D)	Critical section anomaly			
	(E)	None of the above						
95.	Lon	g term scheduler ———	—— and Med	lium t	term scheduling ———.			
	(A) controls the degree of multiprogramming, controls the swapping function							
	(B) controls the swapping function, controls the degree of multiprogramming							
	(C) controls the swapping function, controls the degree of preemption							
	(D)	(D) controls the degree of preemption, controls the swapping function						
	(E)	none of the above						
96.	Wha	at is the Output of the pro	gram?					
	#define clrscr() 100							
	mai	n()						
	{							
	clrs	cr();						
	prin	atf("%d\n",clrscr());						
	}							
	(A)	100		(B)	Size of the Function			
	(C)	6		(D)	Error			
	(E)	None of the above						
97.	The method(s) available in storing sequential files is/are:							
	(A)	Straight merging		(B)	Natural merging			
	(C)	Polyphase sort		(D)	All of the above			
	(E)	None of the above						

98.	Hov	w many different trees are possible with 'n' nodes?							
	(A)	2 ⁿ -n different trees							
	(B)	2 ⁿ different trees							
	(C)	n ² -2 different trees							
	(D)	n²-n different trees							
	(E)	none of the above							
99.	Whi	ich of the following cryptography options would increase overhead/cost?							
	(A)	The encryption is symmetric rather than asymmetric.							
	(B)	A long asymmetric encryption key is used.							
	(C)	The hash is encrypted rather than the message.							
	(D)	A secret key is used.							
	(E)	None of the above							
100.	Whi	ich of the following is the GREATEST risk of an inadequate policy defi	nition for						
	owne	nership of data and systems?							
	(A)	User management coordination does not exist.							
	(B)	Specific user accountability cannot be established.							
	(C)	Unauthorized users may have access to originate, modify or delete data.							
	(D)	Audit recommendations may not be implemented.							
	(E)	None of the above							