tech 3

ENTRANCE EXAMINATION FOR ADMISSION, MAY 2011. M.Tech./Ph.D. (EXPLORATION GEOSCIENCES AND EARTH SCIENCES) COURSE CODE: 306/110

Register Number:		
		Signature of the Invigilator (with date)

COURSE CODE: 306/110

Time: 2 Hours Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	The boundary between — coincides with major changes in the life present on Earth							
	(A)	Precambrian-cambrian		(B)	Cretaceous-tertiary			
	(C)	Archean-proterzoic		(D)	Pliestocene-holocene			
2.		forms with the crest trending rection are called	ough	ly pai	rallel to the net sediment transpor			
	(A)	Linear dune		(B)	Longitudinal dune			
	(C)	Seif dune		(D)	Parabolic dune			
3.	The	tonalite-trondhjemite-granodiorit	e ma	gmati	ism ended at ———— boundary.			
	(A) Precambrian-cambrian			(B)	Cretaceous-tertiary			
	(C)	Archean-proterzoic		(D)	Paleozoic-mesozoic			
4.	Eps	ilon cross-stratification is common	in					
	(A) Marine environment			(B)	Fluvial environment			
	(C)	Lacustrine environment		(D)	Aeolian environment			
5.	Fore	eland basins are associated with						
	(A)	Crustal extension		(B)	Strike slip faults			
	(C)	Thrusting		(D)	Thermal contraction			
6.	Maj	or evolution of Atmospheric oxyge	n in i	Earth	took place during			
	(A)	3500-3700 million years ago		(B)	2100-2200 million years ago			
	(C)	540 million years ago		(D)	200 million years ago			
7.	SEDEX type ore deposits are not older than 1.9 Ga, this is because of							
	(A) Widespread sea floor spreading after 1.9 Ga							
	(B)	Widespread granite plutonism in	con	tinent				
	(C)	Evolution of atmospheric oxygen	and	subse	equent oxygenation of ocean water			
	(D)	Increase of salinity in sea water						
8.	Den	sity driven currents tends to prod	uce					
	(A)	Coarsening upward sequence		(B)	Fining upward sequence			
	(C)	Thickening upward sequence		(D)	Amalgamated sequence			
306/	110		2					

9.	Arch pre-I	itectures of fluvial facies of post-Dev Devonian time. This change is due to	onian	are distinctly different from that of				
	(A)	(A) Climate change during Devonian period						
	(B)	Global sea level rise after Devonian						
	(C)	Evolution and proliferation of land pera and subsequent stabilization of fl	olants ood pl	during Devonian and post Devonian ains				
	(D)	Evolution of atmospheric oxygen						
10.	Qua	rtzite-limestone litho-assemblages are	chara	cteristics of				
	(A)	Intracratonic basin	(B)	Foreland basin				
	(C)	Back arc basin	(D)	Passive continental margin basin				
11.	Swa	ley cross stratification is characteristi	cs of					
	(A)	Storm deposits in shallow marine co	nditior	1				
	(B)	The second secon						
	(C)	Turbidity current induced deposits						
	(D)	Sheet flood facies in an alluvial basis	n					
12.	Ores	s of Cr, Ni, Pt, Au are associated with						
	(A)	Mafic-ultramafic igneous rocks	(B)	Intermediate igneous rocks				
	(C)	Felsic igneous rocks	(D)	Sandstones				
13.	Ores	s of Li, Be, Cs associated with						
	(A)	Gabbro	(B)	Diorite				
	(C)	Granite-pegmatite pluton	(D)	Acid volcanic rocks				
14.	Und	ler isobaric (i.e. equal pressure) condi	ion, H	₂ O solubility is highest in				
	(A)	Granitic magma	(B)	Andesitic magma				
	(C)	Basaltic magma	(D)	Ultrabasic magma				
15.	In c	case you are doing reconnaissance ge ted Sn deposit, your most preferred sa	ochem mple i	ical exploration for granite pegmatite media would be				
	(A)	Residual soil						
	(B)	Stream sediment (fine fraction)						
	(C)	Stream sediment (coarse fraction)						
	(D)	Stream sediment (heavy mineral fra	action)					

16.	For locating Nb-Ta deposit, one should target following geological terrain						
	(A)	Sedimentary basin	(B)	Mafic-ultra mafic igneous terrain			
	(C)	Granite batholith	(D)	Proterozoic fold belts			
17.	Whi	ch one of the following group represents	the	rare metals?			
	(A)	Sn-W-Mo	(B)	Li-Be-Nb			
	(C)	Cu-Pb-Zn	(D)	Ce-Nd-Sm			
18.		a steeply dipping vein type deposit, t nation method would be	he m	ost preferred method of ore reserve			
	(A)	Planar method with uniform area of in	ıfluer	nce			
	(B)	Polygonal method					
	(C)	Triangular method					
	(D)	Cross sectional method					
19.	Porp	hyry type Cu-Mo-(Sn-W) are associated	l with	n following tectonic setting			
	(A)	Divergent plate margin	(B)	Conservative plate margin			
	(C)	Collisional plate margin	(D)	Plate interior			
20.	Dia	mond deposits are associated with					
	(A)	Granitic intrusions	(B)	Kimberlite pipes			
	(C)	Carbonatite	(\mathbb{D})	Komatiite			
21.	Which one of the following pairs does not form exsolution intergrowth in ore mineral assemblages?						
	(A)	chalcopyrite-sphalerite	(B)	magnetite-ilmenite			
	(C)	pyrite-pyrrhotite	(D)	chalcopyrite-cubanite			
22.	Mos	t economic iron deposits (BIF) were dep	osite	d during			
	(A)	1000-670 ma	(B)	3700-3500 ma			
	(C)	2600-1850 ma	(D)	100-150 ma			
23.	Stue	dy of alteration assemblages yield best	resu	lts in case of geochemical exploration			
	(A)	Porphyry type hydrothermal deposits	(B)	VMS-SEDEX deposits			
	(C)	Stratiform deposits	(D)	Orthomagmatic deposits			

306/110

24.	Whi	ch one of the following was NOT the m	ajor s	ource of heat in the primordial earth?				
	(A)	(A) Decay of short-lived radioactive isotopes						
	(B)	Decay of long-lived radioactive isotop	es					
	(C)	Impact of planetesimals						
	(D)	Energy from the sun						
25.		erals whose fields of stability on a P-T non-hydrostatic stress are described as		ram are extended on the introduction				
	(A)	Stress minerals	(B)	Anti-Stress minerals				
	(C)	Elastic minerals	(D)	Plastic minerals				
26.	Stre	ss minerals are characterized by						
	(i)	High packing index of crystal lattice	(ii)	Low molar volume				
	(iii)	High density	(iv)	Equidimensional habit				
	(A)	(i) and (iii) only	(B)	(i) and (ii) only				
	(C)	(i), (ii) and (iii) only	(D)	(ii), (iii) and (iv) only				
27.	Whi	ch trace elements can substitute the ne?	major	ions present in M1 and M2 sites of				
	(A)	Ba and Rb	(B)	U and Th				
	(C)	Nb and Sr	(D)	Ni and Cr				
28.	Serpentinites and spilites are characteristics of which one of the following settings?							
	(A)	Continental collision zones	(B)	Along shallow faults				
	(C)	Mid-ocean ridges	(D)	Mid-continental regions				
29.	The major difference between rock deformation experiments conducted in a laboratory and rock deformation that occurs naturally is that							
	(A)							
	(B)	The pressures are much lower in labo	rator	y experiments than in nature				
,	(C)	The time of deformation is much s	horte	in laboratory experiments than in				
	(D)	Real rocks are not used in laboratory	exper	iments as they are in nature				
30.	S- or	Z-shaped inclusion trails in garnets in	ndicat	e				
	(A)	Syn-tectonic crystallization	(B)	Pre-tectonic crystallization				
	(C)	Post-tectonic crystallization	$^{-}(D)$	Magmatic crystallization				

31.	Whi	ich of the following statements about	t metamo	orphism of shale is false?					
	(A)	A) With increasing metamorphism, the clay minerals breakdown to form micas							
	(B)	B) With increasing metamorphism, the grain size of the minerals gets smaller							
	(C)	C) With increasing metamorphism, foliation develops							
	(D)	With increasing metamorphism, th	ne amour	nt of water decreases					
32.	An overturned fold is characterized by								
	(A)	A) Two limbs at right angles to one another							
	(B)	Two limbs dipping in the same dire	ection - v	vith one tilted beyond vertical					
	(C)	Two limbs dipping in opposite dire	ctions						
	(D)	Two limbs not parallel to each other	er						
33.	How	How do rock particles move during the passage of a P wave through the rock?							
	(A)	A) Back and forth parallel to the direction of wave travel							
	(B)	Back and forth perpendicular to the direction of wave travel							
	(C)	In a rolling circular motion							
	(D)	The particles do not move							
34.	Shear strain is measured by								
	(A)	Change in length of a line	(B)	Change in angle between two lines					
	(C)	Displacement of a line	(D)	Bending of line					
35.	If the net slip of a fault is parallel to the trace of the bedding on the fault plane then								
	(A)	Strike separation is zero							
	(B)	Dip separation is zero							
	(C)	Both strike and dip separations ar	e zero						
	(D)	Both strike and dip separations ar	e nonzer	0					
36.	The	intensity of diffracted X-ray depend	s on						
	(A)	Electron density	(B)	Atomic nuclei					
	(C)	Chemical bonds	(D)	Unit cell volume					
37.	Poly	morphic transformation does NOT i	nvolve cl	hange in					
	(A)	Crystal class	(B)	Chemical composition					
	(C)	Density	(D)	Refractive index					

- 38. Minerals belonging to a solid solution series have
 - (A) Similar crystal structure
- (B) Same physical properties
- (C) Different crystal structure
- (D) Similar chemical composition
- 39. The abundance of elements in the Earth's mantle is about 1.8 times the primitive chondrites. This is due to
 - (A) Formation of the Moon from Earth
 - (B) Early differentiation of Earth to core and mantle
 - (C) Later addition of elements by meteorite impacts
 - (D) Abundance of elements in bulk earth is about 1.8 times the primitive chondrites

Study the figure given below and answer the following two questions.

- 40. A melt of composition 20% diopside + 80 % anorthite at 1550 °C undergoes cooling and crystallization. Which of the following minerals will be formed as phenocryst?
 - (A) Diopside

(B) Enstatite

(C) Forsterite

- (D) Anorthite
- 41. A rock consisting of 70% diopside + 30 % anorthite is heated. At what temperature it will start melting?
 - (A) 1553°c

(B) 1391°c

(C) 1300°c

- (D) 1274°c
- 42. The Andes Mountains of South America are a result of which type of plate boundary?
 - (A) Ocean-continent convergence
- (B) Ocean-ocean convergence
- (C) Continent-continent convergence
- (D) Divergent

43. The change in the compatibility diagram for a ternary system across the metamorphic isograd is depicted schematically. The governing reaction at the isograd is

(A) A+B=C+D

(B) B + D = A + C

(C) A + B + C = A + C + D

- (D) B + C = A + D
- Out of the following which of the point groups are not possible?
 - (A) 222
- (B) 446
- (C) 334
- (D) 422
- The change in the plagioclase composition from albite to oligoclase indicate the transition from
 - (A) Amphibolite → granulite
- (B) Greenschist → amphibolite

(C) Blueschist → eclogite

- (D) Greenschist → blueschist
- Clay minerals are common examples of silicate structures.
 - (A) Framework

(B) Single chains

Sheet silicates (C)

- (D) Isolated tetrahedral
- Spinifex texture is characteristic of
 - (A) Komatiite
- (B) Gabbro
- (C) Andesite
- (D) Basalt
- Which one of the following minerals is useful to determine the initial 87Sr/86Sr ratio of 48. a granodiorite rock?
 - (A) Plagioclase
- (B) Orthoclase
- (C) Biotite
- (D) Hornblende
- Negative Eu anomaly will be formed in the residual magma by fractional 49. crystallization of
 - (A) Olivine
- (B) orthopyroxene (C) clinopyroxene (D) plagioclase

- A drainage pattern whose plan resembles ring-like structure is called as
 - (A) Dendritic
- (B) Trellis (C) Annular
- (D) Radial

51.	The	two words in Bin	omia	l nomenclature d	esign	iate		
	(A)	Order & family			(B)	Family & genu	S	
	(C)	Genus & specie	S		(D)	Phylum & class	s '	
52.	Cor	al reefs are gener	ally f	ound in				
	(A)	Polar region			(B)	Tropical region		
	(C)	Sub polar region	n		(D)	All regions		
53.	Brai	in and Cranial ca	pacit	y of humans rang	es fr	om		
	(A)	450 cc to 600 cc			(B)	1200 cc to 1250	cc	
	(C)	1350 cc to 2000	сс	•	(D)	2000 cc to 3500	сс	
54.	Foss	sil Ammonites ind	licate	ре	riod o	of time.		
	(A)	Cretaceous	(B)	Tertiary	(C)	Carboniferous	(D)	Cambrian
55.	Petr	ified wood is an e	xam	ple of				
	(A)	Encrustation	(B)	Substitution	(C)	Alteration	(D)	Desiccation
56.	Enti	renched meander	s are	developed due to				
	(A)	Diastrophism	(B)	Retrogradation	(C)	Degradation	(D)	Rejuvination
57.	The	age of Muth quar	tzite	is				
	(A)	Silurian	(B)	Devonian	(C)	Ordovician	(D)	Cambrian
58.		nity is the amou kilogram of sea w					and h	ence, normally
	(A)	25	(B)	30	(C)	35	(D)	40
59.	Mor	e than 50% of the	ocea	n bottom is cover	ed w	ith ———	sedim	ients.
	(A)	Lithogenous	(B)	Hydrogenous	(C)	Biogenous	(D)	Cosmogenous
60.	Here	cynian or Varisca	n Or	ogeny took place	durin	g		
	(A)	Silurian			(B)	Devonian		
	(C)	Permo carbonife	erous		(D)	Jurassic		
61.	Che	mical weathering	is m	ore effective in —		regions		
	(A)	Warm & humid			(B)	Arid		
	(C)	Semi arid			(D)	Arid & semi ar	id	

62.	Per	mian is represented in Spiti region by					
	(A)	Kanawar group	(B)	Kuling system			
	(C)	Agglomerate shale	(D)	Tal shale			
63.	Dec	can volcanic flow started at the end of	?	—— period.			
	(A)	Permian (B) Triassic	(C)	Jurassic	(D) Cretaceous		
64.	Inve	ertebrates of ———— group move	with f	astest speed.			
	(A)	Cephalopoda	(B)	Echinodermata			
	(C)	Gastropoda	(D)	Brachiopoda			
65.	Whi	ch of the following energy resources is	s renew	rable?			
	(A)	Coal	(B)	Hydroelectric p	ower		
	(C)	Nuclear energy	(D)	Petroleum			
66.	Whi	ch one of the rock types is the best ca	p rock i	for oil and gas res	servoirs?		
	(A)	Evaporites (B) Limestone	(C)	Shale	(D) Sandstone		
67.	Which of the following types of global change is unidirectional (i.e. not reversible)?						
	(A)	Orogenic uplift	(B)	Rock cycle			
	(C)	Evolution of life on Earth	(D)	Global warming	g		
68.	Whi	ch of the following may not cause mel	ting in	mantle?			
	(A)	Subduction of water bearing minera	ls in m	antle			
	(B)	Rise of plume from core-mantle bour	ndary				
	(C)	Divergence of plate at mid-oceanic r	idges				
	(D)	Convection of mantle					
69.		adioactive isotope decays with a mea ain without decaying after	n life o	of 10 hours. Hali	f of its atoms would		
	(A)	5 hours (B) 10 hours	(C)	1.44 hours	(D) 6.93 hours		
70.	repe	experiment to determine elemental c ated 3 times (i) 10.12 ppm (ii) 10.11 p pm, it means that the experimental r	pm (iii)	10.13 ppm; if ac			
	(A)	More precise than accurate					
	(B)	More accurate than precise		20			
	(C)	Correct within the uncertainty of the	e exper	iment			
	(D)	Correct within the errors of measure	ement				

10

306/110

- 71. Garnet usually forms under high pressure and temperature conditions. A geologist reports a garnet rich rock type from a field area. It means
 - (A) That rock is under high pressure and temperature conditions when the geologist discovered it
 - (B) Garnet is in metastable condition
 - (C) The mineral reported as garnet is not a garnet
 - (D) Thermodynamically the rock is in equilibrium conditions
- 72. A rock dated with Rb-Sr method yields an age of 550 Ma, the same rock when dated with Sm-Nd method yields and age of 2.5 Ga. One of the likely explanation for these results is
 - (A) Rb- Sr method does not give a correct age
 - (B) Sm-Nd method does not give correct age
 - (C) 550 Ma is age of metamorphism while 2.5 Ga is age of protolith formation
 - (D) This rock can not be dated by any method
- Comparatively higher concentrations of incompatible elements are expected in a rock which formed by
 - (A) Small degree of partial melting of upper mantle
 - (B) Large degree of partial melting of upper mantle
 - (C) Small degree of partial melting of pre-existing crustal rock
 - (D) Residue of melting in upper mantle
- 74. A liquid remaining after progressive fractionation of early formed crystals from a basaltic melt is likely to be enriched in
 - (A) K and REE
- (B) Ca and Mg
- (C) Mg and Fe
- (D) Cr and Ni
- 75. A granulite facies rock is usually characterized by dry mineral assemblage because
 - (A) With progressive metamorphism metamorphic reactions remove all the water
 - (B) Original protolith does not contain any water bearing minerals
 - (C) Granulite facies metamorphism take place before the amphibolites facies in prograde sequence
 - (D) Igneous rocks are protoliths of these rocks
- 76. Two rocks metamorphosed at same temperature pressure conditions have different mineral assemblages. This may mean that
 - (A) They belong to different facies
 - (B) They have different bulk compositions
 - (C) They have different tectonic settings
 - (D) They are metamorphosed at different depths

77.	Anı	ucleus decays by a	lpha decay. The dau	ghter	would have				
	(A)) Mass number 4 less than parent but same atomic number							
	(B)	Same mass number and same atomic number							
	(C)	Atomic number	less by 2 and same n	nass n	umber as par	ent			
	(D)	Atomic number	ess by 2 and mass n	umber	less by 4 cor	npared to pare	nt		
78.	Dur	ing β^- decay of a	nucleus						
	(A)	A proton gets con	nverted to a neutron						
	(B)								
	(C)		n is captured by nuc						
	(D)		place in proton or n		number				
79.	Foll	owing is one of the	e shear sense indicat	tors to	help identify	shearing in fie	eld		
	(A)	c-s fabric		(B)	gneissic bar				
	(C)	upright symmet	ric folds	(D)	normal faul				
80.	A cr	ystal appears unc	hanged when rotate	d 120°.	Such an axis	s of rotation is	axis of		
	(A)	1-fold symmetry		(B)	2-fold symn	netry			
	(C)	3-fold symmetry		(D)	4-fold symn	netry			
81.	Crystals that have three 2-fold axes of symmetry perpendicular to each other belong								
	to								
	(A)	Monoclinic syste	m	(B)	Triclinic sy	stem			
	(C)	Orthorhombic sy	rstem	(D)	Tetragonal	system			
82.	In a crystal 4 non-parallel faces intersect in a point. Form of these faces is								
	(A)	Prism	(B) Pinacoid	(C)	Pyramid	(D) Don	ne		
83.	Di-octahedral micas have								
	(A)	2 cations in octa	hedral co-ordination						
	(B)	3 cations in octa	hedral co-ordination						
	(C)	4 cations in octa	hedral co-ordination						
	(D)	6 cations in octa	hedral co-ordination						
84.			valent Na substitut olagioclase series. T				give rise to		
	(A)	Incorporation of	another monovalent	cation	n like H in th	e structure			
	(B)	Keeping one cati	on site vacant						
	(C)	Simultaneous su	bstitution of Al and	Si					
	(D)	Creating or brea	king one bond with	one of	the non-bridg	ging oxygen			
306/	110		19						

85.	Seis	mic stations around the world have re	ecorded	a 'push' as the first motion. It means					
	(A)	A single-couple source	(B)	A double-couple source					
	(C)	Strong p-wave arrival	(D)	An underground explosion					
86.	_	central distance of 180° equals to a face of the earth. (radius of the earth i		nately how many kilometers on the km)					
	(A)	18000 km (B) 20005 km	(C)	40010 km (D) 180 km					
87.	S- w	vaves cannot travel through liquid bec	ause						
	(A)	(A) Their velocity is slower than P- waves							
	(B)	(B) S-wave travel by shear deformation and liquids can not be deformed by shearing							
	(C)	Because their amplitudes are larger	than li	iquids capacity					
	(D)	Because they are secondary waves							
88.	Defl	lection of a moving object on Earth's s	urface	is due to					
	(A)	Coriolis force	(B)	Centripetal force					
	(C)	Milankovitch force	(D)	Lorentz force					
89.	Whi	ich is NOT true for older oceanic floor	?						
	(A)	It has comparatively lower heat flow	V						
	(B)	It is comparatively denser							
	(C)	It is away from mid-oceanic ridges							
	(D)	It is usually in center of the oceans							
90.	The mean radius of the Earth is 6371 km. On taking a gravimeter 1 km up in a balloon you would expect the value of g to decrease by								
	(A)	3%	(B)	1%					
	(C)	0.03%	(D)	0.007%					
91.	An i	isostatically over-compensated mount	tain is l	ikely to experience					
	(A)	Vertical uplift	(B)	Erosion					
	(C)	Shear	(D)	Gravitational collapse					
92.	Whi	ich of the following types of sediments	s is mos	et abundant?					
	(A)	Coarse clastics	(B)	Fine clastics					
	(C)	Chemical	(D)	Biochemical					
		13		306/110					

93.		ch of the following is an examp ironment?	ole of	a continental-marine transitional		
	(A)	Alluvial	(B)	Continental shelf		
	(C)	Deltaic	(D)	Organic reef		
94.	Coa	rse clastic material can be transported	into a	deep marine environment by		
	(A)	Rivers	(B)	Wind		
	(C)	Turbidity currents	(D)	Long shore currents		
95.	Mar	rine sediments deposited in water dept	hs gre	ater than 3500 m usually lack		
	(A)	Carbonate shells				
	(B)	Silica-rich shells				
	(C)	Fine grained material transported by	the w	rind		
	(D)	Cosmogenic sediments				
96.	In w	which of the following environments wo	uld yo	u expect to find oscillation ripples?		
	(A)	Alluvial	(B)	Shore face		
	(C)	Deep-sea	(D)	Desert		
97.		ch of the following processes is not an elopment of a sedimentary basin?	impo	rtant cause of subsidence during the		
	(A)	Cooling and contraction of the crust	(B)	Deposition of sediments		
	(C)	Erosion of sediments	(D)	Tectonic down faulting		
98.	Which of the following sedimentary environments is characterized by sand, gravel and mud?					
	(A)	Active margin beach	(B)	Alluvial fans		
	(C)	Glacial	(D)	Deep marine		
99.		ch of the following sandstone types thering of a granite?	is mo	st likely to form by the mechanical		
	(A)	Quartz arenite	(B)	Litharenite		
	(C)	Arkose	(D)	Shale		
100.	Whi	ch type of weathering creates clay min	erals?			
	(A)	Dissolution	(B)	Frost wedging		
	(C)	Hydrolysis	(D)	Oxidation		
				_		