ENTRANCE EXAMINATION FOR ADMISSION, MAY 2013.

Ph.D. (BIOCHEMISTRY AND MOLECULAR BIOLOGY)

COURSE CODE: 102

Register Number :	
	Signature of the Invigilator (with date)
.,. <u></u>	· · · · · · · · · · · · · · · · · · ·

COURSE CODE: 102

Time: 2 Hours

Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET <u>using HB pencil</u>.
- 4. Avoid blind guessing. A wrong answer will fetch you -1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	Vita	min D deficiency in adults causes,						
	(A)	Rickets	(B)	Osteoporosis				
	(C)	Osteomalacia	(D)	Paget's disease of bone				
2.	Nor	mal blood calcium levels range betwe	en					
	(A)	8-10.5 mg/dL	(B)	$6\text{-}8~\mathrm{mg/dL}$				
	(C)	10.5- 12 mg/ dL	(D)	1-2 mg/ dL				
3.	Vita	mins necessary for nucleic acid synth	iesis ai	re				
	(A)	Vitamin B1 and folate	(B)	Vitamin C and B1				
	(C)	Vitamin B3 and folate	(D)	Vitamin K and Vitamin C				
4.	Whi	ch of these connective tissue types ha	as prote	eoglycans in its matrix?				
	(A)	Bone	(B)	Cartilage				
	(C)	Ligaments	(D)	Tendons				
5.	The	The most abundant protein making up $\sim\!25\text{-}35\%$ of the human body is						
	(A)	Albumin	(B)	Hemoglobulin				
	(C)	Proteoglycan	(D)	Collagen				
6.	Met	Methylation of glutamate residues is typically associated with						
	(A)	Chemotaxis in bacteria	(B)	Nuclear translocation in eukaryotes				
	(C)	Inter-celluIar transport in planis	(D)	Restriction in bacteria				
7.	What method did Frederick Sanger use to elucidate the structure of insulin?							
	(A)	High -speed centrifugation	(B)	NMR spectroscopy				
	(C)	Analysis of amino acid sequence	(D)	X-ray crystallography				
8.	In t	In the double helix structure of nucleic acids, cytosine hydrogen bonds to						
	(A)	Deoxyribose	(B)	Guanine				
	(C)	Λ denine	(D)	Ribose				
9.	The	advantage of light microscopy over e	lectron	microscopy is that				
	(A)	Light microscopy allows one to view	dynar dynar	nic processes in living cells				
	(B)	Light microscopy provides for highe	er resol	ving power than electron microscopy				
	(C)	Light microscopy provides for highe	r magi	nification than electron microscopy.				
	(D)	(A) and (C)						

	10.		young male child	l has cystic fibros	sis, wh	ich of the following would affect his	
		(A)	Inability to make	sperm			
		(B)	Failure to form g	enital structures a	appropr	riately	
		(C)	Incorrect concent	rations of ions in	semen	••	
•		(D)	Abnormal pH in	seminal fluid	·		
	11.	SH2	2 domains on prote	ins are specific for	which	of the following sites?	
		(A)	(A) Certain sequences of amino acid containing a phosphotyrosine residue				
		(B)	(B) PI-3,4,5 triphosphate in the membrane				
		(C)	(C) GTP-activated Ras				
		(D)	Ca2+-calmodulin	-			
	12.	The activity of which of the following enzymes is NOT required for the release of large amounts of glucose from liver glycogen?					
		(A)	Glucose 6-phosph	natase	(B)	Fructose 1,6-bisphosphatase	
		(C)	lpha -1,6-glucosidas	e	(D)	Phosphoglucomutase	
	13.	The order of electron carriers of electron transport chain based on their increasing order of standard reduction potential is					
		(A)	$NADH \rightarrow Q \rightarrow cy$	$vt b \rightarrow cyt c_1 \rightarrow cyt$	$c \rightarrow cy$	$t a \rightarrow cyt a_3 \rightarrow O_2$	
		(B)	$NADH \rightarrow Q \rightarrow cy$	$c t c \rightarrow cyt c_1 \rightarrow cyt$	$b \rightarrow cy$	$t a \rightarrow cyt a_3 \rightarrow O_2$	
		(C)·	$O_2 \rightarrow \text{cyt } a_3 \rightarrow \text{cy}$	$t \ a \rightarrow cyt \ b \rightarrow cyt \ cyt $	$c \to cyt$	$c_1 \rightarrow Q \rightarrow NADH$	
		(D)	$O_2 \rightarrow cyt \ a_3 \rightarrow cy$	$t a \rightarrow cyt c \rightarrow cyt c$	$c_1 \rightarrow \text{cyt}$	$b \rightarrow Q \rightarrow NADH$	
	14.		facilitative transp cells is which of th		sible for	r transporting fructose from the blood	
		(A)	GLUT 1		(B)	GLUT 3	
		(C)	GLUT 4	•	(D)	GLUT 5	
	15.	The is	concentration of C	OH- ions in a solu	tion wit	th an H+ concentration of 1.3×10^{-4} M	
		(A)	$6.7 \times 10^{-10} \mathrm{M}$		(B)	$1.3 \times 10^{-4} \mathrm{M}$	
		(C)	$7.7 \times 10^{\text{-}11} \text{ M}$		(D)	$1.3 \times 10^4 \mathrm{M}$	
	16.	The	e number of stereoi	somers of glucose	molecul	le is?	
		(A)	6 .		(B)	10	
		(C)	14		(D)	16	

17.	A person with phenylketonuria cannot convert						
	(A)	Phenylalanine to tyrosine	(B)	Phenylalanine to isoleucine			
	(C)	Phenol into ketones	(D)	Phenylalanine to lysine			
18.	An e	example of a transamination process	s is	•			
	(A)	Glutamate = $hexanoic acid + NH_3$					
	(B)	Aspartate + hexanoic acid = glutar	nate + c	oxaloacetate			
	(C)	Aspartate + α ketoglutarate = glut	amate ·	+ oxaloacetate			
	(D)	Glutamate = α -ketoglutarate + Nl	H_3				
19.	A ke	etogenic amino acid is one which deg	rades to))			
	(A)	Keto-sugars					
	(B)	Either acetyl CoA or acetoacetyl Co	οA	•			
	(C)	Pyruvate or citric acid cycle interm	ediates				
	(D)	Multiple intermediates including pacetyl CoA or acetoacetyl CoA	yruvate	e or citric acid cycle intermediates and			
20.	An allosteric activator						
	(A)	Increases the binding affinity	(B)	Decreases the binding affinity			
	(C)	Stabilizes the R state of the protein	1 (D)	Both (A) and (C)			
21.	The specificity of a ligand binding site on a protein is based on						
	(A)	A) The absence of competing ligands					
	(B)	The amino acid residues lining the	binding	site			
	(C)	The presence of hydrating water m	olecules	3			
	(D)	The opposite chirality of the bindin	g ligano	ł			
22.	The primary effect of the consumption of excess protein beyond the body's immediate needs will be						
	(A)	Excretion of the excess as protein in the urine					
	(B)	An increase in the "storage pool" of	protein				
	(C)	An increased synthesis of muscle pr	rotein				
	(D)	An enhancement in the amount of o	circulati	ing plasma proteins			
23.	A cor	mplete replacement of animal protei	n in the	diet by vegetable protein			
	(A)	Would be expected to have no effect	at all c	on the overall diet.			

(B)

(C)

(D)

calories

Might reduce the total amount of iron and vitamin B12 available

Would reduce the total amount of food consumed for the same number of

Would be satisfactory regardless of the nature of the vegetable protein used

- 24. Ascorbic acid may be associated with all of the following EXCEPT
 - (A) Iron absorption
 - (B) Bone formation
 - (C) Wound healing
 - (D) Participation in hydroxylation reactions
- 25. The characteristic that all lipids have in common is
 - (A) They are all made of fatty acids and glycerol
 - (B) None of them is very high in energy content
 - (C) They are all acidic when mixed with water
 - (D) None of them dissolves in water
- 26. What best explains the observation of substrate specificity?
 - (A) There is a precise compatibility between an enzyme's active site and the substrate
 - (B) Molecules and active sites vary in size; only properly sized molecules can fit
 - (C) Reaction-specific enzymes, such as hydrolases, assume a fit by folding around the most numerous substrate molecules
 - (D) Polarity compatibilities; active sites contain electronegative atoms while substrates tend to carry slight positive charges
- 27. Diphtheria toxin
 - (A) Releases incomplete polypeptide chains from the ribosome
 - (B) Activates translocase
 - (C) Prevents release factor from recognizing termination signals
 - (D) Attacks the RNA of the large subunit
- 28. Targeting a protein to be degraded within proteasomes usually requires ubiquitin. In the functions of ubiquitin all of the following are true EXCEPT
 - (A) ATP is required for activation of ubiquitin
 - (B) Linkage of a protein to ubiquitin does not always mark it for degradation
 - (C) The identity of the N-terminal amino acid is one determinant of selection for degradation
 - (D) ATP is required by the enzyme that transfers the ubiquitin to the protein to be degraded

- 29. If cyanide is added to tightly coupled mitochondria that are actively oxidizing succinate
 - (A) Subsequent addition of 2,4-dinitrophenol will cause ATP hydrolysis
 - (B) Subsequent addition of 2,4-dinitrophenol will restore succinate oxidation
 - (C) Electron flow will cease, but ATP synthesis will continue
 - (D) Subsequent addition of 2,4-dinitrophenol and the phosphorylation inhibitor, oligomycin, will cause ATP hydrolysis.
- 30. The chemiosmotic hypothesis involves all of the following EXCEPT
 - (A) A membrane impermeable to protons.
 - (B) Electron transport by the respiratory chain pumps protons out of the mitochondrion
 - (C) Proton flow into the mitochondria depends on the presence of ADP and Pi'
 - (D) Only proton transport is strictly regulated; other positively charged ions can diffuse freely across the mitochondrial membrane
- 31. 5'-phosphoribosyl-1-pyrophosphate'(PAPP) is an intermediate in
 - (A) The de nevo synthesis of purine nucleotides
 - (B) The de novo synthesis of pyrimidine nueleotides
 - (C) The salvage pathway for the synthesis of purine nucleotides
 - (D) All of the above
- 32. In Lesch-Nyhan Syndrome, lack of activity of the defective enzyme (HGPRTase) should result in higher than normal tissue concentrations of all of the following EXCEPT
 - (A) Adenine

(B) Guanine

(C) Uric acid

(D) Hypoxanthine

- 33. A complete lack of adenosine deaminase causes SCID (Severe combined immunodeficiency). Which of the following is LEAST true
 - (A) Loss of the enzyme causes increased levels of dATP because there is less turnover of adenosine nucleosides in general
 - (B) Increased dATP decreases the concentration of all rNTPs, blocking RNA synthesis
 - (C) Increased dATP inhibits ribonucleotide reductase, such that de novo production of all rNDPs is inhibited
 - (D) Adenosine deaminase loss causes SCID because T cells are particularly sensitive to DNA replication inhibition

34.	Which of these complexes work by rotational catalysis?								
	(A)	NADH dehydrogenase (complex I)		•					
	(B)	Cytochrome c oxidase (complex IV)		·					
	(C)	Glycerol phosphate dehydrogenase (glycerol phosphate shuttle)							
	(D)	ATP synthase							
35.	In w	In which of the following ways are peroxisomes NOT similar to mitochondria?							
	(A)	Engages in oxidative metabolism							
	(B)	Has DNA that encodes a few of its genes							
	(C)	Generated by splitting from pre-exis	sting o	rganelles					
	(D)	Imports preformed proteins from th	e cytos	sol					
36.	A hydropathy plot identifies potential membrane spanning regions of a protein by analyzing the								
	(A)	Primary							
	(B)	Secondary							
	(C)	Tertiary							
	(D)	Quaternary structure of the protein		-					
37.	Whi	ch of the following is not considered t	o be a	second messenger?					
	(A)	Ca ²⁺	(B)	Na+					
	(C)	Diacylglycerol	(D)	Inositol triphosphate					
38.	Apic	cal dominance in plant is governed by							
	(A)	Ethylene	(B)	Auxin					
	(C)	Gibberellin	(D)	Abscisic acid					
39 .	Number of substrate level phosphorylations occurring in citric acid cycle.								
	(A)	One	(B)	Two					
	(C)	Three	(D)	Four					
40.	Cot	analysis provides an estimate of the							
	(A)	G + C content of the DNA	(B)	Tm of the DNA					
	(C)	Complexity of the genome	(D)	Hyperchromic shift of the genome					
41.		ch of the following substances is secr a muscle membrane?	reted a	t a synaptic junction between a nerve					
	(A)	Adrenaline	(B)	Acetylcholine					
	(C)	Dopamine	(D)	Serotonin					

42.	Monosaccharides that have the same chemical formula as glucose include						
	(A)	Valine	(B)	Lactose			
	(C)	Mannose	(D)	Ribose			
4 3.	The	Km of an enzyme – catalysed reaction	n				
	(A)	Is equal to the catalytic rate when	all sub	strate sites are full			
	(B)	Describes the affinity of an enzyme	for its	substrate			
	(C)	Is dependant on the enzyme concer	itration	1			
	(D)	Is equal to the substrate concentrat	tion wh	en the rate of the reaction is maximal.			
44.	Whi	ch of the following antibody is involv	ed in h	ypersensitive reactions?			
	(A)	IgG	(B)	IgE			
	(C)	IgM	(D)	IgD			
45 .	Cera	amide is a precursor to which of the f	ollowin	ng compounds?			
	(A)	Phosphatidyl serine	(B)	Sphingomyelin			
	(C)	Phosphatidyl glycerol	(D)	Phosphatidyl choline			
46.	Which of the following would rule out hyperuricemia in a patient?						
	(A)	Lesch-Nyhan syndrome					
	(B)	Gout					
	(C)	Xanthine oxidase hyperactivity					
	(D)	Carbamoyl phosphate synthase defi	iciency				
4 7.	The important reactive group of glutathione in its role as an antioxidant is						
	(A)	Serine	(B)	Sulfhydryl			
	(C)	Tyrosine	(D)	\mathbf{CoA}			
48.	Mole	ecular iron, Fe, is					
	(A).	Stored primarily in the spleen					
	(B)	Excreted in the urine as Fe2+					
	(C)	Stored in the body in combination w	vith fer	ritin			
	(D)	Absorbed in the intestine by transfe	errin				
49 .	In a	dults, a severe deficiency of vitamin I	D cause	es			
	(A)	Night blindness	(B)	Osteomalacia			
	(C)	Rickets	(D)	None of the above			
102		8					

•

50.		ch of the following enzymes inchondrion?	s localize	ed in the inner membrane of the			
	(A)	Acyl CoA synthetasės					
	(B)	Isocitrate dehydrogenase					
	(C)	Fatty acyl CoA oxidation enzyme	es'				
	(D)	Succinate dehydrogenase					
51.	The	oxygen dissociation curve for haer	noglobin i	is shifted to the right by			
	(A)	Decreased O ₂ tension	(B)	Decreased CO ₂ tension			
	(C)	Increased CO ₂ tension	(D)	Increased pH			
52.	Phe	nylketonuria is caused by a lack of	£				
	(A)	Phenylalanine hydroxylase					
	(B)	Phenylalanine α-ketoglutaric tra	nsaminas	se			
	(C)	Homogentisate oxidase					
	(D)	DOPA decarboxylase					
53.	Of t	ne following body fluids, the one with the lowest pH is					
	(A)	Plasma	(B)	Pancreatic juice			
	(C)	Liver bile	(D)	Gastric juice			
54.	Glu	cose can be oxidized by the					
	(A)	Liver	(B)	Brain			
	(C)	Heart	(D)	All of the above			
5 5.	Which of the following intermediates of metabolism can be both a precursor and a product of glucose?						
	(A)	Lactate	(B)	Pyruvate			
	(C)	Alanine	(D)	All of the above			
56.		one bodies may be synthesized ctures?	from fat	tty acids by which of the following			
	(A)	Erythrocytes	(B)	Brain			
	(C)	Skeletal muscle	(D)	Liver			
57.	Indi	viduals resistant to malaria are de	eficient wi	ith one of the following enzymes			
	(A)	Glucose-6-Phosphate dehydrogen	nase				
	(B)	Lactate dehydrogenase		• •			
	(C)	Pyruvate Kinase					
	(D)	ATPase					

58.	Which of the following enzyme facilitates dissociation of Oxyhemoglobin?						
	(A)	2,3-bisphospho glycerate	(B)	3-phospho glycerate			
	(C)	Phospho-enol Pyruvate	(D)	Pyruvate			
59.	H_2 (O ₂ found in the tissue is destroye	ed by				
	(A)	Hexokinase	(B)	Oxidase			
	(C)	Catalase	(D)	Reductase			
60.	Poly	phenols are present in		·			
	(A)	Apple	(B)	Coffee beads			
	(C)	Fish	(D)	Egg			
61.	Gast	tric ulcers are caused by					
	(A)	Helicobacter pylori	(B)	$Vibrio\ Cholerae$			
	(C)	Lactic acid bacteria	(D)	Streptococcus			
62.	Bloo	d sugar level is reduced by					
	(A)	Glucagon	(B)	Insulin			
	(C)	Somatostatin	(D)	Glucocorticoids			
63.	The	cholesterol molecule is a		•			
	(A)	Benzene derivative	(B)	Quinoline derivative			
	(C)	Steroid	(D)	Tocopherol			
64.	Rats fed a fat-free diet from birth would be deficient in						
	(A)	Prostaglandins	(B)	Phospholipids			
	(C)	Triacylglycerols	(D)	Cholesterol			
65.	The	principle and major energy sour	ce for sperm	natozoa is			
	(A)	Mannose	(B)	Glucose			
	(C)	Fructose	(D)	Galactose			
66.	Defe	ct in ——— metabolism lea	ads to devel	opment of cataract			
	(A)	Galactose	(B)	Cholesterol			
	(C)	Tyrosine	(D)	All the above			
6 7 .	Goitr	e is mainly due to					
	(A)	Thyroxine deficiency	(B)	Triidothyroxine deficiency			
	(C)	Iodine deficiency	(D)	Excess T3 and T4 in blood			

•

68.	Diabetes insipidus is due to							
	(A)	Deficiency of insulin	(B)	Deficiency of ADH				
	(C)	Excessive insulin secretion	(D)	Excessive ADH secretions				
69.	Van	den Bergh test is used to estimate	e serum					
	(A)	Bilirubin	(B)	Albumin				
	(C)	Ketone bodies	(D)	Creatinine				
70.	Whi	ch of the following tissues is capal	ole of cont	ributing to blood glucose?				
	(A)	Skeletal muscle	(B)	Adipose tissues				
	(C)	Cardiac muscle	(D)	Duodenal epithelium				
71.	Incr	ease in the activities of these enzy	mes indic	ate impairment in liver function				
	(A)	AST	(B)	ALT				
	(C)	ALP	(D)	All of the above				
72.	The serum enzyme most predominantly elevated in viral hepatitis is							
	(A)	Aspartate transaminase	(B)	Alanine transaminase				
	(C)	Alkaline phosphatase	(D)	γ -glutamyl transferase				
73.	Renal threshold for glucose is							
	(A)	120mg/dl	(B)	140mg/dl				
	(C)	180mg/dl	(D)	200mg/dl				
74 .	All the following amino acids are essential in mammals EXCEPT							
	(A)	Phenylalanine	(B)	Lysine				
	(C)	Leucine	(D)	Tyrosine				
75.	Hae	moglobin synthesis is stimulated	by this pe	ptide hormone				
	(A)	Erythropoeitin						
	(B)	Erythrocyte stimulating hormone	9					
	(C)	Colony stimulating factor						
	(D)	Hemopoeitin						

76.	Prostagladin synthesis is inhibited by							
	(A)	Aspirin	(B)	Cyclins				
	(C)	Erythromycin	(D)	None of the above				
77.	Defi	iciency of the following vitamin leads	to Ber	i-beri				
	(A)	Thiamin	(B)	Niacin				
	(C)	Pyridoxine	(D)	None of the above				
78.	Whi	ch vitamin is found in rain water dro	ps?					
	(A)	Vitamin A	(B)	Vitamin E				
	(C)	Vitamin B ₆	(D)	Vitamin C				
79.	Of t	he following trace elements, which is	abund	antly needed by human body?				
	(A)	Zinc	(B)	Sodium				
	(C)	Potassium	(D)	Manganese				
80.	Schilling test is used for assessing							
	(A)	Vitamin A absorption	(B)	Vitamin C breakdown				
	(C)	Vitamin B12 absorption	(D)	Vitamin B5 absorption				
81.	Which of the following is an inborn error of copper metabolism?							
	(A)	Menkes syndrome	(B)	Wilson's disease				
	(C)	Both of the above	(D)	None of the above				
82.	Acrodermatitis enteropathica, an inherited disorder of ———— metabolism							
	(A)	Potassium	(B)	Copper				
	(C)	Sodium	(D)	Zinc				
83.	Anti	dote for cyanide is						
	(A)	Dicobalt edetate	(B)	Propranolol				
	(C)	Naloxone	(D)	Atropine				
84.	Whi	ch of the following is a growth hormo	ne?					
	(A)	Somatostatin	(B)	Somatotrophin				
	(C)	TSH	(D)	None of the above				

85.	Acu	Acute gout is triggered by the tissue deposition of ————————— crystals							
	(A)	Potassium urate	(B)	Calcium oxalate					
	(C)	Sodium urate	(D)	All of the above					
86.	Hun	nan chorionic gonadotrophin is a							
	(A)	Glycoprotein	(B)	Glycolipid					
	(C)	Steroid	(D)	Protein					
87.	Which one of the following is an inborn metabolic error?								
	(A)	Hartnup disease	(B)	Galactosemia					
	(C)	Tyrosinemia	(D)	Cystinosis					
88.	Whi	ch of the following metabolic dise	ase occurs	only in males?					
	(A)	Fabry's disease	(B)	Gaucher's disease					
	(C)	Lesch-Nyhan disease	(D)	Hunter's disease					
89.	Which one of the following will be different in different animals?								
	(A)	Fats	(B)	Carbohydrates					
	(C)	Proteins	(D)	Vitamins					
90.	Food molecules become part of the body tissue during								
	(A)	Endogenous metabolism	(B)	Exogenous metabolism					
	(C)	Both of the above	(D)	None of the above					
91.	The	blood bank of human body is							
	(A)	Liver	(B)	Spleen					
	(C)	Pancreas	(D)	Heart					
92.	Blood clot formation is								
	(A)	Hormonal action	· (B)	Enzymatic action					
	(C)	Both (A) and (B)	(D)	None of the above					
93.	A ne	rve which conveys impulses from	a tissue to	nerve centre is called					
	(A)	Efferent	(B)	Mixed					
	(C)	Motor	(D)	Afferent					

94.	Natural lipids are readily soluble in							
	(A)	Oil	(B)	Water				
	(C)	Mercury	(D)	None of the above				
95.	Fat	s are hydrolysed to produce fatty acid	s and	glycerol with the help of enzyme				
	(A)	Glycerol-3-phosphate dehydrogenas	e					
	(B)	Lipase						
	(C)	Triose phosphate isomerase						
	(D)	Triose phosphate dehydrogenase						
96.	Vita	amin H is also known as						
	(A)	Tocopherol	(B)	Phylloquinone				
	(C)	Biotin	(D)	Nicotinic acid				
97.	The following are features of DNA replication EXCEPT							
	(A)	Semi-conservative						
	(B)	Semi-discontinuous						
	(C)	Unidirectional						
	(D)	Chain growth in the 5' -> 3' direction	n					
98.	Which out of the following mechanisms is involved in the production of variety of immunoglobulins each specific for a specific antigen?							
	(A)	Gene replacement	(B)	Gene amplification				
	(C)	Gene rearrangement	(D)	RNA editing				
99.		Which out of the followings is a common enzyme for de novo as well as salva pathway of purine biosynthesis?						
	(A)	Amidotransferase	(B)	PRPP synthetase				
	(C)	HGPRTase	(D)	Adenylosuccinate synthetase				
100.	Whic	ch out of the followings is an example	of post	t transcriptional modification?				
	(A)	Splicing	(B)	Class switching				
	(C)	Subunit aggregation	(D)	Base modification				

•