QN/9

ENTRANCE EXAMINATION FOR ADMISSION, MAY 2010. Ph.D. (BIOCHEMISTRY AND MOLECULAR BIOLOGY)

Register Number :

Signature of the Invigilator (with date)

COURSE CODE: 102 -

Time: 2 Hours

Max: 400 Marks

Instructions to Candidates:

- Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	How	v many different c	odons would exist	in a gene	etic code with	h 4 base codons?	
	(A)	16	(B) 32	(C)	64	(D) 256	
2.	Retr	roviral reverse tra	nscriptase has the	e followin	ig enzyme ac	tivity/activities.	
	(A)	RNA dependent	RNA polymerase	(B)	RNA deper	ndent DNA polymera	tse
	(C)	RNase H		(D)	DNA deper	ndent DNA polymera	ise
3.	Pali	ndromic sequence	es in DNA serve as	3			
	(A)	Signals or attack	hment of RNA pri	mer			
	(B)	Signals for term	ination of RNA sy	nthesis			
	(C)	Sites for restrict	tion endouneclease	es			
	(D)	Primers for DNA	A replication				
4.	2', 3	Dideorynucleotic	de triphosphate (d	dNTPs) l	acks		
	(A)	2' hydroxyl grou	p	(B)	2' and 3' hy	droxyl group	
	(C)	3 hydroxyl group	oonly	(D)	3 hydroxyl	group	
5.	Terr	minal transferase,	, an unique DNA p	oolymera	se which		
	(A)	does not require	a template	(B)	add de-oxy	nucleolides to free 3'	end
	(C)	both (A) and (B)		(D)	none of the	above	
6.	DNA	A ligase catalyses	formation of				
	(A)	3'-5' Phosphodie	ster bond	(B)	5'-3' Phosp	hodiester bonds	
	(C)	both (A) and (B)		(D)	none of the	above	
7.	Enh	ancer can					
	(A)	Work when loca	ted long distances	from the	promoter		
	(B)	Work when ories	nted in either dire	ection			
	(C)	Work by binding	g one or more prot	ein			
	(D)	All the above					
8.	Atte	nuation mechanis	sm is a characteris	stic of			
	(A)	Lac Operon	(B) trp Operon	(C)	Both	(D) None	

9.	The	two hybrid assay is used to identify		
	(A)	Protein-protein interaction	(B)	DNA-protein interaction
	(C)	DNA-RNA Interaction	(D)	DNA-DNA interaction
10.	Tra	nscription of eukaryotic genes can be	repress	sed by a repressor by
	(A)	binding to site on DNA that overlap	the bir	nding site of an activator
	(B)	binding to a site on DNA beside on	an activ	vator site and interact with activators
	(C)	binds to a site upstream of gene machinery at the promoter	and by	interacting with the transcriptional
	(D)	all of the above		
11.	The	process of replicating DNA pol α /pr	imase v	with DNA pol δ is called
	(A)	polymerase switching	(B)	polymerase linearization
	(C)	polymerase dimerization	(D)	None of the above
12.	Mar	ny amino acids are specified by more	than on	e codon, the phenomenon are called
	(A)	synonyms	(B)	degeneracy
	(C)	despairing	(D)	none of the above
13.	A uı	nit of Operon Consists of		
	(A)	Operator + repressor	(B)	Repressor + structural gene
100	(C)	Operator + structural gene	(D)	Operator + activator
14.	In n	orthern blot hybridization		
	(A)	DNA immobilized on the filter is pro-	obed wi	th labeled DNA
	(B)	RNA immobilized on the filter is pro	bed wi	th/abeled DNA or RNA
	(C)	DNA immobilized on the filter is pro	obed wi	th labeled DNA or RNA
	(D)	DNA immobilized on the filter is pro	obed wi	th labeled protein
15.	Dice	er is		
	(A)	RNAse III like enzyme recognize an	d digest	t long dsRNA
	(B)	RNAse III like enzyme recognize an	d digest	t long ssRNA
	(C)	RNAse III like enzyme recognize an	d digest	t long dsDNA
	(D)	RNAse III like enzyme recognize an	d digest	t long ssDNA

16.		pH activity profile of lysozyme drop sh cause	narply	on either side of the optimum at pH
	(A)	Asp 52 carboxyl becomes protonated	(B)	Glu 35 carboxyl becomes ionised
	(C)	All of the above	(D)	None of the above
17.	Enz	yme catalysis can be explained by a loc	k and	key concept of
	(A)	enzyme fit on substrate		
	(B)	substrate fit on active site		
	(C)	cofactor fit on enzyme		
	(D)	substrate fit on charged residues on t	he en	zyme
18.	Gel	filtration is a method for separating pr	oteins	s on the basis of their
	(A)	stokes radii	(B)	solubility
	(C)	hydrophobicity	(D)	surface charge
19.	Two	general classes of enzymatic catalysis	are	
	(A)	anion, cation	(B)	donor, acceptor
	(C)	acid-base, covalent	(D)	ionic, van derwaals
20.	Equ	ilibrium constant of a reaction is define	ed as	the
	(A)	ratio of reactant concentration to pro-	duct c	onc.
	(B)	ratio of product conc, to reactant conc		
	(C)	product of reactant and product conce	entrat	ion
	(D)	inverse product of reactant and produ	ict coi	nc
21.	The	technique of affinity labeling is employ	ed to	identify amino acid residues at
	(A)	active site	(B)	amino terminus
	(C)	carboxy terminus	(D)	membrane interface
22.	The	principal fuel molecule of most cells is		
	(A)	carbohydrate (B) vitamins	(C)	alcohol (D) nucleic acids
23.	Pro	duction of ATP in cells is associated wit	th	
	(A)	electron transport in mitochodria	(B)	glucose import
	(C)	protein degradation	(D)	none of the above

24.	Two important principal commodities provided to a cell by catabolic pathways are							
	(A)	ATP and intermediates	(B)	ATP and NADPH				
	(C)	NAD and intermediates	(D)	Substrates and intermediates				
25.	The	cofactor in the glycogen phosphorylas	se react	ion is				
	(A)	NADP	(B)	Cyclic AMP				
	(C)	Glucose phosphate	(D)	ATP				
26.	Elec	ctron transport is the process in which	electro	ons are transferred from				
	(A)	external acceptor to donor molecules	S					
	(B)	donor molecules to external acceptor	rs					
	(C)	donor molecules to membrane bound	d enzyn	nes				
	(D)	external acceptors to cellular substr	ates"					
27.	All	carboxylation reactions involving CO	₂ fixatio	on in animal cells require				
	(A)	thiamine pyrophosphate	(B)	biotin				
	(C)	alpha-keto carboxylic acids	(D)	coenzyme-A				
28.	Oxio	dative phosphorylation is blocked by						
	(A)	inhibitors of electron transport	(B)	inhibitors of phosphorylation				
	(C)	uncoupling agents	(D)	all of the above				
29.	In the absence of an energy source, most active transport systems promote							
	(A)	active diffusion	(B)	passive diffusion				
	(C)	facilitated diffusion	(D)	no diffusion at all				
30.	Wha	at are Okazaki fragments?	8					
	(A)	short fragments of the promoter sec	quence					
	(B)	short fragments of newly synthesized RNA						
	(C)	short fragments of newly synthesize	ed DNA	Δ.				
	(D)	short fragments of the DNA sense s	trand					
31.	One	e CentiMorgan is						
	(A)	Recombination ratio of 1% over sma						
	(B)	Recombination fraction of 1% over s	small d	istances in a chromosome				
	(C)	Recombination indexes of 1% over s	mall di	stances in a chromosome				
	(D)	Perombination rate of 1% over sma	Il dieta	nces in a chromosome				

32.	Exo	nuclease III wi	ll degra	de DNA						
	(A)	from the 5' pl	nosphat	e of a recessed 5	end i	n a 5' to 3' direct	ion			
	(B)	from the 3' hy	droxyl	of a recessed 3' e	end in	a 3' to 5' direction	n			
	(C)	only when the	e DNA i	s a single-strane	ded fra	igment		,		
	(D)	(D) only at places where there are mismatched bases in the heteroduplex								
33.				erases like Tag erases because o		polymerase are	e very	different from		
	(A)	their ability t	o use ar	ny primed DNA	as a te	emplate				
	(B)	their lack of	requirer	nent for a DNA	primer	for synthesis to	occur			
	(C)	their ability t	o easily	be purified to a	very p	oure and active s	state			
	(D)			nue the polymer other enzymes	rizatio	n reaction at ver	ry high	n temperatures		
34.				ence of the olig						
	(A)) is not critical								
	(B)	(B) is determined by the source of the polymerase used in the PCR reaction								
	(C)	(C) can be calculated to attempt to minimize undesired amplification products								
	(D)	can be used products	to ma	nipulate the sp	pecific	ity of the mixt	ure of	f amplification		
35.				r two steps in p			ll as t	he thymidylate		
	(A)	cyanocobalan	nin		(B)	pyridoxal phos	phate			
	(C)	pantothenic a	acid		(D)	tetrahydrofola	te			
36.		he prokaryote no acid	s, all Po	olypeptide chain	synth	nesis probably a	re ini	tiated with the		
	(A)	arginine	(B)	f-methionine	(C)	acetyl lysine	(D)	glycine		
37.		ich one of the roxin?	followir	ng elements is e	essenti	al for the form	ation (of the hormone		
	(A)	Calcium	(B)	Potasium	(C)	Sodium	(D)	Iodine		
38.	Yea	st cannot ferm	ent this	carbohydrate						
	(A)	Sucrose	(B)	Glucose	(C)	Lactose	(D)	Maltose		

39.	The	compound havin	g the	formula				
	CH	$_3$ - $_{\rm CH}$ - $_{\rm CH_2}$ - $_{\rm CH_3}$	H(N)	H) ₂ – COOH				
	(A)	isoleucine	(B)	alanine	(C)	valine	(D)	leucine
40.	Fuce	ose is a						
	(A)	Methyl pentose	(B)	Hexose	(C)	Glycoside	(D)	Triose
41.	In tl	ne Henderson Ha	sselb	alch's equation	n			
	pH =	= + log ₁₀ (salt) acid)					
	(A)	K	(B)	pK	(C)	2	(D)	2.30
42.	Exti	rinsic factor is						
	(A)	$Vitamin \ B_{12}$			(B)	R-Protein		
	(C)	Glycoprotein			(D)	Sigma protein		
43.		sequence of one er strand?	stran	nd of DNA is	5' ATTO	GCCA 3' What i	s the s	sequence of the
	(A)	5' TAACGGT 3'			(B)	5' TGGCAAT 8	3'	
	(C)	5' ATTGCCA 3'			(D)	5' UAAGCCU	3'	
44.	How	many chromoso	mes a	are there in th	e fission	yeast (S. pombe	?)?	
	(A)	3	(B)	8	(C)	12	(D)	22
45.	Whi	ch of these cytop	lasmi	c Tyr-protein	kinases d	loes not contain	a SH2	2 domain?
	(A)	Fak			(B)	Lck		
	(C)	Src			(D)	All of the abov	e	
46.	Wha	at antibiotic resis	tance	genes are fou	ınd in pB	R 322?		
	(A)	Amp and Kan			(B)	Kan and Tet		

Tet and Amp

(C)

None of the above

- 47. A strain of mice is genetically engineered to lack expression of all Class II MHC antigens; expression of Class I MHC antigens is normal. What statement best describes the expected result when T-cell subsets are determined (by flow cytometry) in *lymph nodes* of these mice?
 - (A) Both CD3+CD4+ and CD3+CD8+cells should be present in normal numbers
 - (B) CD3+CD4+cells should be present in normal numbers, CD3+CD8+ cells should be absent
 - (C) CD3+CD8+cells should be present in normal numbers; CD3+CD4+cells should be absent
 - (D) Both CD3+CD4+ and CD3+CD8+ cells should be absent
- 48. A patient has a positive tuberculin test, a Type IV hypersensitivity response in which CD4+T cells are stimulated by antigen and secrete cytokines. What is the antigenic stimulus to CD4 + T cells?
 - (A) Antigen fragments bound to Class I MHC proteins
 - (B) Antigen fragments bound to Class II MHC proteins
 - (C) Soluble complexes of antibody bound to antigen
 - (D) Precipitated complexes of antibody bound to antigen
- 49. AE. coli cell contains an R-factor which confers resistance to ampicillin. If this cell conjugates with a plasmid-free, ampicillin-sensitive. E. coli, cell, what is the most likely outcome?
 - (A) The ampicillin-resistant cell loses the plasmid and become ampicillin sensitive
 - (B) The ampicillin-sensitive cell gains a plasmid and become ampicillin resistant
 - (C) Chromosomal DNA is transferred from the cell with the R-plasmid to the plasmid-free cell
 - (D) Chromosomal DNA is transferred from the plasmid-free cell to the cell with the R-plasmid
- 50. Which of the following cell lines is not of lymphoid origin?
 - (A) BJAB

(B) HeLA

(C) Jurkat

- (D) None of the above
- 51. High throughput screens such as the yeast two-hybrid system and affinity purification experiments can have false-positive results because
 - (A) Some proteins are inherently sticky
 - (B) Some bait proteins that are introduced into cells become mislocalized
 - (C) Some protein complexes form only very transiently
 - (D) Affinity tags or epitope tags can interfere with protein-protein interactions

- 52. Homology modeling may be distinguished from ab initio prediction because
 - (A) Homology modeling requires a model to be built
 - (B) Homology modeling requires alignment of a target to a template
 - (C) Homology modeling is usefully applied to any protein sequence
 - (D) The accuracy of homology modeling is independent of the percent identity between the target and the template
- 53. In analyzing cDNA libraries, a pitfall is that
 - (A) The libraries may be derived from different tissues
 - (B) The libraries may contain thousands of sequences
 - (C) The libraries may have been normalized differently
 - (D) The libraries may contain many rarely expressed transcripts
- 54. What advantage do oligonucleotide-based microarrays have over cDNA based arrays?
 - (A) Two samples can be simultaneously and competitively hybridized to the same chip
 - (B) It is easier for the experimenter to verify the identity of each gene that is represented on the array
 - (C) It is possible to identify expression of alternatively spliced transcripts
 - (D) They are far more sensitive
- 55. The instrument commonly used to estimate electrolytes is
 - (A) ultracentrifuge

(B) polarimeter

(C) spectrophotometer

- (D) flame photometer
- 56. A mediated transport system would be expected
 - (A) to exhibit increasing initial rate of transport with increasing substrate conc
 - (B) not to exhibit structural and/ or stereo specificity for the substance transported
 - (C) to be slower than that of a simple diffusion system
 - (D) to establish a concentration gradient across the membrane if there is an expenditure of energy
- 57. An ionophore need not
 - (A) diffuse back and forth across a membrane
 - (B) form a channel across a membrane through which an ion may diffuse
 - (C) catalyze electrogenic mediated transport of an ion
 - (D) require the input of metabolic energy for mediated transport of an ion

58.	At	37°C, -2.202RT =	-1.42kcalmol ⁻¹ .	For the	reaction	$A \leftarrow \rightarrow B$,			
	if $\Delta G^{\circ} = -7.1$ kcal mol ⁻¹ , what is the equilibrium ratio of B/A?								
	(A)	10,000,000/1 (B) 100),000/1 (C)	1000/1	(D) 1	/100,000			
59.		ch of the following trica oved by other metabolic pa		ele intermedi	ates may b	e added or			
	(A)	oxalosuccinate	(B)	α – ketoglu	tarate				
	(C)	isocitrate	(D)	geranyl pho	sphate				
60.	If ro	If rotenone is added to the mitochondrial electron transport chain							
	(A)	the P/O ratio of NADH is reduced from 3/1 to 2/1							
	(B)	the rate of NADH oxidati	on is diminished t	to 2/3 of its in	itial value				
	(C)	succinate oxidation remains normal							
	(D)	electron flow is inhibited	at site II						
61.	In gl	lycolysis ATP synthesis is	catalyzed by						
	(A)	hexokinase							
	(B)	phosphofructokinase							
	(C)	glyceraldehydes - 3 - pho	osphate dehydroge	enase					
	(D)	phosphoglycerate kinase							
62.		uncontrolled production of oneogenesis from	f NADH from NA	D+ during et	hanol metab	olism blocks			
	(A)	alpha-ketoglutarate	(B)	oxaloacetat	е				
	(C)	inositol	(D)	galactose					
63.	AMI	activates	*						
	(A)	aspartate-oxaloacetate tr	ansaminase						
	(B)	succinic dehydrogenase							
	(C)	glycogen phosphorylase							
	(D)	hexokinase							
64.	Trar	nsketolase							
	(A)	transfers a C2 fragment t	to an aldehyde acc	eptor					
	(B)	transfers a C3 ketone con	taining fragment	to art accept	or				
	(C)	converts the ketose sugar		•		e			
	(D)	converts two C5 sugar phosphate							

65.	Anti	body dependent	cell m	ediated	cytotoxic	ity (A	DCC)			
	(A)	is carried out l	оу В се	lls						
	(B)	is the main me	echanis	sm for ki	lling int	racelli	ılar microbes			
	(C)	involves Fc rec	eptors	on the e	effector c	ells				
	(D)	is primarily m	ediate	d by IgE	antibody	7				
66.		A polymerase I wing enzymatic	-		the bac	teriun	n Escherichia c	oli ha	s which	of the
	(A)	5'->3' DNA pol	ymera	se only						
	(B)	3'->5' DNA pol	ymera	se only						
	(C)	5'->3' DNA pol	ymera	se, 5'->3'	exonucl	ease,	and 3'->5' exonu	ıclease	9	
	(D)	5'->3' DNA pol	ymera	se and 3	'->5' exo	nuclea	ise			
67.	Wha	at was the first l	oacteri	al genom	ne to be s	equer	nced and made p	oublic?		
	(A)	Bacillus subtil	is			(B)	Escherichia co	li		
	(C)	Haemophilus	influen	zae		(D)	Mycobacterium	n		
68.	The	Maxam-Gilbert	metho	d of nuc	leotide s	equen	ce determinatio	n		
	(A)	relies on enzyr derivatives	matic r	nodificat	tion of D	NA to	generate a nes	ted set	t of end-	labeled
	(B)	is based on pro to generate a r					ylation followed vatives	by ch	emical c	leavage
	(C)	is dependent chemical cleav				sitivit	y of the norma	DNA	nucleot	tides to
	(D)	is inherently s nucleotide seq			-	cible t	han the dideoxy	or Sa	nger me	ethod of
69.	Whe	n did Watson a	nd Crie	ck publis	h the he	lical s	structure of DN	A ?		
	(A)	1953	(B)	1954		(C)	1957	(D)	1952	
70.	In a	ddition to AUG	what i	nitiation	codon is	recog	gnized by proka	rvotes'	?	
		ACG	(B)	AUC		(C)	GUG	(D)		
	()		(2)			(-)		(2)		
71.	The	approximate le	ngth of	the H b	onds in l	nelica	l DNA A-T or G	·C base	e pairs i	S
	(A)	1.5 Angstroms	3			(B)	2.0 Angstroms			
	(C)	3.0 Angstroms	3			(D)	4.0 Angstrons			

72.	Mito	sis and meiosis always differ in regard to the presence of
	(A)	chromatids (B) homologs (C) bivalents (D) centromeres
73.	Gen	function
	(A)	is a mathematical equation that predicts the physical traits of offspring
	(B)	is immutable and cannot be changed
	(C)	can be demonstrated only for simple organisms like bacteria
	(D)	describes the mechanism by which parents pass physical traits to offspring
74.	The	general cellular genetic information is stored in structures known as
	(A)	chromosomes (B) mitochondria
	(C)	vacuoles (D) endoplasmic reticulum
75.	The	association of the molecule RNA with the cellular chromosome is
	(A)	of minor genetic importance
	(B)	of key structural significance to maintaining chromosome structure
	(C)	a consequence of control of levels of gene expression
	(D)	caused by presence of viruses that insert themselves into the chromosome Structure
76.	Isos	hizomers are
	(A)	restriction enzymes that have been isolated from the same organism but cleaved DNA at different sequences.
	(B)	restriction enzymes that have been isolated from different organisms but cleaved DNA at the same sequence
	(C)	restriction enzymes that recognize and cleave at the same DNA sequence but differ in their inhibition by methylation pattern within the recognition sequence
	(D)	two different oligonucleotide sequences that are similar enough to anneal with a common target DNA sequence.
77.	The	najor functional difference between agarose and polyacrylamide gels is the
	(A)	higher pH at which the polyacrylamide gels must be run
	(B)	higher temperatures at which the agarose gels can be run
	(C)	greater size dimensions of agarose gels

(D) smaller matrix pores of the polyacrylamide gel

78.	Wha	at is the biosynthetic precursor of ket	one bod	ies?				
	(A)	Aceto-acetyl-CoA	(B)	Propionyl-CoA				
	(C)	Succinyl-CoA	(D)	Acyl-CoA				
79.	Ang	iotensin converting enzyme (ACE) re	quires f	or activity				
	(A)	NADH	(B)	Zinc ions				
	(C)	Magnesium ions and glutamine	(D)	Calcium ions				
80.	Whi	ch of the following cell junctions is re	esponsib	le for metabolic Coupling?				
	(A)	Tight junction	(B)	Gap junction				
	(C)	Adherens junction	(D)	Desmosome				
81.	A di	centric chromosome is unstable beca	use					
	(A)	it cannot resynthesize its telomeres	during	replication				
	(B)	it pairs with nonhomologous chromosomes in meiosis						
	(C)	it pairs with nonhomologous chrom	somes i	n mitosis				
	(D)	it is often simultaneously drawn to	opposin	ng spindle poles in mitosis				
82.	Which of the following statements about repetitive DNA is NOT true?							
	(A)	Repetitive DNA is associated with eukaryotes	h the c	entromeres and telomeres in higher				
	(B)	Repetitive DNA is restricted to non	transcr	ibed regions of the genome				
	(C)	Repetitive DNA sequences are often	en foun	d in tandem clusters throughout the				
	(D)	Repetitive DNA was first detected	because	of its rapid reassociation kinetics				
83.	Whi	ch of the following is NOT character	istic of a	eukaryotic enhancer element?				
	(A)	Its activity is independent of its or without effect)	rientatio	on (i.e., the sequence can be inverted				
	(B)	Its activity is dependent on its dista	ance fro	m the start site of transcription				
	(C)	It may be found as far as 1 to 2 kild	bases fi	rom the promoter				
	(D)	It may be positioned at the 5' end o	r the 3'	end of the gene				
84.		glyoxylate cycle is found in plants cycle in animals results in the inabil		teria but not in animals. The lack of				
	(A)	synthesize oxaloacetate from isocita	rate					
	(B)	synthesize glutamate from malate						
	(C)	perform gluconeogenesis from amir	no acids					

(D) perform gluconeogenesis from fatty acids

- 85. The urea cycle occurs in the
 - (A) mitochondrion

(B) mitochondrion and lysosome

(C) endoplasmic reticulum

- (D) golgi complex
- 86. The Pasteur effect a decrease in the rate of glucose consumption when anaerobically grown yeast cells are exposed to O2, can be attributed to
 - (A) uncoupling of oxidative phosphorylation from electron transport
 - (B) an inhibition of phosphofructokinase by ATP and citrate
 - (C) an increase in ADP and AMP concentrations due to ATP hydrolysis
 - (D) a decreased ATP yield per glucose molecule
- 87. The equilibrium constant for the reaction catalyzed by malate dehydrogenase (malate to oxaloacetate) is about 5.9. 10 6. Which of the following best describes the situation in which malate is convened to oxaloacetate during the citric acid (Krebs) cycle?
 - (A) The reaction is exergonic under standard conditions in the direction of the citric acid cycle and this drives the reaction.
 - (B) The next reaction of the cycle, citrate synthase, is highly exergonic and it pulls the malate dehydrogenase reaction forward by removing oxaloacetate
 - (C) Malate dehydrogenase catalyzes an irreversible reaction in the citric acid cycle
 - (D) Malate dehydrogenase changes the equilibrium constant for the reaction, allowing it to proceed rapidly
- 88. Propagation of a regenerative action potential along an axon can be accelerated by which of the following?
 - (A) A decrease in the transmembrane resistance
 - (B) A decrease in the axoplasmic resistance
 - (C) Reduced myelin wrapping
 - (D) Shortened internodal lengths
- 89. All of the following processes occur in the pathway leading to regulated protein secretion in animal cells EXCEPT
 - (A) formation of transport vesicles from the rough endoplasmic reticulum
 - (B) an increase in the concentration of cytosolic calcium ions prior to secretion
 - (C) synthesis of an amino-terminal signal sequence
 - (D) phosphorylation of a mannose residue in a glycoprotein

90.	Whi	ch of the following events occurs first as a result of EGF binding to its receptor?
	(A)	Activation of a serine/threonine kinase
	(B)	Activation of a tyrosine phosphatase
	(C)	Activation of a tyrosine kinase
	(D)	Activation of a Phospholipase
91.		osis and meiosis accomplish segregation of the replicated DNA to two or more ghter cells. Which of the following is characteristic of both mitosis and meiosis?
	(A)	Chromosomes attach to spindle fibers composed of actin
	(B)	The resulting cells are diploid (2n)
	(C)	The resulting cells are haploid (1n)
	(D)	Spindle fibers attach to chromosomes at their kinetochores
92.		increase in the number of nucleoli during oocyte development in the frog Xenopus is is the result of
	(A)	accelerated cell division
	(B)	rapid chromosome replication
	(C)	rapid synthesis of transfer RNA
	(D)	amplification of the ribosomal RNA genes
93.		neiosis. an inversion in one member of a pair of homologous chromosomes will t likely lead to which of the following?
	(A)	Nondisjunction of the affected chromosome
	(B)	Chromosomes with duplications and deficiencies
	(C)	Increased recombination frequency in the inverted region
	(D)	Mispairing of the affected chromosome with a nonhomologous chromosome
94.		important mechanism for maintaining sequence identity among the many copies gene within a tandem array is
	(A)	unequal crossing-over (B) gene conversion
	(C)	retrotransposition (D) deletion
95.		ich of the following conditions is likely to interfere with the transfer of genetic erial by conjugation in bacteria?
	(A)	Pretreatment of the recipient cells with DNase
	(B)	Pretreatment of the recipient cells by application of strong shearing forces
	(C)	Treatment of the recipient cells with cycloheximide
	(D)	Treatment of the mating cell pairs by application of strong shearing forces

96.	The	zymogen chymotrypsinogen is converte	ed to a	active chymotrypsin by
	(A)	binding of a necessary metal ion		
	(B)	reduction of a disulfide bond		
	(C)	proteolytic cleavage		
	(D)	phosphorylation of an amino acid side	chai	n
97.		processes that lead to the synthesis o	f the	functional light chain of an antibody
	(A)	DNA rearrangement but no RNA Spli	cing	
	(B)	DNA rearrangement but no gene dup	licatio	on
	(C)	DNA rearrangement but no protein p	rocess	sing
	(D)	RNA splicing but no DNA rearrangen	nent	
98.		second mutation in the same gene	resto	res the wild-type phenotype. This
	(A)	intergenic complementation	(B)	gene conversion
	(C)	synthetic enhancement	(D)	intragenic suppression
99.		ing the gluconeogenic conversion of py wing are involved EXCEPT	ruvat	te into glucose in the liver, all of the
	(A)	pyruvate carboxylase	(B)	phosphoenolpyruvate carboxylase
	(C)	$phosphoenol pyruvate\ carboxykin as e$	(D)	glucose 6-phosphatase
100.		er is generally a good solvent for polar ecules. These solvent properties are bes		
	(A)	the high density of liquid water relati	ve to	polar solvents
	(B)	the ability to form intermolecular hyd	lroger	bonds
	(C)	the density of solid water being less t	han tl	he density of liquid water
	(D)	high surface tension		