ENTRANCE EXAMINATION FOR ADMISSION, MAY 2011. Ph.D. (BIOCHEMISTRY AND MOLECULAR BIOLOGY) COURSE CODE: 102

Regi	ster Number :		
		4.7	
			Signature of the Invigilator (with date)

COURSE CODE: 102

Time: 2 Hours

Max: 400 Marks

Instructions to Candidates:

- Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET <u>using HB pencil</u>.
- Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1. In meiosis, an inversion in one member of a pair of homologous chromosomes will most likely lead to which of the following? Nondisjunction of the affected chromosome (B) Chromosomes with duplications and deficiencies (C) Increased recombination frequency in the inverted region Mispairing of the affected chromosome with a non-homologous chromosome (D) One important mechanism for maintaining sequence identity among the many copies 2. of a gene within a tandem array is (A) unequal crossing-over (B) gene conversion retrotransposition (D) deletion Which of the following conditions is likely to interfere with the transfer of genetic 3. material by conjugation in bacteria? Pretreatment of the recipient cells with DNase (B) Pretreatment of the recipient cells by application of strong shearing forces (C) Treatment of the recipient cells with cycloheximide (D) Treatment of the mating cell pairs by application of strong shearing forces 4. The zymogen chymotrypsinogen is converted to active chymotrypsin by binding of a necessary metal ion (B) reduction of a disulfide bond (C) proteolytic cleavage phosphorylation of an amino acid side chain (D) 5. Chylomicrons deliver (A) lipoproteins to tissues, where lipoprotein lipase releases free fatty acids for entry into cells triacylglycerols to tissues, where lipoprotein lipase releases free fatty acids for entry into cells (C) both (A) and (B)

blood stream

(D) lipoproteins, where lipoprotein lipase releases bound fatty acids for entry into

6.		ch of the following statements is tr ogen, cellulose, and chitin?	ue re	garding the polysaccharides starch,				
	(A)	All have 1-4 linkages						
	(B)	Starch is built from a different monor	ner th	nan are the others				
	(C)	Each is built from a single type of mo	nome	r				
	(D)	Only chitin has a core protein						
7.		of the following statements about the f true EXCEPT	luid n	nosaic model of biological membranes				
	(A)	Lipid molecules in the membrane rea	dily u	ndergo lateral diffusion.				
	(B)	Lipid molecules in the membran diffusion.	e rea	dily undergo transverse (flip-flop)				
	(C)	Integral membrane proteins can unde	ergo la	ateral diffusion.				
	(D)	The saturated hydrocarbon chains of carbon-carbon bond rotation.	lipid	molecules in the membrane undergo				
8.	The primary action of steroid hormones is at the level of							
	(A)	RNA export from the nucleus	(B)	transcription				
	(C)	pre-mRNA splicing	(D)	mRNA degradation				
9.		first metabolic intermediate that is co fatty acids is	mmor	to the aerobic metabolism of glucose				
	(A)	acetyl CoA	(B)	beta-hydroxybutyrate				
	(C)	pyruvate	(D)	citrate				
10.		an operon regulated only by attenuation, a mutation causing oversynthesis of the se products is most likely to be in the part of the DNA corresponding to the						
	(A)	operator	(B)	3' terminal sequence of the RNA				
	(C)	5' terminal sequence of the RNA	(D)	introns of the RNA				
11.	A no	onsense mutation involves						
	(A)	a regulatory sequence						
	(B)	an AG splice acceptor site						
	(C)	the creation of a different amino acid						
	(D)	the creation of a stop codon						

12.	The processes that lead to the synthesis of the functional light chain of an antibody molecule include							
	(A) DNA rearrangement but no RNA splicing							
	(B) DNA rearrangement but no gene duplication							
	(C) DNA rearrangement but no protein processing							
	(D) RNA splicing but no DNA rearrangement							
13.	A second mutation in the same gene restores the wild-type phenotype. This phenomenon is referred to as							
	(A) intergenic complementation (B) gene conversion							
	(C) synthetic enhancement (D) intragenic suppression							
14.	During the gluconeogenic conversion of pyruvate into glucose in the liver, all of the following are involved EXCEPT							
	(A) pyruvate carboxylase							
	(B) phosphoenolpyruvate carboxylase							
	(C) phosphoenolpyruvate carboxykinase							
	(D) glucose 6-phosphatase							
15.	Water is generally a good solvent for polar molecules and a poor solvent for nonpolar molecules. These solvent properties are best explained by							
	(A) the high density of liquid water relative to polar solvents							
	(B) the ability to form intermolecular hydrogen bonds							
	(C) the density of solid water being less than the density of liquid water							
	(D) high surface tension							
10	Which of the fellowing is NOT on anabolic madust of nitragen againstation?							
16.	Which of the following is NOT an anabolic product of nitrogen assimilation?							
	(A) Glutamate (B) Glutamine (C) Urea (D) Aspartate							
17.	Consider the average <i>in viva</i> turnover rates for proteins, DNA, and mRNA. Which of the following orders best describes the turnover rate from fastest (shortest average lifetime) to slowest (longest average lifetime)?							
	(A) mRNA > DNA > proteins (B) mRNA > proteins > DNA							

(C) Proteins > mRNA > DNA

(D) Proteins > DNA > mRNA

- 18. Rhodopsin,-adrenergic receptors, and muscarinic acetylcholine receptors share which of the following features?
 - (A) Each causes an inhibitory intracellular response
 - (B) Each activates a tyrosine kinase cascade
 - (C) Each is composed of a dimer
 - (D) Each functions through a heterotrimeric G-protein
- 19. Retroviral oncogenes are probably aberrant forms of normal cellular genes that regulate cell proliferation. Which of the following gene products are LEAST likely to be encoded by an oncogene?
 - (A) GTP-binding proteins

- (B) DNA-binding proteins
- (C) Transmembrane proteins
- (D) Capsid proteins
- 20. Which of the following best supports the endosymbiotic theory of the evolutionary origin of mitochondria?
 - (A) Mitochondria, chloroplasts, and prokaryotes contain electron carriers.
 - (B) Genes for mitochondrial pyruvate dehydrogenase subunits are found in the nuclear DNA.
 - (C) Mitochondrial and bacterial ribosomal functions are inhibited by the same antibiotics.
 - (D) The outer mitochondrial membrane contains the protein porin.
- 21. When the nucleus of a frog red blood cell, which does not replicate DNA, is transplanted into an enucleated frog egg, the egg goes through several cell divisions. Which of the following is the best interpretation for this phenomenon?
 - (A) The cytoplasm controls nuclear DNA synthesis.
 - (B) The nucleus plays no role in cell division.
 - (C) An enucleated frog egg can divide.
 - (D) Genes do not function during early cleavage.
- The nuclear-synthesized poly-A sequence at the 3' end of eukaryotic messenger RNA is
 - (A) Added at the 3' end of the pre-mRNA transcript
 - (B) Found also as a common feature in rRNA and tRNA
 - (C) Transcribed from poly-T sequences in template DNA
 - (D) Transcribed by RNA polymerase II

- 23. A silent mutation in a gene results in
 - (A) No change in the nucleotide sequence of the mRNA encoded by the gene
 - (B) No change in the amino acid sequence of the protein encoded by the gene
 - (C) No expression of the protein encoded by the gene
 - (D) An amino acid substitution that has a significant effect on the functional activity of the protein encoded by the gene
- 24. Which of the following most accurately explains the cause for the abnormal numbers of chromosomes during human reproduction that can result in Down syndrome, Turner's syndrome, or Klinefelter's syndrome?
 - (A) The occurrence of nondisjunction of homologous chromosomes during meiosis
 - (B) The duplicative production of extra chromosomes during DNA replication
 - (C) The abnormal pairing of nonhomologous chromosomes during prophase of meiosis I
 - (D) The selective loss of particular chromosomes from the sex cells after formation of the mature gamete
- 25. The enzyme reverse transcriptase is useful in the generation of cDNA libraries for which of the following reasons?
 - (A) It is sensitive to high temperatures and so can be readily "killed" by heat treatment when the reaction is completed.
 - (B) It does not require a primer to initiate polymerization as do most DNA polymerases.
 - (C) It is insensitive to high temperatures and so can survive the many cycles of heating required to perform the polymerase chain reaction.
 - (D) It is an RNA-dependent DNA polymerase.
- 26. Gene rearrangements play a role in which of the following processes?
 - (A) Adaptation to carbon source by bacteria
 - (B) Surface antigen changes in trypanosomes
 - (C) Sex determination in nematodes
 - (D) Host range modification in bacteriophage T4
- 27. A mutant of E. coil with a heat-sensitive DNA ligase (25°C permissive, 37°C non-permissive) has been used to show that DNA synthesis is discontinuous. Examination of DNA replication in the presence of [3H]-thymidine in the mutant would demonstrate which of following?
 - (A) The accumulation of short segments of unlabeled DNA at 25°C and at 37°C

- (B) The accumulation of short segments of unlabeled DNA at 25°C but not at 37°C
- (C) The accumulation of short segments of radioactive DNA at 37°C but not at 25°C
- (D) The accumulation of short segments of radioactive DNA at 25°C but not at 37°C

28.		of the following statements are true ab ng cells EXCEPT	out d	amage by ultraviolet light to DNA in
	(A)	The damage blocks normal DNA repl	ication	ı.
	(B)	The most damaging wavelength is ab	out 26	60 nm.
	(C)	Covalent bonds are formed that join is	neighb	oring pyrimidines.
	(D)	Neighboring phosphodiester bonds ar	e clea	ved.
29.	Whi	ch of the following best predicts the di	rection	n of a chemical reaction?
	(A)	S (entropy change)	(B)	H (enthalpy change)
	(C)	$E \ ({\rm internal \ energy \ change})$	(D)	G (Gibbs free energy change)
30.	Whi	ch of the following events occurs first a	ıs a re	sult of EGF binding to its receptor?
	(A)	Activation of a serine/threonine kinas	se	
	(B)	Activation of a tyrosine phosphatase		
	(C)	Activation of a tyrosine kinase		
	(D)	Activation of a phospholipase		
31.	Whi	ich one of the following fixes CO2 into c	arboh	ydrates?
	(A)	Rhizobium	(B)	Bacillus
	(C)	Nitrobacter	(D)	Rhodospirillium
32.		ferns, in which the entire sporangiur sporophyll is known as	n dev	elops from a single superficial cell of
	(A)	Eusporangiate	(B)	Unisporangiate
	(C)	Mesosporangiate	(D)	None of the above
33.	Βh	A has osmotic potential of - 16 bars ar as osmotic potential of - 12 bars and of water will be	-	
	(A)	From cell B to cell A	(B)	From cell A to cell B
	(C)	No flow of water	(D)	In both the directions
34.	Line	ear sori and false indusium are charact	eristi	cs of
	(A)	Pteris (B) Dryopteris	(C)	Polypodium (D) Adiantum
35.	Fru	its are not formed in gymnospermous p	olants	because
	(A)	They have no ovary		
	(B)	They are not pollinated		
	(C)	They are seedless plants		
	(D)	Process of fertilization does not take	place	

00					
36.	Essential	oils	are	those	which

- (A) Are essential to the plant itself
- (B) Are used as lubricants
- (C) Are used to make perfumes
- (D) Are essential for human beings

37. Cytochromes are found in

- (A) Matrix of mitochondria
- (B) Cristae of mitochondria

(C) Lysosomes

(D) Outer wall of mitochondria

38. Single stranded DNA is found in

- (A) Coliphage $\phi \times 174$ virus
- (B) Reovirus

(C) Wound tumor virus

(D) TMV

39. The PDH complex contains three enzymes namely-pyruvate dehydrogenase (E1), dihydrolipoyl transacetylase (E2), and

- (A) dihydrolipoyl dehydrogenase
- (B) pyruvate transacetylase
- (C) dihydrolipoyl transferase
- (D) pyruvate kinase

- (A) acetate as the sole carbon source
- (B) glucose as the sole carbon source
- (C) mannose as the sole carbon source
- (D) lactate as the sole carbon source

(A) $\varphi = 40^{\circ}$ and $\psi = -160^{\circ}$

(B) $\varphi = -120^{\circ}$ and $\psi = -180^{\circ}$

(C) $\varphi = \psi = -60^\circ$

(D) $\varphi = \psi = -180^{\circ}$

42. An analogous enzymes can be defined as

- (A) Protein with different EC number but with detectable sequence similarity with each other
- (B) Protein with different EC number and also no detectable sequence similarity with each other
- (C) Protein with same EC number but with no detectable sequence similarity with each other
- (D) Protein with same EC number and also detectable sequence similarity with each other

43.	DN	A super coiling was achieved by						
	(A)	Topoisomerase	(B)	Helicases				
	(C)	DNA dependent DNA polymerase	(D)	DNAse				
44.	Slid	ling clamp is involved in						
	(A)	DNA replication	(B)	Transcription				
	(C)	RNA editing	(D)	Southern blotting				
45.	Ang	riogenesis is a term involved in						
	(A)	Formation of golgi complex	(B)	Formation of new blood vessels				
	(C)	Evolution of angiogerms	(D)	Development of androecium				
46.	A m	ethod for detecting protein-DNA inter	actions	s is				
	(A)	Southern Blotting	(B)	Northern Blotting				
	(C)	Western Blotting	(D)	South Western Blotting				
47.	The	approximate size of the foreign DNA	used fo	or cloning in Cosmid vector is				
	(A)	$\sim 50 \text{ kb size}$ (B) $\sim 250 \text{ kb}$	(C)	~500 kb (D) ~1000 kb				
48.	Wha	at is the function of DNA polymerase l	111?					
	(A)	It attaches the RNA primers to the I	DNA st	rand				
	(B)	It adds nucleotide pairs to the growi	ng DN	A strand				
	(C)	It adds single nucleotides to the growing DNA strand						
	(D)	It unwinds the DNA						
49.	The	replicative polymerase in E. coli is						
	(A)	DNA polymerase I	(B)	DNA polymerase II				
	(C)	DNA polymerase III	(D)	DNA polymerase IV				
50.	Ame	es Test is for checking						
	(A)	pathogenecity of an organism	(B)	mutagenecity of a chemical				
	(C)	stability of a substance	(D)	none of the above				
51.	Ethi	idium bromide acts as mutagen by						
	(A)	substituting Adinine by its structure	al analo	ogue				
	(B)	chonical modification of base						
	(C)	production of interstrand cross link	in DNA	1				
	(D)	intercalating between DNA bases in	terferir	ng with proper base stacking				

52.	The	SOS repair mechanism is activated by	which	n of the following?
	(A)	5-bromouracil	(B)	acrydine orange
	(C)	hydroxylamine	(D)	thymidine dimmers
53.		nouse in which one particular gene herated in vitro is called	as be	en replaced by its inactivated form
	(A)	transgenic mouse	(B)	knockout mouse
	(C)	nude mouse	(D)	mutant mouse
54.	Rad	ioactive iodine can be incorporated into)	
	(A)	sereine (B) threonine	(C)	tyrosine (D) leucine
55.	Leul	kopenia is a term used to described		
	(A)	high WBC count	(B)	low WBC count
	(C)	high RBC count	(D)	low RCB count
56.		n throughput screens such as the fication experiments can have false-po		
	(A)	Some proteins are inherently sticky		
	(B)	Some bait proteins that are introduce	ed into	cells become mislocalized
	(C)	Some protein complexes form only ve	ry tra	nsiently
	(D)	Affinity tags or epitope tags can inter	fere v	vith protein-protein interactions
57.	Hon	nology modeling may be distinguished	from a	ab initio prediction because
	(A)	Homology modeling requires a model	to be	built
	(B)	Homology modeling requires alignme	nt of	a target to a template
	(C)	Homology modeling is usefully applie	d to a	ny protein sequence
	(D)	The accuracy of homology modeling between the target and the template	g is i	independent of the percent identity
E0.	Υ			
58.		nalyzing cDNA libraries, a pitfall is the		
	(A)	The libraries may be derived from dif		
	(B)	The libraries may contain thousands		
	(C)	The libraries may have been normali		The second secon
	(D)	The libraries may contain many rare	ly exp	ressed transcripts

59.	Wh	at advantage do oligonucleotide-based	micros	arrays have over cDNA based arrays?
	(A)			competitively hybridized to the same
	(B)	It is easier for the experimenter t represented on the array.	o veri	fy the identity of each gene that is
	(C)	It is possible to identify expression o	f alter	natively spliced transcripts.
	(D)	They are far more sensitive.		
60.	The	instrument commonly used to estimate	te elect	trolytes is
	(A)	ultracentrifuge	(B)	polarimeter
	(C)	spectrophotometer	(D)	flame photometer
61.	A m	ediated transport system would be ex	pected	
	(A)	to exhibit increasing initial rate of tr		
	(B)	not to exhibit structural and/or stere		
	(C)	to be slower than that of a simple dif		
	(D)			cross the membrane if there is an
62.	An i	onophore need not		
	(A)	diffuse back and forth across a memb	orane	
	(B)	form a channel across a membrane t	hrough	which an ion may diffuse
	(C)	catalyze electrogenic mediated trans		15.74 15.74
	(D)	require the input of metabolic energy	7	
63.	At :	37°C, -2.202 RT = -1.42 kcalmol-1.	For th	e reaction $A \leftarrow \rightarrow B$, if Δ $G^{\circ} = -7.1$
		mol-1, what is the equilibrium ratio of		
	(A)	10,000,000/1 (B) 100,000/1	(C)	1000/1 (D) 1/100,000
64.		ch of the following tricarboxylic ac oved by other metabolic pathways?	id cyc	le intermediates may be added or
	(A)	oxalosuccinate	(B)	α – ketoglutarate
	(C)	isocitrate	(D)	geranyl phosphate
65.	If ro	tenone is added to the mitochondrial e	electro	n transport chain
	$_{1}(A)$	the P/O ratio of NADH is reduced fro	m 3/1	to 2/1
	(B)	the rate of NADH oxidation is dimin	ished t	to 2/3 of its initial value
	(C)	succinate oxidation remains normal		
	(D)	electron flow is inhibited at site II		

66.	In g	lycolysis ATP synthesis is catalyzed by
	(A)	hexokinase
	(B)	phosphofructokinase
	(C)	glyceraldehydes-3-phosphate dehydrogenase
	(D)	phosphoglycerate kinase
67.		uncontrolled production of NADH from NAD+ during ethanol metabolism blocks oneogenesis from
	(A)	alpha-ketoglutarate (B) oxaloacetate
	(C)	inositol (D) galactose
68.	AMI	Pactivates
	(A)	aspartate-oxaloacetate transaminase (B) succinic dehydrogenase
	(C)	glycogen phosphorylase (D) hexokinase
69.	Tran	nsketolase
	(A)	transfers a C2 fragment to an aldehyde acceptor
	(B)	transfers a C3 ketone containing fragment to an acceptor
	(C)	converts the ketose sugar ribulose 5 phosphate to ribose 5 phosphate.
	(D)	converts two C5 sugar phosphates to fructose phosphate and erythrose phosphate
70.	Anti	body dependent cell mediated cytotoxicity (ADCC)
	(A)	is carried out by B cells.
	(B)	is the main mechanism for killing intracellular microbes
	(C)	involves Fc receptors on the effector cells
	(D)	is primarily mediated by IgE antibody
71.	In re	ecombinant DNA technology, a plasmid vector must be cleaved by
	(A)	four separate enzymes
	(B)	modified DNA ligase
	(C)	a heated alkaline solution
	(D)	the same enzyme that cleaves the donor gene
72.	Whi	ch of the following alterations of the codons ATTGCC is most serious?
	(A)	ATCGCC (B) ATTGCA (C) ATTCCCGCC (D) ATTTGCC

73.	Dow	vn's syndrome is	s an ex	ample of				
	(A)	aneuploidy	(B)	polytene	(C)	polyploidy	(D)	monoploidy
74.		inning with a si vth, with a carr						nere is logistic
	(A)	18	(B)	440	(C)	512	(D)	1024
75.		iegated colorati n the female par						
	(A:)	plastids			(B)	endoplasmic	reticulun	1
	(C)	nucleus			(D)	plasma men	nbrane	
76.	Abo	ut how long ago	was tl	ne earth form	ed?			
	(A)	20 billion year	s ago		(B)	10 billion ye	ars ago	
	(C)	5 billion years	ago		(D)	3 billion yea	rs ago	
77.		axonomic system nches arose in a				at reflect the	order in	time in which
	(A)	phylogeny			(B)	cladistics		
	(C)	classical evolu	tionar	y taxonomy	(D)	phenetics		
78.	The	human populat	ion firs	st began to gr	ow expon	entially at the	e time of t	he
	(A)	tool using revo	olution		(B)	agricultural	revolution	1
	(C)	industrial rev	olution		(D)	First world	war	
79.	The	different shells	in whi	ch the electro	ons of an	atom are arra	nged refle	ct different
	(A)	sizes of electro	ons		(B)	weights of el	lectrons	
	(C)	levels of energ	y		(D)	isotopes of th	he atom	
80.	(blac	gine a population ck) and b (yello population?						
	(A)	77	(B)	60	(C)	100	(D)	200
81.		free energy ch litions is -12 kc						
	(A)	The reaction v	vill nev	er occur in a	closed sys	stem		
	(B)	The reaction r	equires	s in input of e	energy			
	(C)	The reaction is	s ender	gonic				
	(D)	The reaction is	s exerg	onic				

82.	Which of the following is NOT a computational method?							
	(A) Gene allocation	(B)	Gene prediction					
	(C) Multiple sequence alignment	(D)	Phylogenetic analysis					
83.	Cellular components that play an impor	tant r	role in the structure and function of					
	(A) Protein	(B)	DNA					
	(C) RNA	(D)	All of the above					
84.	When looking at a DNA sequence, we fit "start" codon ATG and continues for 900 b This "coding region" is referred to as							
	(A) a transposon	(B)	an intron					
	(C) an open reading frame	(D)	structural DNA					
85.	Which of the following amino acids is NOT considered to be hydrophobic?							
	(A) phenylalanine	(B)	leucine					
	(C) arginine	(D)	valine					
86.	The arithmetic average of the pair wise di	stance	e values 10, 14, 16 and 8 is					
	(A) 9 (B) 18	(C)	12 (D) 48					
87.	If you flip a coin five times, what are the o	dds of	getting four tails?					
	$(A) \text{one in five} \qquad (B) \text{one in ten}$	(C)	one in three (D) one in sixteen					
88.	A cookbook recipe for chocolate chip cookie	es has	many of the attributes of					
	(A) an operating system	(B)	a database					
	(C) an algorithm	(D)	a programming language					
89.	How many different kinds of fertilized egg a particular man and woman produce?	s, witl	n regard to kinds of chromosomes, can					
	(A) 2 ²² (B) 2 ²³	(C)	$(2^{23})\ (2^{23}) \qquad (D) \qquad (23^2)\ (23^2)$					

90.	The statistical frequency of the occurrence of a particular restriction enzyme cleavage site that is 6 bases long can be estimated to be approximately							
	(A) once every 4096 bases	(B) once every 1024 bases						
	(C) once every 256 bases	(D) once every 24 bases						
91.	In the human body what is the average	rate of cycling of a molecule of ATP?						
	(A) 40 times a day	(B) 400 times a day						
	(C) 4000 times a day	(D) 100 times a day						
92.	If A's salary is 25% higher than B's sala A's?	ary, how much percent is B's salary lower th	an					
	(A) 15% (B) 20%	(C) 25% (D) 33.33%						
93.	A train running at the speed of 90 km seconds. What is the length of the train	Thr crosses a platform of length 160 m in (in metres)?	10					
	(A) 60 (B) 90	(C) 150 (D) 140						
94.	Which of the following diseases is caused by the expansion of triple repeats in the DNA replication?							
	(A) Huntington's disease	(B) Alzheimer's disease						
	(C) Cystic fibrosis	(D) Diabetes mellitus						
95.	Barbara McClintock discovered transposable elements in the late 1940s in which of the species							
	(A) Rice (B) Maize	(C) C. elegans (D) E. coli						
96.	The ribosome is involved in all of the following	lowing EXCEPT						
	(A) Peptide bond formation							
	(B) Amino acylation of tRNA							
	(C) Binding of protein factors during e	elongation						
	(D) Binding of aminoacyl tRNA to mR	NA						

97.	What was the first product that was commercialized using the anti sense RNA technology?				
	(A)	Dolly	(B)	Flavr Savr	
	(C)	Bt cotton	(D)	Terminator seeds	
98.	If you wish to perform ABO blood group typing on a person to whom you were about to give a blood transfusion, which of the following immunologic test would be best?				
	(A)	Radial immunodiffusion	(B)	Immunoelectrophoresis	
	(C)	Flow cytometry	(D)	Agglutination	
99.	If the M phase promoting factor is injected into a <i>Xenopus</i> primary oocyte, which of the following occurs?				
	(A)	S phase begins			
	(B) The oocyte enters G ₀ apoptosis begins				
	(C) The germinal vesicle (nucleus) breaks down				
	(D)	Mitosis is completed			
100.	Heat shock proteins were originally described as proteins produced in response to				
	heat stress. Some are now known to act as				
	(A) Molecular chaperones that regulate protein folding				
	(B)	Protein tyrosine kinases			
	(C)	(C) Proteases that degrade ubiquitin tagged proteins			
	(D)	GTPase-activating proteins			