

ENTRANCE EXAMINATION FOR ADMISSION, MAY 2010 LLAILI

Ph.D. (BIOTECHNOLOGY)

COURSE CODE: 103

Register Number :

Signature of the Invigilator (with date)

COURSE CODE: 103

Time: 2 Hours

Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you -1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	Rece	eptors for signaling for steroid hormon	es are	located at
	(A)	plasma membrane	(B)	organelle membrane
	(C)	intracellular	(D)	no receptor
2.	Amo	ong closely lying cells signal are comm	unicat	ed by
	(A)	Neurotransmitters	(B)	Hormones
	(C)	Gap junctions	(D)	Cell membrane proteins
3.	incr	enzyme catalyzed reactions exhibiting ease in substrate concentration to incr 0% of Vmax	5 %	a a como a como en como acomo en Electro academical de la como en como en como en como en como en como en como
	(A)	80 fold (B) 8 fold	(C)	4 fold (D) 2 fold
4.	In T	CA cycle malonate is competitive inhi	bitor s	tructurally similar to
	(A)	succinate	(B)	fumarate
	(C)	oxaloacetate	(D)	lpha -ketoglutarate
5.	Whi	ch mineral ion play important role in	functio	oning of photosystem II?
	(A)	Manganese	(B)	Magnesium
	(C)	Iron	(D)	Molybdenum
6.	Prin	nary acceptor of CO2 in photosynthesis	is	
	(A)	Ribose	(B)	Ribulose-5-P
	(C)	Ribulose 1,5-bis Phosphate	(D)	3-Phosphoglycerate
7.	Dur	ing cell cycle sister chromatid are pull	ed apa	art during
	(A)	Metaphase	(B)	Anaphase
	(C)	Prophase	(D)	Interphase
8.	In c	hromosome 30 nm fibres during metap	ohase a	attach to
	(A)	Scaffold	(B)	Centromere
	(C)	Nuclear matrix	(D)	Nuclear lamina

9.	Whi	ch of the following DO NOT bring v	ariation i	n population				
	(A)	Random drift	(B)	Non-random matting				
	(C)	Recombination	(D)	Natural selection				
10.		prosophila XO are male and XXY are male. On the basis of given info		while in humans XX are female and which statement is NOT true				
	(A)	Y chromosome do not play any rol	e in sex d	etermination of drosophila				
	(B)	Y chromosome is sex determinant	in huma	ns				
	(C)	(C) In humans sex determination is based on number of X chromosomes to sets of autosomes						
	(D)	In drosophila sex determination i autosomes	s based o	on number of X chromosome to set of				
11.	Dur	ing transposition transposons are e	xicised by	7				
	(A)	Transposase	(B)	Nuclease				
	(C)	Topoisomerase	(D)	Exonuclease				
12.	Which of the following regarding plasma cell is correct?							
	(A) They are produced during secondary immune response							
	(B) They are mature antibody secreting cells							
	(C) They are involved in removal of intracellular viruses							
	(D)	Involved in inflammatory respons	es					
13.	Imn	nunological diversity in antibody is	generated	l by				
	(A)	Rearrangement of immunoglobuli	n genes					
	(B)	Alternative RNA processing						
	(C)	C) Post transcriptional modification						
	(D)	Post translational modification						
14.	Neg	ative potential across plasma mem	brane is r	naintained by				
	(A)	Active transport	(B)	Passive transport				
	(C)	Ion channels	(D)	Transporters				

15.	Rece	ptor mediated endocytosis is carried f	rom s	pecific portions of membrane termed
	(A)	Coated vesicles	(B)	Coated pits
	(C)	Endocytosis	(D)	Exocytosis
16.	Whi	ch of the following statement is correct	with	reference to replication in eukaryotes
	(A)	Single origin and continuous replicati	on	
	(B)	Multiple origin and continuous and d	iscont	inuous replication
	(C)	Multiple origin and continuous replic	ation	
	(D)	Single origin and continuous and disc	ontin	uous replication
17.		e for fungal resistance is found in cytop e are crossed then progeny will exhibit		. If a susceptible female and resistant
	(A)	All resistance	(B)	All susceptible
	(C)	Half resistance and half susceptible	(D)	Cannot be predicted
18.		aturation of human genome has reveal		
	(A)	Human have more unique sequences		
	(B)	Repetitive sequences are located only	is con	rrect.
	(C)	Repetitive sequences renature fast		
	(D)	Unique sequences renature fast		
19.	In I	India which conservation program is der"	relat	ed with protection of entire "Tropic
	(A)	Project Tiger	(B)	Project Elephant
	(C)	Ramsar sites	(D)	Biosphere reserve
20.		ong the following which data alone as en operational taxonomic unit (OTU)	re cap	pable for preparing dendrogram from
	(A)	Mean of similarity	(B)	Similarity matrix
	(C)	Characters taken into account	(D)	Criteria for classification
21.	In v	which of the following condition realize	d nich	e exceed over fundamental niche
	(A)	Competition	(B)	Commensalism
	(C)	Ammensalism	(D)	Mutalism

15.	Rece	ptor mediated endocytosis is carried f	rom s	pecific portions of membrane termed
	(A)	Coated vesicles	(B)	Coated pits
	(C)	Endocytosis	(D)	Exocytosis
16.	Whi	ch of the following statement is correct	with	reference to replication in eukaryotes
	(A)	Single origin and continuous replicati	ion	
	(B)	Multiple origin and continuous and d	iscont	inuous replication
	(C)	Multiple origin and continuous replic	ation	
	(D)	Single origin and continuous and disc	ontin	uous replication
17.		e for fungal resistance is found in cytop e are crossed then progeny will exhibit		. If a susceptible female and resistant
	(A)	All resistance	(B)	All susceptible
	(C)	Half resistance and half susceptible	(D)	Cannot be predicted
18.		aturation of human genome has reveal		
	(A)	Human have more unique sequences		
	(B)	Repetitive sequences are located only	is con	rrect.
	(C)	Repetitive sequences renature fast		
	(D)	Unique sequences renature fast		
19.	In I	India which conservation program is der"	relat	ed with protection of entire "Tropic
	(A)	Project Tiger	(B)	Project Elephant
	(C)	Ramsar sites	(D)	Biosphere reserve
20.		ong the following which data alone as en operational taxonomic unit (OTU)	re cap	pable for preparing dendrogram from
	(A)	Mean of similarity	(B)	Similarity matrix
	(C)	Characters taken into account	(D)	Criteria for classification
21.	In v	which of the following condition realize	d nich	e exceed over fundamental niche
	(A)	Competition	(B)	Commensalism
	(C)	Ammensalism	(D)	Mutalism

22.	Whi	ch of the following is characteristic fea	ture o	f climax community?
	(A)	Single food chain	(B)	High resilience
	(C)	High productivity	(D)	Narrow niche specialization
23.	Catt	tle are known to be responsible for gree	n hou	se effect due to
	(A)	High respiration rate	(B)	More consumption of plant
	(C)	Fermentation in rumen	(D)	High reproductive rate
24.		es used by Urey and Miller for exper dane hypothesis was	iment	ation of origin of life by Oparin and
	(A)	Hydrogen, methane and ammonia		
	(B)	Hydrogen, methane and CO ₂		
	(C)	Hydrogen, methane, ammonia and C	O_2	
	(D)	Hydrogen, carboxylic acid and amino	acids	
25.	High	hest extinction during history of earth	was o	bserved during
	(A)	End of Permian	(B)	End of cretaceous
	(C)	End of Devonian	(D)	End of carboniferous
26.	Bac	teria cannot be classified as species by	the bi	ological species concept because they
	(A)	Asexually reproducing organisms		
	(B)	High growth rate		
	(C)	Exhibits little morphological variation	ns	
	(D)	Do not have nucleus		
27.	In e	ukaryotes shortening of chromosomes	from e	ends is prevented by
	(A)	DNA polymerase	(B)	RNA polymerase
	(C)	Telomerase	(D)	Transposase
28.	Org	anisms with high growth and production	on are	
	(A)	Ectotherm	(B)	Endotherm
	(C)	Carnivore insects	(D)	Detrivores
29.	On	the molar basis if DNA has 20 % cytosi	ne, th	en percentage of adenine would be
	(A)	20% (B) 30%	(C)	40% (D) 60%

30.	The	maximum BOD	and n	ninimum DO for p	pure d	rinking water sl	nould	be	
	(A)	25, 5	(B)	2, 5	(C)	3,9	(D)	0,6	
31.	Whic	ch of the followin	g pai	r is isotones?					
	(A)	³ H, ⁴ He			(B)	15 N, 14 N ₁			
	(C)	¹⁴⁰ Ba, ¹⁴⁰ Th			(D)	¹ H, ³ H			
32.				eased on breaking een 100-200 Kcal		H covalent bond	(gene	erally energy	of
	(A)	4.36×10^5 J/m	ol		(B)	1×10^{-19} J/mol			
	(C)	5×10^{-19} J/mol			(D)	8×10^{19} J/mol			
33.	The	mode of sex dete	rmin	ation in humans	is				
	(A)	Haploidy-Diplo	idy		(B)	XX-XY			
	(C)	ZZ-ZW			(D)	Genetic balance	е		
34.	The	region of visible	light	which is most us	eful fo	r photosynthesis	s is		
	(A)	Blue, red			(B)	Green, red			
	(C)	Violet, blue			(D)	Green, blue			
35.	_	er planets are m		urfaces are mad o of mainly light					
	(A)	Inner planets	are for	med earlier					
	(B)	Sun rays push	es gas	es far apart					
	(C)	Centrifugal for	ce att	ract denser plane	et nea	r sun			
	(D)	Inner planets gases	are ne	ear to sun, thus h	nigh te	emperature has	blowr	n most of ligh	nter
36.	Unc	oupling of oxida	tive p	hosphorylation ir	n mito	chondria genera	tes		
	(A)	Entropy			(B)	Free energy			
	(C)	Heat			(D)	ATP			
37.	Amo	ong the following	g max	imum reflectance	s (alb	edo effect) will b	e obs	erved at	
	(A)	Ice covered lar	ıd		(B)	Ocean			
	(C)	Vegetation lan	d		(D)	Deserts			

38.	Amo	ng the follow	wing which	n salt occurs in h	numan	body			
	(A)	NaCl	(B)	KCN	(C)	HCN	(D)	$\mathrm{H_2SO_4}$	
39.	If 7 p	g of NaOH i	s dissolve	d in 350 ml of w	ater, t	he molarity of	resulta	nt solution v	will
	(A)	0.5M	(B)	2.5M	(C)	50M	(D)	25M	
40.	depe		ılation at	comes half afte					
	(A)	1/4	(B)	1/2	(C)	1/8	(D)	1/16	
41.		which is co	mmonly o	bserved during	winter	and causes pr	roblem t	o flight take	off
	(A)	Low altitue	de with po	llution	(B)	High altitud	e with n	o pollution	
	(C)	High latitu	ide with p	ollution	(D)	Low latitude	withou	t pollution	
42.				to hit apple from t height 5 m)	m a bu	llet gun fired (distance	e between ap	ple
	(A)	exactly at	apple						
	(B)	slightly ab	ove the ap	ple					
	(C)	slightly be	neath the	apple					
	(D)	1 m below	original p	osition of apple					
43.	Min	imum daily	variation	in temperature	will be	observed at			
	(A)	Bangalore	(B)	Shimla	(C)	Cochin	(D)	Nagpur	
44.	In e	quation sin	2 x, value	of x cannot be					
	(A)	0	(B)	-1	(C)	1	(D)	2	
45.	Wha	at would be	effect of in	creasing humid	ity on	rate of transcr	iption?		
	(A)	Rate of tra	nscription	will decrease	(B)	Rate of trans	scription	will increase	se
	(C)	Initially lo	w then it	will be high	(D)	It will be un	affected		
46.	Max	cimum evap	oration in	ocean will occur	at				
	(A)	Poles			(B)	Equator			
	(C)	Wetlands			(D)	Evenly at al	l places		

47.		rope is tied ar and then additi				-	to be tie	d lm above	the
	(A)	R + 1	(B)	R + 2	(C)	2π	(D)	πR	
48.		rt wave can be lium wave beca		ed at longer	distance d	uring radio tr	ansition	as compare	e to
	(A)	Short wavele	ngth ca	n be reflecte	d by ionos	ohere			
	(B)	Medium wav	es are t	ransmitted a	across spac	e			
	(C)	Short wavele	ngth ar	e absorbed b	y ionosphe	ere			
	(D)	Medium wav	elength	cannot be be	end				
49.	Cur	rently among t	he follo	wing which i	is used as	a fuel for nucle	ear reac	tor	
	(A)	$^{232}{ m Th}$	(B)	²³⁸ Pu	(C)	233 U	(D)	^{238}U	
50.	Na(Cl can be electr	olyzed o	n electrode,	but ethan	ol cannot beca	use		
	(A)	Ethanol has	covalent	bond	(B)	Ethanol is po	olar		
	(C)	Ethanol has	hydroge	n bonding	(D)	Ethanol is el	ectricall	y neutral	
51.	Whi	ich of the follow	ving is r	nost porous?					
	(A)	Sand	(B)	Clay	(C)	Loamy soil	(D)	Granite	
52.	The	process of pho	tosynth	esis which le	eads to form	nation of gluc	ose is a	type of a	
	(A)	Oxidation			(B)	Reduction			
	(C)	Condensation	n		(D)	Fixation			
53.		statistical tes n cholesterol su				idate the stat	ement "	Peoples hav	ving
	(A)	Students t' te	est		(B)	Regression a	nalysis		
	(C)	Pearson corre	elation o	coefficient	(D)	ANOVA			
54.	Defe	ective gene in A	Amyotro	phic lateral	sclerosis is	3			
	(A)	Rb	(B)	p53	(C)	bC12	(D)	TGF	
55.	Vec	tor for transmi	ssion of	disease Kal	azar is				
	(A)	Ades			(B)	Anopheles			
	(C)	Glossina			(D)	Phlebotomus	3		

56.	Firs	t successful vaccine against cancer h	as been	prepared for
	(A)	Oral cancer	(B)	Cervical cancer
	(C)	Breast cancer	(D)	Colon cancer
57.	Atri	al natriuretic factor secreted from at	ria is	
	(A)	Hormone	(B)	Neurotransmitter
	(C)	Enzyme	(D)	Growth factor
58.	Sub	strate of angitensinogenase is		
	(A)	Angiotensinogen	(B)	Angiotensin I
	(C)	Angiotensin II	(D)	Renin
59.	Amo	ong the following which is not involve	ed in pla	nt defense signaling pathway
	(A)	Gibberlic acid	(B)	Ethylene
	(C)	Salicylic acid	(D)	Jasmonic acid
60.		tor responsible for formation of early	y embry	onic axis during early developmental
	(A)	Auxin gradient	(B)	Morphogens
	(C)	Orientation of embryo sac	(D)	Plane of cell division
61.		ing germination of barley seeds, en	zymes fo	or mobilization of reserve material to
	(A)	endosperm	(B)	embryo
	(C)	aleurone layer	(D)	embryonic leaves
62.	Elec	trical activity of brain during brain	mapping	can be recorded by
	(A)	fMRI	(B)	ECG
	(C)	EEG	(D)	Polygraphy
63.		ently, gene therapy for mutated ger zing	ne has b	een experimentally proven in mouse
	(A)	Winged P elements	(B)	Cre-Lox system
	(C)	Non-homologous recombination	(D)	Ac-Ds elements

64.		ch technique cannot be utilized for stu ll immune responses	dying	response mechanism for both B
	(A)	Complement fixation	(B)	Western blotting
	(C)	Cytotoxicity assay	(D)	ELISA PLOT
65.	Amo	ong the following which is not a cell adh	esion	protein
	(A)	Cadherin	(B)	Integrin
	(C)	Selectin	(D)	Immunoglobulin
66.	Whi	ch of the following is not coded by MHC	gene	es?
	(A)	Components of complement pathway	(B)	Immunoglobulin
	(C)	Glycoproteins	(D)	Antigen presenting proteins
67.	Whi	ch is least likely to occur for removal of	canc	er cells?
	(A)	T-cell based cytotoxicity	(B)	Complement fixation
	(C)	Autophagy	(D)	Phagocytosis
68.	Leu	kemia inhibiting factor has been utilize	ed in a	animal cell culture for
	(A)	Stimulating growth of cell	(B)	Differentiation
	(C)	Morphogenesis	(D)	Arrest cells at mitosis
69.	Dora	sal lip of amphibian is equivalent to chi	icks	
	(A)	Hensen mode	(B)	Primitive mode
	(C)	Animal pole	(D)	Vegetal pole
70.	Hon	neotic genes are responsible for		
	(A)	Maintaining gaps in segments		
	(B)	Provide gradient in developing embry	0	
	(C)	Codes morphogens		
	(D)	Mutation results in formation of orga	n at u	unusual locations
71.	Mos	aic developmental pattern is always		
	(A)	Autonomous	(B)	Non autonomous
	(C)	Conditional	(D)	Regulative

and

72.	The	specialized structure pectin for clear e	ye sig	ht is characteristic feature of				
	(A)	Birds	(B)	Amphibians				
,	(C)	Nocturanal animals	(D)	Aquatic mammals				
73.	Whi	ch of the following is not correctly mat	ched?					
	(A)	Chanocytes - Porifera	(B)	Malphigian tubules – Arthropods				
	(C)	Citellum – Annelids	(D)	${\bf Cnidocytes-Mollusc}$				
74.	7.5.5	oplasmic streaming results into mobi	lity of	substances and organelles involves				
	(A)	Tubulin, kinesin	(B)	Tubulin, myosin				
	(C)	Actin, kinesin	(D)	Actin, Myosin				
75.		main force in membrane resealin	g of	ruptured biomembrane in aqueous				
	(A)	Hydrophobic forces between membra	ne lip	ids				
	(B)	(B) Covalent forces between membrane lipids						
	(C)	Force between protein and lipids						
	(D)	Ionic interactions between membran	e lipid	s				
76.	Wha	at would happen if lysosome membran	e leak	s its digestive enzyme in cytosol?				
	(A)	(A) Acid hydrolases will be inactivated						
	(B)	(B) Acid hydrolases will digest the cellular components						
	(C)	pH of cell will increase						
	(D)	It will cause I-cell disease						
77.	The	maximum ionic interaction would be	observ	ed				
	(A)	In presence of polar solvent						
	(B)	In presence of mixture of water and	alcoho	1				
	(C)	(C) Almost equal in all kinds of solvents						
	(D)	When ionic compound is out of the se	olvent	8				
78.	Reg	rulation of trp operon by binding of try	ptopha	an to trp repressor is termed as				
	(A)	Repression	(B)	Induction				
	(C)	Anti termination	(D)	Attenuation				

79.	In sa	alt tolerance plant the excess salt is tra	anspoi	rted to vacuole by				
	(A)	Na-H ⁺ antiporter	(B)	Na-K+ pump				
	(C)	Na-Cl ⁻ symporter	(D)	Na-H ⁺ ase				
80.	Post	translational modification take place	in					
	(A)	Nucleus	(B)	Mitochondria				
	(C)	Ribosome	(D)	Endoplasmic reticulum				
81.	Whi	ch technique cannot be utilized for det	ection	of microdeletion on Y chromosome?				
	(A)	Karyotyping	(B)	PCR				
	(C)	Microarray	(D)	Hybridization				
82.	whil	viduals having X chromosome and s le individuals having X chromosome a s shows that						
	(A)	genes for maleness are located on she	ort arr	n of Y chromosome				
	(B)	(B) genes for maleness are located on longer arm of Y chromosome						
	(C)	genes for maleness are located on X	chromo	osome				
	(D)	male determining gene are not locate	ed on Y	Y chromosome				
83.	just	cell has 'c' as the DNA content of cell a immediately before the cell division nd 'n'						
	(A)	2c and 4n (B) 4c and 2n	(C)	4c and 4n (D) 2c and 2n				
84.	Gen	etic disorder xeroderma pigmentosum	is due	e to error in				
	(A)	Base excision repair mechanism						
	(B)	Nucleotide excision repair mechanism	m					
	(C)	Direct repair mechanism						
	(D)	DNA replication mechanism						
85.		ederbergs experiment which one of the historical experiment	ne follo	owing option they have used to prove				
	(A)	one auxotroph and one prototroph	(B)	two auxotroph and two prototroph				
	(C)	two auxotrophs	(D)	two prototrophs				

86.	Among the following which is the inhibitor of 80S ribosome											
	(A)	Tetracycline			(B)	Streptomycin						
	(C)	Cyclohexamid	е		(D)	Chloromphenio	col					
87.	Effect of release of IP3 during signal transduction pathway is											
	(A)	closure of Ca+2										
	(B)	increase in int	racellu	ılar Ca ⁺² level	l							
	(C)	increase of ext	racellu	ılar Ca+2 level	l							
	(D)	inactivation of	calmo	dulin protein	s							
88.	Dor	orsal mutant in Drosophila will result in										
	(A)											
	(B)	Ventralization	of dor	sal side								
	(C)	There would be no effect										
	(D)	Anterior-posterior pattern formation will be affected										
89.	Intr	Intracellular negative potential and extracellular positive potential occurs in										
	(A)	In all cells			(B)	In neurons						
	(C)	In kidney cells			(D)	In liver cells						
90.	A major functional difference between the succinyl-CoA synthetase of plant and animal cell mitochondria is that it											
	(A)	Does not produ	ice AT	P in plant cel	1							
	(B)	Produce UTP in plant cell										
	(C)	Produces ATP in plants and GTP in animal.										
	(D)	Produces GTP in plants and ATP in animals										
91.	Amo	Among the following which is not monitored as daily potential pollutant										
	(A)	CO	(B)	CO_2	(C)	SO_2	(D)	NOx				
92.	In plant lateral root initiates from											
	(A)	pericycle	(B)	cotex	(C)	pith	(D)	endodermis				

93.	Oxygenase activity of RUBISCO generates										
	(A) Two molecules of PGA (3C)										
	(B)	(B) Two molecules of Phosphoglycolate (2C)									
	(C) One molecule each of PGA and phosphoglycolate										
	(D) Two molecules each of PGA and phosphoglycolate										
94.	Plant family having characteristic umbel inflorescence is										
	(A)) Asteraceae				Acanthaceae					
	(C)	Apiaceae			(D)	Poaceae					
95.	Dendrogram in numerical taxonomy represents										
	(A)) Phenetic similarities				Phylogenetic similarities					
	(C)	Evolutionary s	imilar	ities	(D)	No similarities					
96.	A plant with genotype $r^+h^{+\prime}r^-h^-$ was test crossed. Out of total 280 progeny 260 ar r^+h^+/r^-h^- and r^-h^-/r^-h^- . The recombination frequency will be								9		
	(A)	92.8	(B)	46.4	(C)	7.2	(D)	3.6			
97. Genetic mapping reveals that distance between two genes 'A' and 'B' is is chance of getting Aabb progeny if AaBb is test crossed?								is 10 cM. Wha	t		
	(A)	5%	(B)	10%	(C)	45%	(D)	90%			
98.	The regulators of circadyn rythms in plants is										
	(A)) Phycobillins				Phytochromes					
	(C)	C) Phototropins				Cryotophores					
99.	Quantitative inheritance defines										
	(A)					Variation in genotype					
	(C)	(C) Variation in environment				Variation in genes					
100.	Which of the following which is not intrinsic fluor?										
	(A)					Phenyl alanine					
	(C)	C) Tyrosine				Histidine					
					(D)						