80/x

ENTRANCE EXAMINATION FOR ADMISSION, MAY 2010.

Ph.D. (BOTANY)

COURSE CODE: 136

Register Number:

RANGAPILLA I LILIA TO ANDICHERRY UNIVERSITY

Signature of the Invigilator (with date)

COURSE CODE: 136

Time: 2 Hours

Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	Mos	t significant family in the angiosperms	is									
	(A)	Asteraceae	(B)	Ranunculaceae								
	(C)	Arecaceae	(D)	Poaceae								
2.	The	cohesive force between water molecule	s in p	hloem results in								
	(A)	ascent of sap	(B)	transpiration								
	(C)	respiration	(D)	plasmolysis								
3.	In n	In natural system we consider										
	(A)	flower only	(B)	all of the relevant characters								
	(C)	phylogeny only	(D)	all habit characters								
4.	Cre	mocarp is the fruit of the family										
	(A)	Apiaceae	(B)	Rubiaceae								
	(C)	Rutaceae	(D)	Myrtaceae								
5.	The botanical name of the "Day Jasmine"											
	(A)	Jasminum grandiflorum	(B)	Cestrum elegans								
	(C)	Cestrum diurnum	(D)	Jasminum ritcheii								
6.	Acco	ording to Sachs, water rises in stem du	e to th	ne force of								
	(A)	capillarity	(B)	transpiration pull								
	(C)	imbibition	(D)	diffusion								
7.	Vivi	pary has been observed in the species of	of									
	(A)	Ephedra (B) Taxus	(C)	Gnetum (D) Ginkgo								
8.		seeded winged nut, enclosed by wood	y brac	cteoles to form a dry cone like fruit is								
	(A)	Combretaceae	(B)	Casuarinaceae								
	(C)	Caryophyllaceae	(D)	Myrtaceae								
9.	Bud	dormancy induction is by										
	(A)	IAA (B) IBA	(C)	ABA (D) GA ₃								

10.	Flow	ers in polyganlodioecious, regular, hyp	ogyno	us with annular disc are present in
	(A)	Meliaceae	(B)	Magnoliaceae
	(C)	Fabacae	(D)	Cactaceae
11.	In ar	ngiosperms, triple fusion is required for	the f	ormation of
		pericarp (B) embryo	(C)	
12.	Fron	which plant the decoction of the bark	is giv	en in uterin disorders?
	(A)	Saraca indica	(B)	Salix indica
	(C)	Polyalthia	(D)	Annona
13.	Cass	ie perfume is obtained from		
	(A)	Cassia tora	(B)	Acacia farensiana
	(C)	Cassia auriculata	(D)	Casssia fistula
14.	Whi	ch of the following is a pseudocereal?		
	(A)	Echinochloa frumentacea	(B)	Coix lacryma
	(C)	Secale cereale	(D)	Fagopyrum esculentum
15.	Pota	to is native of		
	(A)	Peru (B) Brazil	(C)	Panama (D) Mexico
16.	The	male gametophyte is		
	(A)	Micropyle	(B)	Nucellus
	(C)	Embryosac	(D)	Pollen Grain
17.	Exa	mple for crustose lichen is		
	(A)	Litmus	(B)	Usnea
	(C)	Dracaena	(D)	Mycoplasmas
18.	The	stele found in <i>Psilotum</i> is a		
	(A)	Dictyostele	(B)	Siphonostele
	(C)	Protostele	(D)	Solenostele

19.	Dou	ble fertilization w	as d	iscovered by				
	(A)	P. Maheshwari			(B)	Karl Schnarf		
	(C)	S. G. Nawaschir	1 ·		(D)	M.S. Swamina	than	
20.	Abs	ence of magnesium	m in	plants initially	results	in		
	(A)	necrosis	(B)	chlorosis	(C)	curling	(D)	dwarfing
21.	Root	t cap is differentia	ated :	from				
	(A)	Calyptrogen			(B)	Lateral merist	em	
	(C)	Periblem			(D)	Dermatogen		
22.	Tun	ica of SAM divide	s in l	now many plan	es			
	(A)	One	(B)	Two	(C)	Three	(D)	Many
23.	The	epidermis of sten	is c	ontributed by				
	(A)	Calytrogen			(B)	Dermatogen		
	(C)	Plerome			(D)	Periblem		
24.	In Q	uiescent zone mi	tocho	ondria and DNA	A conter	nt are		
	(A)	High	(B)	Low	(C)	Very high	(D)	Balanced
25.	The	Tunica corpus the	eory	was proposed b	y			
	(A)	Nageli			(B)	Haberlandt		
	(C)	Schmidt			(D)	Hanstein		
26.	Whi	ch part of the wor	ld ha	s a richest biod	liversity	y?		
	(A)	Dry deciduous fo	resta	3	(B)	Grasslands		
	(C)	Savannahs			(D)	Tropical rain fo	rest.	
27.	The	Ozone depletion is	s cau	sed due to				
	(A)	Chlorides	(B)	Sulphates	(C)	CFC's	(D)	NO_2
28.	Whic	ch is not an examp	ole of	stable ecosyste	em?			
	(A)	Tropical rain for		15-0	(B)	Mountain		
	(C)	Deciduous Fores	ts		(D)	Oceans		

29.	The	rate of photosynthesis is maximum in		
	(A)	blue light	(B)	red light
	(C)	far-red light	(D)	green light
30.	Whi	ch of the following is Y-linked?		
	(A)	Hypertrichosis	(B)	Hepatitis
	(C)	Syphilis	(D)	Phenylketonuria
31.	Plas	smids are extra chromosomal genetic m	ateria	al in
	(A)	mitochondria	(B)	chloroplast
	(C)	bacteria	(D)	viruses.
32.	Whi	ich of the following helps in photosynth	esis?	50
	(A)	zinc (B) copper	(C)	magnesium (D) molybdenum
33.	True	e roots are developed from		
	(A)	Plumule	(B)	Radicle
	(C)	Apical meristem	(D)	Calyptrogen
34.	Exs	situ biological conservation is in		
	(A)	botanical gardens	(B)	pond
	(C)	forest	(D)	biosphere reserves
35.	The	development of fruit without fertilizat	ion is	called
	(A)	apospory	(B)	parthenocarpy
	(C)	apomixis	(D)	amphimixis
36.	A ta	xon with reference to classification of l	iving	organism can be defined as
	(A)	a group of similar species		
	(B)	a group of organism based on chromo	some	numbers
	(C)	a group of any one rank of organisms		
	(D)	a group of similar organisms		
37.	An	international code of botanical nomenc	lature	comes into being in the year
	(A)	1930 (B) 1830	(C)	1913 (D) 1813

38.	Mark the most famous Indian taxonon	ist	
	(A) H. Collette	(B) Fr.H. Santapau	
	(C) P. Maheswari	(D) M.B. Raizada	
39.	The gynoecium of Brassicaceae differs	from Malvaceae in	
	(A) position of ovary	(B) types of ovules	
	(C) cohesion characters	(D) all of these characters	
40.	Amylase is an enzyme for which the su	bstrate is	
	(A) protein (B) lipids	(C) starch (D) fats	
41.	Water available to plant is		
	(A) Run off water	(B) Capillary water	
	(C) Hygroscopic water	(D) Gravitational water	
42.	Temperate evergreen forests are found	in	
	(A) Western Ghats	(B) Aravali ranges	
	(C) Himalayan ranges	(D) Assam	
43.	The ultraviolet radiations are able to p	enetrate in a sea upto a depth of	
	(A) 40 meters	(B) 200 meters	
	(C) 5 meters	(D) 400 meters	
44.	Mark the correct sequence of events or	curring during ecological succession	
	(A) nudation-ecesis-aggregation-migra	ation	
	(B) nudation-migration-ecesis-aggre	gation	
	(C) migration-ecesis-aggregation-nuc	lation	
	(D) nudation-ecesis-miogration-aggre	egation	
45.	The asymbiotic nitrogen fixers are		
	(A) Rhizobium (B) BGA	(C) Azatobacer (D) Mycorrh	niza
46.	Now a days. biological reserves are con	nmonly destroyed by	
	(A) pollution	(B) population	
	(C) rains	(D) none of the above	

47.	Fore	st research Institute i	s situated at			
	(A)	Nainital (B)	Kolkatta	(C)	Madras (D)	Dehradun
48.	Best	method to conserve g	enetic materials	of wile	d life is	
	(A)	cold storage		(B)	tissue culture	
	(C)	seed storage		(D)	growing in natural	habitats.
49.	Biol	ogical diversity day is				
	(A)	5 June		(B)	21 March	
	(C)	14 January		(D)	29 December	
50.	Whi	ch of the following is r	not required for t	he gro	wth by all bacteria?	
	(A)	Carbon (B)	Nitrogen	(C)	Oxygen (D) Sulfur
51.	Posi	tive stains include				
	(A)	Gram stains		(B)	Differential stain	
	(C)	Simple stain		(D)	All of the above	
52.	The	optimum growth tem	perature for ——		— is 40°c to 70°c.	
	(A)	Extreme thermophil	es	(B)	Mesophiles	
	(C)	Psychrophiles		(D)	Thermophiles	
53.	Whi	ch bacteria live with o	or without oxygen	n?		
	(A)	Aerobic		(B)	Anaerobic	
	(C)	Facultatively anaero	obic,	(D)	Microaerophilic	
54.	The	e leaves of Mimosa p	udica close when	n touc	hed. This response is	called
	(A)	Thigmonasty		(B)	Seismonasty	
	(C)	Nyctinasty		(D)	Thermonasty	
55.	Wh	ich of the following is	narrow- spectrur	n ager	nt?	
	(A)	Chloramphenicol		(B)	Gentamicin	
	(C)	Streptomycin		(D)	Tetracycline	

56.	Which of the following is an example of a DNA virus?										
	(A)	Ebola virus			(B)	Herpes simp	lex virus	;			
	(C)	Influenza viru	s		(D)	HIV virus					
57.	Whi	ch of the follow	ing pro	duces a neuro	otoxin?						
	(A)	Clostridium	tetani		(B)	Corynebactre	eium dip	htheriae			
	(C)	Streptococcus	pyogen	es	(D)	Yersinia pest	tis				
58.	Whi	ch of the follow	ing is r	esponsible for	allergie	s?					
	(A)	Ig A	(B)	Ig D	(C)	Ig E	(D)	Ig M			
59.	Whi	ch of the follow	ing stir	nulates antib	ody prod	uction?					
	(A)	Antigen	(B)	B Cells	(C)	T _H Cells	(D)	Tc Cells			
60.	Vac	cination for —	<i>N</i>	— depends o	n the use	of a toxoids					
	(A)	Measels	(B)	Pertusis	(C)	Polio	(D)	Tetanus			
61.	Which of the following is not found in DNA?										
	(A)	Adenine	(B)	Cytosine	(C)	Guanine	(D)	Uracil			
62.	Which of the following is not the result of transcription?										
	(A)	mRNA	(B)	DNA	(C)	rRNA	(D)	tRNA			
63.	Anticodons are found in the:										
	(A)	Gene	(B)	mRNA	(C)	rRNA	(D)	tRNA			
64.	Plants having similar genotypes produced by plant breeding are called										
	(A)	genomes	(B)	clones	(C)	haploids	(D)	diploids			
65.	Which of the following requires the assistance of a virus?										
	(A)	Conjugation			(B)	Transformat	tion				
	(C)	Transduction			(D)	All of the ab	ove				
66.	Vir	us belonging to	the cla	ss Deoxybinal	a are cha	aracterized by					
	(A)	RNA and heli	cal syn	nmetry	(B)	RNA and cu	bic symn	netry			
	(C)	DNA and cub	ic symi	metry	(D)	DNA and du	iel symm	etry			

67.	Whic	ch one of the following statements	is not true	of Bryophyta?								
	(A)	(A) They lack tracheids and sieve tubes										
	(B)	(B) They are photosynthetic										
	(C)	Their zygote undergoes meiosis a	nd then pr	oduces the spore	phyte							
	(D)	Their spores germinate, producing	g gametop	hytes.								
68.	Well developed archegonium with neck consisting of 4-6 rows of neck cell characterizes											
	(A) Gymnosperms only											
	(B)	(B) Gymnosperms and flowering plants										
	(C)	Pteridophytes and Gymnosperms	3									
	(D)	Bryophytes and Pteridophytes										
69.	Whi	ch of the following pteridophyte sh	ows climb	ing habit?								
	(A)	Cyathea (B) Actinopter	is (C)	Lygodium	(D)	Botrychium						
70.	Heterospory is the production of											
	(A)	Sexual and asexual spores	(B)	Large and sma	ll spor	es						
	(C)	Haploid and diploid spores	(D)	Diploid and tet	raploi	d spores						
71.	In which of the following groups would you place a plant which produces spores, has vascular tissues and lacking seeds?											
	(A)	Algae	(B)	Bryophytes								
	(C)	Pteridophytes	(D)	Gymnosperms								
72.	A st	ele without a central pith is called	a									
	(A)	Protostele (B) Dictyostel	e (C)	Siphonostele	(D)	Solenostele						
73.	Acc	ording to stelar theory the stele co	mprises of									
	(A)	Xylem and phloem only	(B)	Xylem, phloen	and p	ericycle						
	(C)	Xylem, phloem and pith	(D)	All of these								
74.	For	speciation, which one of the follow	ving is imp	ortant?								
	(A)	Tropical	(B)	Reproductive								
	(C)	Seasonal	(D)	Behavioural								

75.	Bor	thwick and Hendricks coined the term										
	(A)	Cytochrome	(B)	Phytochrome								
	(C)	Cryptochrome	(D)	Chromatophore								
76.	DN	A strands are antiparallel because of										
	(A)	phospho-diester bonds	(B)	hydrogen bonds								
	(C)	phosphate bonds	(D)	sulphide bonds								
77.		en a change in the number of chron nomenon is called	nosom	nes involves the entire genome, th								
	(A)	euploidy (B) hyperploidy	(C)	aneuploidy (D) hypoploidy								
78.	The	The genes which are not switched off and remain always functional										
	(A)	smart genes	(B)	structural genes								
	(C)	promoter genes	(D)	house keeping genes								
79.	Which phenomenon obeys the first law of Thermodynamics?											
	(A)	Respiration	(B)	Photosynthesis								
	(C)	Transpiration	(D)	Translocation								
80.	In hilly terrains, the common method of cultivation is											
	(A)	ridge terracing	(B)	canal terracing								
	(C)	levelling	(D)	bench terracing								
81.	Fiel	d capacity refers to holding of										
	(A)	hygroscopic water										
	(B)	capillary water and hygroscopic wate	r	5. (8.11)								
	(C)	capillary water										
	(D)	gravitational water										
82.	Terj	penes are also known as										
	(A)	isoprenoids (B) flavonoids	(C)	steroids (D) phenols								
83.	Con	version of glycolate to glyoxylate occurs	s in									
	(A)	mitochondrion	(B)	peroxisome								
	(C)	chloroplast	(D)	golgi complex								

84.	Rad	ioactivity can be	detec	ted by using				
	(A)	LM counter	(B)	GG counter	(C)	GZ counter	(D)	GM counter
85.	The	circular depress	ions o	n the abaxial sid	le of a	lichen are called		
	(A)	Isidia	(B)	Cyphellae	(C)	Gemmae	(D)	Cephalodia
86.	In g	lowing tobacco, v	vhich	gene was transf	erred t	to produce the glo	owing	effect?
	(A)	luciferin	(B)	luciferase	(C)	amylase	(D)	invertase
87.	Cyb	rid refers to						
	(A)	somatic hybrid			(B)	isolated protop	lasts o	of a cell
	(C)	anucleate proto	plast	8	(D)	isolated zygotic	nucle	eus
88.	Nor	thern blotting te	chniqu	ue is used for the	analy	ysis of		
	(A)	Proteins	(B)	DNA	(C)	RNA	(D)	Sugars
89.	Adv	entitious root for	matio	n is promoted d	uring			
	(A)	drought stress			(B)	waterlogging st	ress	
	(C)	cold stress			(D)	thermal stress		
90.	Oka	zaki fragments a	are for	med in the				
	(A)	leading strand			(B)	lagging strand		
	(C)	coiled strands			(D)	uncoiled strand	ls	
91.	The	alluvial soil is tr	anspo	orted by				
	(A)	water	(B)	air	(C)	glaciers	(D)	gravity
92.	Whi	ch of the followin	ng ant	ibiotics blocks t	ne syn	thesis of bacteria	ıl cell	wall?
	(A)	Streptomycin			(B)	Tetracycline		
	(C)	Penicillin			(D)	Erythromycin		

93.	The	shape of rabies virus is							
	(A)	Bullet shaped	(B)	Tadpole like					
	(C)	Brick shaped	(D)	Lcosahedral					
94.	LSD	is extracted from							
	(A)	Macor mucedo	(B)	Amanita sp.					
	(C)	${\it Claviceps\ purpurea}$	(D)	Aspergillus sp.					
95.	The	Earth Summit was held a	t .						
	(A)	New Delhi	(B)	Belgrade					
	(C)	New York	(D)	Rio-de-Janeiro					
96.	The	total amount of DNA pres	sent in a haploid g	enome of an orga	nism is called as it				
	(A)	S-value (B) C-	value (C)	T- value	(D) P-value				
97.	The enzyme that fixes atmospheric CO ₂ in C4 plants is								
	(A)	RUBISCO	(B)	Carboxy dismu	tase				
	(C)	Aldolase	(D)	PEP-C					
98.	Blac	k rust of wheat is caused	by						
	(A)	Ustilago	(B)	Mucor					
	(C)	Pythium	(D)	Puccinia					
99.	Dur	ing cell cycle, the replicati	on of DNA occurs	in					
	(A)	G1 phase (B) G2	2 phase (C)	S phase	(D) M phase				
100.	Whi	ch ecosystem has the high	est primary produ	activity?					
	(A)	River ecosystem	(B)	Pond ecosystem	1				
	(C)	Lake ecosystem	(D)	Forest ecosyste	m				