Module Name : PhD Botony-E

Exam Date: 18-Sep-2020 Batch: 16:00-18:00

Sr. No.	Client Question ID	Question Body and Alternatives	Marks	Negative Marks
Objec	tive Question			
1	1	Find out the bacteria which lack cell wall and are resistant to penicillin?	4.0	1.00
		A1 Mycoplasmas		
		A2 Bdellovibrios		
		A3 Spirochetes		
		A4 Cyanobacteria :		
Object	tive Question			
2	2	Flagella found all over the body surface of the bacteria is called as	4.0	1.00
		A1 monotrichus :		
		A2 lophotrichous		
		A3 Amphitrichus:		
		A4 peritrichus		
Object	tive Question			
3	3	Bacterial cocci found in double or in pairs	4.0	1.00
		A1 Streptococci		
		A2 Staphycocci		
		A3 Sarcina :		
		A4 diplococci		
Object	tive Question			
4	4	Which of the followings are the first land plants?	4.0	1.00
		Al Algae :		

	A2 Fungi		
	A3 Bryophytes		
	A4 Pteridophytes		
Objective Questi	ion		
5 5	Pteridophytes are different from bryophytes by	4.0	1.00
	A1 Presence of vascular tissue :		
	A2 Archegonia :		
	A3 Sperms		
	A4 Alternate generation		
Objective Questi	ion		
6 6	Seed habit is originated in	4.0	1.00
	A1 Algae		
	A2 Fungi		
	A3 Pteridophytes		
	A4 Bryophytes		
Objective Questi	ion		
7 7	Sporangia bearing leaf is called as	4.0	1.00
	A1 Sorus		
	A2 Sporophyll		
	A3 Androecium		
	A4 Indusium		
Objective Questi	ion		
8 8	Plants which are not differentiated into leaf, stem and root are	4.0	1.00

		A2 Gymnosperms		
		A3 Pteridophytes		
		A4 Thallophytes		
hioo	tive Question			
ojec.	9	Megasporangium is also known as	4.0	1.00
		Al Fruit :		
		A2 Ovule		
		A3 Nucellus		
		A4 Sorus		
hiec	tive Question			
)	10	Gymnosperm differs from Angiosperms by	4.0	1.00
		Al Having seeds		
		A2 Having naked ovules		
		A3 Only having ovules		
		A4 Having fruits		
biec	tive Question			
l	11	The most advanced Gymnosperm is	4.0	1.00
		A1 Cycadales		
		A2 Coniferales		
		A3 Gnetales		
		A4 Codaitales		
h	tive Question			

		11	П
	A1 Cycas		
	A2 Rhynia		
	A3 Hydrilla		
	A4 Lycopodium		
Objective Q	lection .		
13 13	Energy flow in ecosystem is	4.0	1.00
	A1 Tridirectional		
	A2 Unidirectional		
	A3 Bidirectonal		
	A4 Multidirectional		
	· · · · · · · · · · · · · · · · · · ·		
Objective Q		4.0	1.00
14 14	Which one is considered as man made ecosystems?	4.0	1.00
	Al Pond :		
	A2 Tissue culture		
	A3 Aquarium		
	A4 Forest		
Objective Q		4.0	1.00
10 10	Which one of the followings is a good indicator of SO ₂ pollution?	٠.٠	1.00
	A1 Lichen		
	A2 Bryophytes :		
	A3 Pteridophytes		
	A4 Fungi		

Objective Question	Minamata disease was caused by water pollution by	4.0	1.00
	inimaniata disease was caused by water pollution by		
	A1		
	A1 Lead		
	A2 Bismuth		
	: Districti		
	A3 Tin		
	Δ4		
	A4 Mercury		
Objective Question			
17 17	Commercially citric acid is produced using	4.0	1.00
	A1 Aspergillus		
	A2 Penicillium		
	A3 Citrus fruits		
	: Citrus fruits		
	A4 Bacteria		
	·		
21:			
Objective Question		4.0	1.00
	Which of the following is fungicide?	7.0	1.00
	A1		
	A1 Bordeaux mixture		
	A2 D.D.T		
	A3 2-4,D		
	A4		
	A4 Auxin		
Objective Question			
19 19	The main constituent of 'Ergot of rye' is	4.0	1.00
	Al Phenol		
	A2		
	A2 Alkaloid		
	A3 Nucleic acid		
	A3 Nucleic acid:		
	A3 Nucleic acid A4 Antibiotic		

		$\ $:		
	e Question			
20 20	0	Ruminate endosperm is commonly found in the seeds of	4.0	1.00
		A1 Euphorbiaceae :		
		A2 Cruciferae		
		A3 Annonaceae :		
		A4 Compositae		
Objective	e Question			
21 21		The protein from which hook and filaments of flagella are composed of, is	4.0	1.00
		Al Gelatin		
		A2 Casein:		
		A3 Flagellin		
		A4 Keratin :		
01: ::				
Objective 22 22	e Question		4.0	1.00
22 22	2	What is the percentage of Peptidoglycan in the dry weight of cell wall in many gram positive bacteria?	4.0	1.00
		A1 Within 20 to 50%		
		A2 50% or more :		
		A3 Below 20%		
		A4 Above 50%:		
Objective 23 23	e Question		4.0	1.00
23 23	ی	Aspergillosis is recognized in tissue by the presence of	4.0	1.00
		Al Budding cells		
		A2 Septate hyphae :		
		A3 Psuedohyphae :		

		A4 Metachromatic granules		
	tive Question			1.00
24	24	Megasporophyll of sellaginella is equal to which structure of angiosperms	4.0	1.00
		Al Carpel:		
		A2 Stigma :		
		A3 Ovul		
		A4 Stem :		
Object	tive Question			
25	25	Spore dissemination in fern is done by	4.0	1.00
		A1 Indusium:		
		A2 Annulus		
		A3 Sorus		
		A4 Tapetum :		
Object	tive Question			
26	26	Agar agar is obtained from the followings	4.0	1.00
		A1 Gelidium		
		A2 Gracilaria		
		A3 Spirolina :		
		A4 Nostoc		
Obiect	tive Question			
27	27	Which of the algae is responsible for red colour in red sea	4.0	1.00
		A1 Clamydomonasbrauii		
		A2 Trichodesmiumerythrium		

		A3 Ulothixzoneta		
		A4 Volvox sp		
Obiec	ctive Question			
28	28	Primary development of male and female gametophytes takes place in the sporangia itself in	4.0	1.00
		Al Sellaginella		
		A2 Volvux		
		A3 Fern		
		A4 Fungi		
Objec	ctive Question			
29	29	Which one of the following pairs in mismatched?	4.0	1.00
		A1 Tundra - permafrost		
		A2 Savanna - acacia trees		
		A3 Prairie - epiphytes		
		A4 Coniferous forest - evergreen trees		
Objec	ctive Question			
30	30	A clone is a group of individuals obtained through	4.0	1.00
		A1 Vegetative Propagation		
		A2 Cross-Pollination		
		A3 Self-Pollination		
		A4 Hybridization :		
	ctive Question			
31	31	The classification given by Bentham and Hooker is	4.0	1.00
		A1 Phylogenetic:		
		A2 Natural		

		 :	'	
		A3 Artificial		
		A4 Numerical		
	tive Question			
	32	Tricarpellary, syncarpous, inferior ovary with parietal placentation is found in	4.0	1.00
		A1 Cruciferae		
		A2 Ranunculaceae		
		A3 Solanceae		
		A4 Cucurbitaceae		
	tive Question			
	33	The filtering medium of trickling filters is coated with microbial flora, known as	4.0	1.00
		A1 Zoogleal film		
		A2 Zoological film		
		A3 Geological film		
		A4 Microbial film :		
	tive Question			
	34	Which of the following nucleic acid is present in hepatitis B virus?	4.0	1.00
		A1 ssRNA		
		A2 dsDNA		
		A3 ssDNA		
		A4 dsRNA		
	tive Question			
35	35	The process by which phage reproduction is initiated in lysogenized culture is called	4.0	1.00
		A1 integration		

ojective Questic 36 37 37 37 38	Competition for light, nutrients and space is most severe between A1 closely related organism growing in different niches A2 closely related organisms growing in the same area/niche A3 distantly related organisms growing in the same habitat A4 distantly related organisms growing in different niches.	4.0	
36 Spective Questic 37	Competition for light, nutrients and space is most severe between A1 closely related organism growing in different niches A2 closely related organisms growing in the same area/niche A3 distantly related organisms growing in the same habitat A4 distantly related organisms growing in different niches.		
36 Spective Questic 37	Competition for light, nutrients and space is most severe between A1 closely related organism growing in different niches A2 closely related organisms growing in the same area/niche A3 distantly related organisms growing in the same habitat A4 distantly related organisms growing in different niches. On Green house effect is warming due to A1 ozone layer of atmosphere.		
36 Spective Questic 37	Competition for light, nutrients and space is most severe between A1 closely related organism growing in different niches A2 closely related organisms growing in the same area/niche A3 distantly related organisms growing in the same habitat A4 distantly related organisms growing in different niches. On Green house effect is warming due to A1 ozone layer of atmosphere.		1.00
37	A2 closely related organisms growing in the same area/niche A3 distantly related organisms growing in the same habitat A4 distantly related organisms growing in different niches. On Green house effect is warming due to A1 ozone layer of atmosphere.	4.0	1.00
37	A3 distantly related organisms growing in the same habitat A4 distantly related organisms growing in different niches. On Green house effect is warming due to A1 ozone layer of atmosphere.	4.0	1.00
37	A4 distantly related organisms growing in different niches. On Green house effect is warming due to A1 ozone layer of atmosphere.	4.0	1.00
37	Green house effect is warming due to A1 : ozone layer of atmosphere.	4.0	1.00
37	Green house effect is warming due to A1 : ozone layer of atmosphere.	4.0	1.00
37	Green house effect is warming due to A1 : ozone layer of atmosphere.	4.0	1.00
	A2 infra-red rays reaching earth		
	A3 moisture layer in atmosphere		
	A4 increase in temperature due to increase in carbon dioxide concentration of atmosphere :		
	on		
	In C3 plants first stable product photosynthesis during dark reaction is:	4.0	1.00
	A1 Pyruvic acid:		
	A2 PGA		
	A3 RuBP		
ojective Questio	A4 Oxalo acetic acid:		

		A1 Edward's syndrome :		
		A2 Klinefelter's syndrome		
		A3 Down's syndrome		
		A4 Patau's syndrome:		
	ive Question			
40	40	Which is most likely to be exposed on the surface of a gram-negative bacterium?	4.0	1.00
		Al Pore protein (porin)		
		A2 Lipoteichoic acid		
		A3 Phospholipids :		
		A4 Aminoacids		
Object	ive Question			
41	41	The last step in synthesis of peptidoglycan is	4.0	1.00
		A1 attaching two amino acids to form a cross-link :		
		A2 attachment of a peptide to muramic acid:		
		A3 binding of penicillin to a membrane protein :		
		A4 attachment of a portion of peptidoglycan to a membrane lipid :		
Object	ive Question			
	42	Immuno-compromised persons are suffered from several fungal diseases. Which of the following is the least frequently associated	4.0	1.00
		A1 Mucor species		
		A2 Cryptococcus neoformans:		
		A3 Aspergillus fumigatus:		
		A4 Rhizopus sp.		

13	43	Fungal cells that reproduce by budding are seen in the infected tissues of patients with	4.0	1.00
		A1 Tineacorporis, tineaunguium, and tineaversicolor		
		A2 Candidiasis, cryptococcosis, and sporotrichosis		
		A3 Mycetoma, candidiasis and mucormycosis		
		A4 Sporotrichosis, mycetoma and aspergillosis		
NL:	ctive Question			
Эвјес 14	44	Which one of the following is correct matching of a plant, its habit and the forest type where it normally occurs?	4.0	1.00
		A1 Prosopis, tree, scrub		
		A2 Saccharum, grass, forest		
		A3 Shorea robusta, herb, tropical rain forest:		
		A4 Acacia catechu, tree, coniferous forest		
biec	ctive Question			
15	45	The pyramid of energy is always upright for any ecosystem. This situation indicates the fact that	4.0	1.00
		A1 Herbivores have a better energy conversion efficiency than carnivores		
		A2 Producers have the lowest energy conversion efficiency:		
		A3 Carnivores have better energy conversion efficiency than herbivores		
		A4 Energy conversion efficiency is the same in all trophic levels		
Obiec	ctive Question			
16	46	Leader sequence in some of the protozoan parasites is transcribed elsewhere in the parasite genome and gets joined with several transcripts to make the functional RNA. The joining of the two transcripts occur by the process of	4.0	1.00
		Al Alternate splicing		
		A2 Trans splicing		
		A3 Ligation		

		A4 RNA editing :		
λ.; -	etive Question			
76jec 17	47	During replication, the RNA primer is degraded by the 5'-3' exonucleases activity of	4.0	1.00
		During represented, the 14 VI printer is degraded by the 5 °Choliderenses and VII of		
		A1 RNase H1 (ribonuclease H1)		
		A2 FEN-1 (flap endonuclease)		
		: PEN-1 (nap endonuclease)		
		A3		
		A3 Topoisomerase II B		
		$\stackrel{\text{A4}}{:}$ DNA polymerase $_{\gamma}$		
Objec 18	etive Question		4.0	1.00
10	40	What will happen if histones are depleted from a metaphase chromosomes and viewed under a transmission electron microscope	4.0	1.00
		A1 30 nm chromatin will be observed		
		A2 10 nm chromatin will be observed		
		A3 A scaffold and huge number of loops of DNA fibers will be observed		
		A4 A huge number of loops of DNA fibers without scaffold will be observed		
		A nuge number of loops of DNA fibers without scattoid will be observed		
Objec	etive Question			
19	49	Which of the following does not contribute to protein diversity	4.0	1.00
		A1 RNA editing		
		A2 RNA splicing		
		A3 RNA interference		
		: KVV meriorenee		
		A4		
		A4 Alternate initiation of translation		
)h:	tiva Ovastiaa			
Эвјес 50	50	A set of virulence genes (vir genes), located in the Agrobacterium Ti-plasmid, is activated by	4.0	1.00
		A1 octopine		
		A2 nopaline		
		:		

		A3 acetosyringone :		
		A4 : auxin		
Object	tive Question			
51	51	When two mutants having the same phenotype were crossed, the progeny obtained showed a wild-type phenotype. Thus the mutations are	4.0	1.00
		Al non-allelic :		
		A2 allelic.		
		A3 segregating from each other.		
		A4 independently assorting		
Object	tive Question			
52	52	Repair of double strand breaks made during meiosis in the yeast Saccharomyces cerevisiae	4.0	1.00
		A1 is associated with a high frequency of mutations		
		A2 occurs mostly using the sister chromatid as a template.		
		A3 occurs mostly using the homologous chromosome as a template		
		A4 occurs mostly by non-homologous end joining.		
Object	tive Question			
53	53	A messenger RNA is 336 bases long including the initiation and termination codon. The number of aminoacids in the polypeptide translated from this	4.0	1.00
		A1 110 :		
		A2 333		
		A3 111 :		
		A4 600 :		
Object 54	tive Question 54		4.0	1.00
	7	The copy number of transgene in plants can be deciphered by	T.U	1.00
34				

	A2 Northern blotting		
	A3 South blotting		
	A4 Eastern blotting		
Objective Question			
55 55	Telomease, a RNA protein complex which completes the replication of telomeres during DNA synthesis, is a specialized	4.0	1.00
	A1 RNA depended RNA polymerase		
	A2 DNA depended DNA polymerase		
	A3 RNA depended DNA polymerase :		
	A4 DNA depended RNA polymerase		
Objective Question	1		
56 56	The different beak morphologies of Darwin's flinches on the Galapagos Islands is best explained by	4.0	1.00
	A1 Genetic variation		
	A2 Dietary differences		
	A3 Different habitats		
	A4 All of these		
Objective Question			
57 57	Deletion of the leader sequence of trp operon of E.coli would result in	4.0	1.00
	A1 decreased transcription of trp operon.		
	A2 increased transcription of trp operon.		
	A3 no effect on transcription.		
	A4 decreased transcription of trp operon in the presence of tryptophan		
Objective Question 58 58	The bacteria deficient in cell wall is	4.0	1.00

	II.		П	
		A2 Bdellovibrios		
		A3 Mycoplasmas		
		A4 Cyanobacteria :		
Object	tive Question			
59	59	Which of the following has peptidoglycan as a major constituent of cell wall?	4.0	1.00
		A1 Gram-positive bacteria		
		A2 Gram-negative bacteria		
		A3 Fungi		
		A ⁴ Virus		
Object	tive Question			
60	60	The cocci which forms a chain is	4.0	1.00
		A1 Streptococci		
		A2 Staphycocci		
		A3 Sarcina :		
		A4 diplococci		
Obiect	tive Question			
61	61	Select the first land plants on the earth from the followings	4.0	1.00
		Al Pteridophytes :		
		A2 Bryophytes :		
		A3 Algae		
		A4 Fungi		
	tive Question			

A1 Plectodstele A2 Actinostele		
A2 Actinostele :		
A3 Dictyostele		
A4 Siphonostele		
Wiling and a minimizer of the second of the	4.0	1.00
Which are the primitive group of algae	4.0	1.00
A1 Cyanophyceae		
A2 Pheophyceae :		
A3 Rhodophyceae		
A4 Chlorophyceae		
Indine is obtained from	4.0	1.00
Isolate is committee from		
A1 Nostoc		
A2 Laminaria		
A3 Volvox		
A4 Spirolina :		
S	4.0	1.00
Sargassum belong which algae	٠.٠	1.00
A1 Brown algae:		
A2 Red algae		
A3 Ble green algae:		
A4 Green algae		
	Which are the primitive group of algae Al Cyanophyceae A2 Pheophyceae A3 Rhodophyceae A4 Chlorophyceae A1 Nostoe A2 Laminaria A3 Volvox A4 Spirolina Sargassum belong which algae A1 Brown algae A2 Red algae A3 Ble green algae A3 Ble green algae	Which are the primitive group of algae Al Cyanophyceae A2 Pheophyceae A3 Rhodophyceae A4 Chlorophyceae Iodine is obtained from A1 Nostoe A2 Laminaria A3 Volvox A4 Spirolina Sargassum belong which algae A1 Brown algae A2 Red algae A3 Ble green algae A3 Ble green algae

66	66	Which plant have seed without producing flowers	4.0	1.00
		Al Gymnosperms		
		A2 Angiosperms		
		: Angrospeniis		
		A2		
		A3 Fungi		
		A4 Algae		
Obiec	tive Question			
67	67	Megasporophyll in gymnosperms is termed as	4.0	1.00
		Al Leaf		
		A2 Stamen		
		: Stamen		
		A3 Stem		
		A4 Carpel		
Ohiec	tive Question			
68	68	Coralloid roots are found in	4.0	1.00
		Al Cycas		
		A2 Gnetum		
		: Gletun		
		A3 Pinus :		
		A4 Gingo		
Objec	tive Question			
69	69	BOD stands for	4.0	1.00
		Al Biochemical oxygen demand		
		A2 Biological avvices demand		
		A2 Biological oxygen demand		
		A3 Biochemical oxidation demand		
		A3 Biochemical oxidation demand		

Objective Que	stion		
70	5 th June is celebrated as	4.0	1.00
	A1 World forest day		
	A2 World environment day		
	A3 World population day		
	A4 World wildlife day		
Objective Que	stion		
71 71	Noise pollution is measured by sound meter in the unit of	4.0	1.00
	A1 Decibel		
	A2 Hertz		
	A3 Joule:		
	A4 Sound :		
Objective Que	stion		
72 72	Phylloclade is a modification of	4.0	1.00
	A1 Stem		
	A2 Root		
	A3 Leaf		
	A4 Bark		
Objective Que	estion		
73	Development of egg without fertilization is	4.0	1.00
	A1 Apocarpy		
	A2 Apomixis		

		A4 Parthenogenesis		
Obiect	tive Question			
	74	Red rust of tea is caused by	4.0	1.00
		Al Red algae		
		A2 A fungus		
		A3 Bacterium		
		A4 Gymnosperm :		
Object	tive Question			
	75	Water bloom is generally caused by	4.0	1.00
		A1 Bacteria		
		A2 Blue-green algae		
		A3 Hydrilla :		
		A4 Green algae :		
Object	tive Question			
76	76	What is the end product of photosynthesis?	4.0	1.00
		A1 Water:		
		A2 Glucose and oxygen		
		A3 Carbon dioxide		
		A4 Nitrogen		
Object	tive Question			
	77	White rust of crucifers is caused by	4.0	1.00
		Al Phytophthora:		
		A2 Puccinia		

	A3 Albugo		
	A4 Ustilago		
Objective Quest		4.0	1.00
78 78	Which of the following is analogous to mesosomes of bacteria?	4.0	1.00
	Al Golgi apparatus of eukaryotes		
	A2 Mitochondria of eukaryotes		
	A3 Lysozymes		
	A4 Ribosome		
Objective Quest	ion		
79 79	Error free repair of double strand breaks in DNA is accomplished by	4.0	1.00
	A1 Non-homologous end joining		
	A2 Base excision repair		
	A3 Homologous recombination		
	A4 Mismatch repair		
Objective Quest	ion.		
80 80	Fungi often colonize lesions due to other causes. Which of the following is least likely to be present as colonizer	4.0	1.00
	A1 Sporothrix		
	A2 Candida		
	A3 Mucor		
	A4 Aspergillus		
Objective Quest	ion		
81 81	Development of sporophytes without involvement of sexual reproduction	4.0	1.00
	A1 Apospory		
	A2 Apogamy		

		\parallel :		
		A3 Apomixis		
		A4 Apocarpy		
Ohiec'	etive Question			
32 32	82	Zygotic meiosis in the characteristics of	4.0	1.00
		A1 Fungi		
		A2 Brophytes		
		A3 Algae		
		A4 Bacteria		
Object	ctive Question			
83	83	Endosperm is formed in Gymnosperms as	4.0	1.00
		Al After fertilization		
		A2 Before fertilization		
		A3 At the time of fertilization		
		A4 Along with the development of the embryo :		
Ohiec'	etive Question			
84	84	Which one of the following is one of the characteristics of a biological community?	4.0	1.00
		A1 Stratification		
		A2 Sex ratio		
		A3 Death ration		
		A4 Natality		
	ctive Question			
85	85	Balbiani rings are found in the followings	4.0	1.00
		A1 Polysomes		

	II		II	II
		A2 Polytene chromosomes		
		A3 Autosomes		
		A4 Non-sense chromosomes :		
Objec	ctive Question			
86	86	T-cells and B-cells are called as	4.0	1.00
		Al RBCs:		
		A2 Lymphocytes		
		A3 Natural killer cells		
		A4 WBCs		
Objec	ctive Question			
87	87	Fist biochemical to be produced commercially by microbial cloning and genetic engineering, is	4.0	1.00
		A1 Fertility factor		
		A2 Penicillin		
		A3 Interferon		
		A4 Human insulin		
Obied	ctive Question			
88	88	Polymerase chain reaction is most useful in	4.0	1.00
		A1 DNA synthesis		
		A2 Protein synthesis:		
		A3 DNA amplification		
		A4 Amino acid synthesis		
Ol-:	otiva Ot			
Objec 89	etive Question	In callus culture, roots can be induced by the supply of	4.0	1.00
		,		

		A1 Cytokinin :		
		A2 Gibberellin		
		A3 Auxin		
		A4 Ethylene		
21.				
Эвјес 90	tive Question	A diploid population having individuals with different chromosome numbers ranging from 2N + 3 to 2N - 3 is a	4.0	1.00
,0		A diploid population naving individuals with different chromosome numbers ranging from 2N + 3 to 2N - 3 is a	1.0	1.00
		Al Diploidy		
		A2 Aneuploidy		
		A3 Polyploidy		
		A4 Triploidy		
Objec	tive Question			
91	91	Which one of the following condition/set of conditions is essential for successful exploitation of heterocyst?	4.0	1.00
		A1 Male sterility and high heterocyst		
		A2 High heterolysis effect		
		A3 Male sterility:		
		A4 : High heterocyst and a method for commercial production of hybrid seeds		
Obiec	tive Question			
)2	92	Which one of the following is NOT a PCR-based molecular marker?	4.0	1.00
		Al AP-PCR		
		A2 RAPD:		
		A3 DAF		
		A4 RELP		
		•		
	tive Question			

93 93	Which of the following cell possess poly morphonucleus	4.0	1.00
	Al Neutrophils		
	A2 B- cells		
	A3 macrophage		
	A4 erythrocyte		
Objective Que	stion		
94 94	Secondary immune response is generated due to	4.0	1.00
	Al Naive B cells		
	A2 Memory cells		
	A3 Naive T cells		
	A4 NK cells		
Objective Que	stion		
95 95	Which of the following is not the characteristics of histoplasmosis	4.0	1.00
	A1 mycelial phase in the soil		
	A2 Person to person transmission		
	A3 Specific geographic distribution		
	A4 Yeasts in tissue :		
Objective Que	stion		
96 96	In a comparative study of grassland ecosystem and pond ecosystem, it may be observed that	4.0	1.00
	A1 the abiotic components are almost similar :		
	A2 primary and secondary consumers are similar		
	A3 the biotic components are almost similar :		
	A4 both biotic and abiotic components are different		

Objective	Question			
97 97		Assertion: Tropical rain forests are disappearing fast from developing countries such as India. Reason: No value is attached to these forests because these are poor in biodiversity. The correct answer is:	4.0	1.00
		A1 Both Assertion and Reason are true and Reason is the correct explanation of the Assertion		
		A2 Both Assertion and Reason are true but the Reason is not the correct explanations of Assertion.		
		A3 Assertion is true, but Reason is false		
		A4 Both Assertion and Reason are false		
Objective	Ouestion			
98 98		Both heterospory and circinateptyxis occur in	4.0	1.00
		A1 Dryopteris		
		A2 Funaria		
		A3 Pinus :		
		A4 Cycas:		
01:	<u> </u>			
Objective 99 99		Gasohol is defined as	4.0	1.00
		A1 ethanol		
		A2 Petrol:		
		A3 Hydrogen		
		A4 Natural gas		
	<u> </u>			
Objective 100 100	Question 00	Consider a short double stranded linear DNA molecule of 10 complete turns with 10.5 bp/turn. The end of the DNA molecule are sealed together to make a relaxed circle. This relaxed circle will have linking number of	4.0	1.00
		A1 105 :		
		A2 20.5		
		A3 10		

:		
A4 10.5		
: 201		