

ENTRANCE EXAMINATION FOR ADMISSION, MAY 2010.

M.Phil. /Ph.D. (CHEMISTRY)

COURSE CODE: 244/107

Register Number:		
	Signat	ure of the Invigilator

(with date)

COURSE CODE: 244/107

Time: 2 Hours Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you -1 mark and the correct answer will fetch 4 marks.
- Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	Whi	ch is the weakest	amo	ng the following	types	of bonds?		
	(A)	ionic bond			(B)	covalent bond		
	(C)	hydrogen bond			(D)	metallic bond		
2.	The	ground state terr	n syn	nbol for a d² ion i	s			
	(A)	$^3\mathrm{F}_2$	(B)	$^{3}P_{2}$	(C)	$^3\mathrm{F}_4$	(D)	$^{3}P_{1}$
3.	For	a linear molecule	of 4	atoms, the numb	er of f	fundamental vibr	ation	s is
	(A)	zero	(B)	four	(C)	six	(D)	seven
4.	Whi	ch one of the follo	wing	molecule has D_3	h poin	at group symmetr	y?	
	(A)	SiF ₄	(B)	PF_5	(C)	NH_3	(D)	H_2O
5.	The	biological role of	ferri	loxin is				
	(A)	iron storage			(B)	metal transport		
	(C)	oxygen storage			(D)	electron transfe	r	
6.	For	NQR spectroscop	y, the	nuclear spin val	lue m	ust be		
	(A)	zero			(B)	half		
	(C)	more than half		-	(D)	less than half		
7.	Whi	ch of the followin	g ion	has the smallest	radiu	ıs?		
	(A)	Ti(II)	(B)	Pt(II)	(C)	Ni(II)	(D)	Cd(II)
8.	The	strongest interac	tion a	accompanying ch	emiso	rption would be f	or	
	(A)	CO ₂ on Pt			(B)	Ar on Pt		
	(C).	N ₂ on Pt			(D)	CO on Pt		
9.	In M	Iossabauer techni	ique,	the spin density	of foll	owing orbital can	be es	stimated
	(A)	s-orbital			(B)	p-orbital		
	(C)	d-orbital			(D)	all three of then	n	
10.	Whi	ch one of the follo	wing	pairs does not co	ntain	isoelectronic mo	lecule	es?
	(A)	N ₂ , CO			(B)	NO^+ , N_2		
	(C)	NO, N ₂			(D)	NO, CO		

11.	The	arachno borane is							
	(A)	$[B_6H_{12}]$	(B)	[B ₅ H ₉]					
	(C)	$[B_2H_6]$	(D)	$[B_6H_6]^{2^-}$					
12.	The	number of EPR lines expected for a M	n(II) c	omplex are					
	(A)	six	(B)	thirty					
	(C)	thirty six	(D)	six + six					
13.	() () () () () () () ()	photosynthesis, the predominant mossystem II is	ietal j	present in the	reaction centre of				
	(A)	zinc	(B)	copper					
	(C)	manganese	(D)	iron					
14.	The	compound which has four metal-metal	l bond	s is					
	(A)	Fe ₂ (CO) ₉	(B)	$[\mathrm{Re_2Cl_8}]^{2^-}$					
	(C)	$Co_2(CO)_8$	(D)	Ru ₃ (CO) ₁₂					
15.	The	violet colour of [Ti(H2O)6]3+ is due to							
	(A)	ligand to metal charge transfer trans	sition						
	(B)	metal to ligand charge transfer trans	sition						
	(C)	d-d transition							
	(D)	f-f transition							
16.	The	inert pair effect refers to							
	(A)								
	(B)	a pair of electrons on inert gas atoms	3						
	(C)	an electron pair donated to inert gas	atoms	3					
	(D)	a pair of electrons in the triplet state	е						
17.	A m	nolecule with d^2sp^3 hybridisation shows	s the b	ond angle of					
	(A)	120° (B) 60°	(C)	109.5°	(D) 90°				
18.	Pho	tophysical process which leads to radio	oactive	e decay is called					
	(A)	absorption	(B)	fluorescence					
	(C)	internal conversion	(D)	inter system cr	ossing				

19.	The	metal present in hemocyan	in is					
	(A)	copper	(E	3)	iron			
	(C)	magnesium	(I))	cobalt			
20.		following group of ionic or	neutral specie	s v	which does not contain a hard acid or			
	(A)	Li ⁺ , Cu ²⁺ , N ₃ ⁻ , NH ₃	(E	3)	Mg ²⁺ , OH ⁻ , Ag ⁺ , CH ₃ ⁻			
	(C)	Na ⁺ , Ag ⁺ , CN ⁻ , CO	(I	0)	Ag ⁺ , Cu ⁺ , CO, CN ⁻ ,			
21.	The	biological function of rubre	doxin is					
	(A)	iron storage	(H	3)	electron transfer			
	(C)	oxygen storage	(I	0)	oxygen transport			
22.	The correct order of vco for the compounds [Mo(CO)3(NMe3)3], [Mo(CO)3(PMe3)3] and [Mo(CO)3(PCl3)3] in the IR spectrum is							
	(A) $[Mo(CO)_3(NMe_3)_3] > [Mo(CO)_3(PMe_3)_3] > [Mo(CO)_3(PCl_3)_3]$							
	(B) $[Mo(CO)_3(PCl_3)_3] > [Mo(CO)_3(NMe_3)_3] > [Mo(CO)_3(PMe_3)_3]$							
	(C) $[Mo(CO)_3(PCl_3)_3] > [Mo(CO)_3(PMe_3)_3] > [Mo(CO)_3(NMe_3)_3]$							
	(D)	$[Mo(CO)_3(PMe_3)_3] > [Mo(CO)_3(PMe_3)_3] > [Mo(CO)_3(PMe_3)_3(PMe_3)_3] > [Mo(CO)_3(PMe_3)_3($	CO) ₃ (NMe ₃) ₃] >	[M	o(CO)3(PCl3)3]			
23.	Aluminum chloride melts at a much lower temperature than that of sodium chloride because							
	(A) the Al-Cl bond is more ionic than that of Na-Cl							
	(B) aluminium chloride is dimeric							
	(C)	Al-Cl bond is highly coval	ent while NaCl	l is	ionic			
	(D)	aluminium chloride is pol	ymeric					
24.	Rar	e earth ions are good NMR	shift reagents	bec	cause			
	(A)	they have large magnetic	moments arisi	ng	from the presence of f electrons			
	(B)	they have short electron s	pin-lattice rela	axa	tion times			
	(C)	they have long electron sp	oin-lattice relax	kat	ion times			
	(D)	they have short nuclear s	nin-lattice rela	vai	tion times			

25.	The compound X upon heating is converted to Y, which has the same molecular formula as that of X. The ¹ H NMR spectrum of Y shows two doublets centered as 3.0 ppm (separation of two lines ~20 Hz) and 4.0 ppm (separation of two lines ~15 Hz respectively. The compound X is $(CH_3O)_3P$ and the compound Y is									
	(A)	(CH ₃ O) ₂ P(O)(OH)	(B)	(CH ₃ O) ₃ P						
	(C)	$(CH_3O)_2(CH_3)P(O)$	(D)	$(CH_3O)_2(CH_3)P(OH)$						
26.	-	and field stabilisation energies are smals in the same oxidation state becaus		or lanthanides compared to transition						
	(A)	size of lanthanide ions are larger								
	(B)	f orbitals interact less effectively wit	h ligar	nds						
	(C)	size of lanthanide ions are smaller								
	(D)	lanthanides favour oxygen donor liga	ands							
27.	The most suitable route to prepare the trans isomer of [PtCl ₂ (NH ₃)(PPh ₃)] is									
	(A)	[PtCl ₄] ²⁻ with PPh ₃ followed by react	ion wit	th NH3						
	(B)	[PtCl ₄] ²⁻ with NH ₃ followed by reaction with PPh ₃								
	(C)	(C) [Pt(NH ₃) ₄] ²⁺ with HCl followed by reaction with PPh ₃								
	(D)	$[Pt(NH_3)_4]^{2+}$ with PPh_3 followed by re	eaction	with HCl						
28.	Of the following, the one with the largest crystal field splitting energy is									
	(A)	$[Fe(NH_3)_6]^{3+}$	(B)	[Ru(CN) ₆] ³⁻						
	(C)	$[Fe(CN)_6]^{3-}$	(D)	$[Fe(H_2O)_6]^{2^+}$						
29.	The	neutral complex which follows the eig	hteen	electron rule is						
	(A)	$(\eta^5 - C_5 H_5)_2 Co$	(B)	$(\eta^5\text{-}C_5H_5)\text{Fe}(\text{CO})_2$						
	(C)	$(\eta^5\text{-}C_5H_5)Mo(CO)_3$	(D)	$(\eta^{5}\text{-}C_{5}H_{5})Re(\eta^{6}\text{-}C_{6}H_{6})$						
30.	In t	he following reactions,								
		(i) $Mn_2(CO)_{10} + Na \rightarrow X$								
		(ii) X + CH ₃ COCl → Y								
		X and Y respectively are,								
	(A)	$[\mathrm{Mn}(\mathrm{CO})_4]^{2^-}$, $[\mathrm{CH_3C}(\mathrm{O})\mathrm{Mn}(\mathrm{CO})_5]^-$	(B)	$[Mn(CO)_5]^-$, $CH_3C(O)Mn(CO)_5$						
	(C)	$[Mn(CO)_5]^-$, $ClMn(CO)_5$	(D)	$[Mn(CO)_4]^{2^-},[ClMn(CO)_5]^-$						

31.	Cui	mene on reaction with oxygen followed	by ac	id hydrolysis yields					
	(A)	phenol and acetone	(B)	phenol and isopropanol					
	(C)	quinone and acetone	(D)	quinol and acetone					
32.	Cor	nfiguration around the carbon atoms 1	and 2	in the following compound are					
		2	Me						
		1	'OH						
	(A)	1R, $2R$	(B)	1S, 2S					
	(C)	1R, 2S	(D)	1S, $2R$					
33.	Pho	tolysis of E,E-2,4-hexadiene leads to							
	(A)	1,3-dimethyl-1-cyclobutene	(B)	1,2-dimethyl-1-cyclobutene					
	(C)	cis-3,4-dimethyl-1-cyclobutene	(D)	trans-3,4-dimethyl-1-cyclobutene					
34.	Predict the pair of reactants that give an enamine								
	(A)	cyclopentanone and hydrazine							
	(B)	benzophenone and phenylhydrazine							
	(C)	cyclopentanone and diethylamine							
	(D)	benzaldehyde and ethylamine							
35.	The terpenoid precursor for the steroid lanosterol is								
	(A)	camphor	(B)	nicotine					
	(C)	carotene	(D)	squalene					
36.	Cho	ose the correct statement from the follower	owing						
	(A)	1,2-Diethylferrocene posses planar cl	nirality	y					
	(B)	1,2-Diethyl-3-propylferrocene posses	plana	r chirality					
	(C)	1,2-Diethyl-3-propylferrocene posses	axial o	chirality					
	(D)	$1, 3\hbox{-Diethyl-} 2\hbox{-propyl} ferrocene posses$	plana	chirality					
7.	The 3-dir	condensation of acetophenone with f methylamino-1-phenyl-1-propanone is	ormal a nam	dehyde and dimethylaniline to form e reaction called					
	(A)	Mannich reaction	(B)	Robinson annulation					
	(C)	Perkin reaction	(D)	Stobbe condensation					

38.	The carbene is the intermediate involved in									
	(A)	Baylis-Hillman Reaction	(B)	Simmon-Smith reaction						
	(C)	Cannizarro reaction	(D)	Schotton-Baumann Reaction						
39.	The	amino acid that possess secondary ar	nino gr	oup is						
	(A)	proline	(B)	valine						
	(C)	phenylalanine	(D)	glycine						
40.		reaction of potassium phthalimide rolysis result in	with et	thyl 2-chloro propanoate followed by						
	(A)	glycine (B) leucine	(C)	glutamic acid (D) alanine						
41.		sequence of bases in a DNA strand hence at that location is expected to be		G. In the complementary strand the						
	(A)	GCAA	(B)	AAGC						
	(C)	TAGC	(D)	None of the above						
42.	Hyd	rolysis of lactose gives								
	(A)	glucose and fructose	(B)	arabinose and fructose						
	(C)	glucose and mannose	(D)	glucose and galactose						
43.		nber of ¹³ C NMR signals in the proto pound is	n-decou	upled NMR spectrum of the following						
		MeO	ON	le						
	(A)	12 (B) 10	(C)	8 (D) 6						
44.	cycl			give a mixture of 1-methyl-1,3- iene. Such a rearrangement is an						
	(A)	[1,5]-sigmatropic rearrangement	(B)	[1,3]-sigmatropic rearrangement						
	(C)	[1,7]-sigmatropic rearrangement	(D)	[3,3]-sigmatropic rearrangement						
45.	The	number of electrons present in the H	OMO o	of first excited state of butadiene is						
	(A)	0 (B) 1	(C)	2 (D) 3						
46.	The	reaction of 2,3-dimethylpyridine with	n sodiui	m amide and ethyl iodide results in						
	(A)	2,3-dimethyl-4-ethylpyridine	(B)	2,3-dimethyl-6-ethylpyridine						
	(C)	3-methyl-2-propylpyridine	(D)	2-methyl-3-propylpyridine						
			, ,							

47.	α –D- Glucose with specific rotation of +112.2° changes to + 52.7° on standing as a solution in water. The process is called									
	(A)	mutarotation	(B)	epimerization						
	(C)	diasteromerization	(D)	enantiomer separation						
48.	The	cholic acid is								
	(A)	steroid	(B)	terpenoid						
	(C)	alkaloid	(D)	antibiotic						
49.	Pho	tolysis of 2-octanone yields acetone and	l 1-per	ntene. Such a cleavage is known as						
	(A)	Norrish type I cleavage	(B)	Norrish type II cleavage						
	(C)	Eschenmoser Cleavage	(D)	Grob fragmentation						
50.	The is	number of isoprene units that can be	recogi	nized in the natural product camphor						
	(A)	1 (B) 3	(C)	2 (D) 4						
51.		condensation of methyl vinyl k ohexeneones is known as	etone	with cyclic ketones to provide						
	(A)	Mannich reaction	(B)	Robinson annulation						
	(C)	Claisen condensation	(D)	Dieckmann condensation						
52.	The major product obtained in the thermal reaction between phenylhydrazine and 2-butanone in presence of zinc chloride would be									
	(A)	4-ethylindole	(B)	2-ethylindole						
	(C)	2,3-dimethylindole	(D)	2,4-diethylindole						
53.		reaction of 1-octyne with catecholbo oxide/NaOH would result in	rane f	followed by oxidation with hydrogen						
	(A)	1-octanal (B) 1-octanol	(C)	2-octanone (D) 3-octanone						
54.	Whi	ch of the following set represents all a	romati	ic amino acids?						
	(A)	Tryptophan, Histidine, Asparagines	(B)	Tyrosine, Tryptophan, Histidine						
	(C)	Tyrosine, Tryptophan, Proline	(D)	Phenylalanine, Tyrosine, Lysine						

55.	Hyd	lrolysis of cellobiose gives		
	(A)	two molecules of D-Glucose		
	(B)	two molecules of D-Mannose		
	(C)	one molecule of D-Glucose and one r	nolecul	e of D-Mannose
	(D)	one molecule of D-Galactose and one	molec	ule of D-Mannose
56.	Con	version of cholesterol to cholecalcifero	l invol	ves
	(A)	1,2-hydrogen shift	(B)	1,3-hydrogen shift
	(C)	1,5-hydrogen shift	(D)	1,7-hydrogen shift
57.		reaction of an alkene with ozone follulted in adipic acid. The alkene is	lowed 1	by treatment with hydrogen peroxide
	(A)	cyclopropene	(B)	cyclobutene
	(C)	cyclopentene	(D)	cyclohexene
58.	The met	reagents necessary for the hylcyclohexanol would be	convers	sion of cyclohexene to trans-2-
	(A)	i. m-CPBA and ii. (Me)2CuLi	(B)	i. H ₂ O ₂ and ii. MeI
	(C)	i. KMnO ₄ and ii. NaBH ₄	(D)	i. O_3 and ii. H_2 / $Pd.C$
59.		three-component condensation of ethylamine is a reaction known as	4-met	chylphenol with formaldehyde and
	(A)	Robinson annulation	(B)	Mannich reaction
	(C)	Claisen condensation	(D)	Dieckmann condensation
60.		nydrocarbon C ₈ H ₁₀ exhibits base per rocarbon could be	ak at	m/z 91 in its mass spectrum. The
	(A)	1,2-diemthylbenzene	(B)	1,3-dimethylbenzene
	(C)	1,4-dimethylbenzene	(D)	ethylbenzene
61.	The	order of phase transition for melting	is	
	(A)	zeroth order	(B)	first order
	(C)	second order	(D)	third order

62.	The	number	s of rad	ial nod	les of	f 3d o	rbital	is					
	(A)	3		(B)	2			(C)	1		(D)	0	
63.	bone	ding sig	ma-bone	ding or	rbita	l of h	nydrog	en mo		e incre			en for the
	(A)	ψаΨ	b					(B)	2 Фа Ф	ъ			
	(C)	_Фа Ч	ъ					(D)	−2 Ψa ¹	Ψb			
64.	Whi	ch of the	followi	ng mo	lecul	e doe	s not h	ave S	symmet:	ry elem	ent?		
	(A)	C_2H_2						(B)	Ferroce	ne			
	(C)	XeF_{6}						(D)	CC ₁₄				
65.	The	formula	of Yttr	ium Ir	on G	arnet	t (YIG)	is					
	(A)	Y ₅ Fe ₃ C)12					(B)	Y ₃ Fe ₅ O ₁	12			
	(C)	Y ₃ Fe ₃ C)12					(D)	Y ₅ Fe ₅ O ₁	12			
66.	The	total en	ergy, E,	and tl	ne w	ave v	ector, l	K, are	related b	y the eq	uation	n	
	(A)	E = (ħ)	K) ² /2m,	where	p is	the li	inear n	nomen	tum and	m is the	e mass	of th	ne particle
	(B)	E = (h		n, whe	ere p	is t	he line	ear me	omentum	and m	is th	ne ma	ass of the
	(C)	E = (f		n, whe	ere p	is t	he line	ear m	omentum	and m	is th	ne ma	ass of the
	(D)	$E = (\hbar$	K)/2m,	where	p is	the li	near n	nomen	tum and	m is the	mass	of th	e particle
67.	The	mean so	quare av	erage	dista	ance,	<x2>, (</x2>	of a dif	ffusing sp	ecies af	ter tin	ne t i	S
	(A)	<x2> =</x2>	2Dt					(B)	$<_{X^2}> =]$	Dt			
	(C)	<x2> =</x2>	$2\mathrm{Dt}^2$					(D)	<x2> = 3</x2>	BDt			
68.	The	number	of varia	ables in	n pha	ase sp	pace is						
	(A)	3		(B)	4			(C)	5		(D)	6	
244	/107						10						

69.	The total number of hyperfine lines in an isotropic EPR spectrum of V^{4+} ion with two equivalent nuclei is										
	(A)	12	(B)	13	(C)	14	(D)	15			
70.	Whi	ich of the followi	ing pla	ne is not para	allel to the	e z-axis?					
	(A)	(001)	(B)	(110)	(C)	(100)	(D)	(010)			
71.	The	Clausius –Clap	eyron	equation cons	iders						
	(A)	real gas behav	iour of	f the vapour							
	(B)	Van der Waals	s equa	tion state of t	he vapour						
	(C)	ideal gas beha	viour (of the vapour							
	(D)	none of the ab	ove								
72.	A sa	ample of wustite	Fe _x O	contains one	Fe³+ for ev	very three Fe ²⁺ .	The v	alue of x is,			
	(A)	5/8	(B)	6/8	(C)	7/8	(D)	9/8			
73.	The standard reduction potentials of Mg/Mg ²⁺ is -2.360 V, and Cu/Cu ²⁺ is 0.337 V. The standard cell emf for the reaction Mg + Cu ²⁺ \longrightarrow Mg ²⁺ + Cu, is										
	(A)	2.697 V	(B)	– 2.697 V	(C)	- 2.023 V	(D)	2.02 V			
74.	The	The Van der Waal force depends on distance r as									
	(A)	$1/r^2$	(B)	1/r ³	(C)	$1/r^6$	(D)	$1/r^8$			
75.	In a two component solid-solid phase diagram, the degrees of freedom at the eutectic point is/are										
	(A)	3	(B)	2	(C)	1	(D)	0			
76.	The	SI unit of viscos	sity is								
	(A)	$\mathrm{Kg}\;\mathrm{S}^{-1}\mathrm{m}^{-1}$	(B)	${\rm Kg~S~m^{-1}}$	(C)	$Kg^{-1} S^{-1}m^{-1}$	(D)	$\mathrm{Kg^{-1}S^{-1}m}$			
77.	The	order of the rea	ction I	$H_2 + Br_2 = 2H$	Br is						
	(A)	first order			(B)	second order					
	(C)	zeroth order			(D)	none of the ab	ove				

78.	3. The number of normal modes of vibration in H ₂ S molecule is							
	(A)	4	(B)	2	(C)	3	(D)	1
79.	Deby	ye specific heat o	f solic	d, C _v , depends on	temp	erature T as,		
	(A)	$C_v \ \alpha \ T$	(B)	$C_v\ \alpha\ T^2$	(C)	$C_v \ \alpha \ T^3$	(D)	$C_v\ \alpha\ T^{\cdot 2}$
80.	The		lution	containing 18 g	of glu	ucose (molar mas	ss 180	g) in 500 g of
	(A)	1 m	(B)	0.5 m	(C)	0.2 m	(D)	1.2 m
81.		ΔG for a reaction is	n at	300 K is -16 kca	al and	l ΔH is -10 kcal.	The	entropy of the
	(A)	20 cal deg ⁻¹			(B)	86.6 cal deg ⁻¹		
	(C)	$166~{\rm cal}~{\rm deg}^{-1}$			(D)	$100 \; \mathrm{cal} \; \mathrm{deg^{-1}}$		
82.	The	pH of 10 ⁻³ M Na	aOH s	solution is				
	(A)	10	(B)	11	(C)	12	(D)	13
83.		boiling point of		al elevation cons tion containing 6				
	(A)	101.539°C			(B)	100.017°C		
	(C)	100.171°C			(D)	99.983°C		
84.		the reaction A -	+ B -	— C + D, ΔH	= -28	5 kcal and $\Delta S =$	90 ca	ll deg-1 at 27°C.
	(A)	is reversible at	27°C					
	(B)	is not feasible a	at 27	°C				
	(C)	represents equ	ilibriu	ım state at 27°C				
	(D)	can occur only	at ten	nperature higher	than	27°C		
85.				certain reaction i				atio of the rate
	(A)	5/1	(B)	8.3/1	(C)	13/1	(D)	24/1

86.	36. The latent heat of vaporization of water at 100°C is 540 cal g ⁻¹ . What will be change in entropy when one mole of water at 100°C is evaporated?											
	(A)	260 cal K ⁻¹ mol ⁻¹	(B)	26 cal K ⁻¹ mol ⁻¹								
	(C)	$160 \ cal \ K^{-1} \ mol^{-1}$	(D)	360 cal K ⁻¹ mol ⁻¹								
87.	87. In polar coordinates the ranges of the variables are											
	(A)	$r = -\infty$ to ∞ ; $\theta = 0$ to 2π ;	(B)	$r = -\infty \text{ to } \infty$; $\theta = 0 \text{ to } \pi$;								
	(C)	$r = 0$ to ∞ ; $\theta = 0$ to 2π ;	(D)	$r=-\infty \text{ to }\infty; \ \theta=0 \text{ to } 4\pi;$								
88.	For	a reversible isothermal expansion of an	idea	l gas								
	(A)	$\Delta S_{\rm sys} = \Delta S_{\rm surr} = positive$	(B)	$\Delta S_{\rm sys} = -\Delta S_{\rm surr}$								
	(C)	$\Delta S_{\rm sys} = \Delta S_{\rm surr} = { m negative}$	(D)	$\Delta S_{\rm sys} = \Delta S_{\rm surr} = 0$								
89.	Ner	Vernst-Einstein relates, diffusion constant with										
	(A)	coefficient of viscosity	(B)	conductivity								
	(C)	resistivity	(D)	drift mobility								
90.	The	ne hybrid orbital of the central atom in AlF ₄ is										
	(A)	sp (B) sp ²	(C)	sp^3 (D) sp^2d								
91.	91. The symmetry elements of Td group falls in X number of classes where											
	(A)	4 (B) 5	(C)	6 (D) 8								
92.	The	e C _{2h} point group is isomorphic to										
	(A)	D ₂ (B) C ₄	(C)	D_{2h} (D) D_{2d}								
93.	The	be product of two rotations about axes that intersect at angle θ will give										
	(A)	reflection in a plane perpendicular to the plane of the axes										
	(B)	reflection in the plane of the axes										
	(C)	(C) rotation 2θ in an axis perpendicular to the plane containing the axes										
	(D)	rotation by θ in an axis perpendicular to the plane containing the axes										

94.	The most bonding π -MO of benzene belongs to the irreducible representation										
	(A)	A_{1g}	(B)	A_{1u}		(C)	A ₁ "	(D)	A_{2u}		
95.	The T_{2u} symmetric stretching vibration of SF_6 (O _h) is										
	(A)	IR Active				(B)	Raman Ac	etive			
	(C)	Both IR an	d Raman	Active		(D)	Both IR ar	nd Raman	Inactive		
96.	The energy of hydrogen atom is a function of										
	(A)	primary qu	ıantum nı	umber n		(B)	azimuthal quantum number l				
	(C)	magnetic o	uantum n	umber m		(D)	all of the above				
97.	Which of the following functions is not an eigen function of d^2/dx^2										
	(A)	sin 2X	(B)	cos (X/2)		(C)	5X3	(D)	ln(2X)		
98.	The degeneracy of the ground state of Fe (1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁶) is										
	(A)	singlet				(B)	triplet				
	(C)	quintet				(D)	none of th	e above			
99.	For the three species O ² , O ₂ +, O ₂ - which one of the following orders for the bond energy (i.e., bond strength) is most reasonable?										
	(A)	$O_2 > O_2^+ >$	O_{2}^{-}			(B)	$O_2^+ > O_2 >$	O ₂ -			
	(C)	O ₂ -> O ₂ >	O_2^+			(D)	$O_{2^{-}} > O_{2^{+}}$	> O ₂			
100.		degeneracie	es of the ei	gen values	s obtain	ned fr	om Hückel	method wh	en compared to		
	(A)	always equ	ıal			(B)	sometime	s more			
	(C)	sometimes	less			(D)	no correla	tion			