ENTRANCE EXAMINATION FOR ADMISSION, MAY 2011.

M.Phil./Ph.D. (CHEMISTRY) COURSE CODE: 244/107

Register Number :	
	Signature of the Invigilator (with date)

COURSE CODE: 244/107

Time: 2 Hours Max: 400 Marks

Instructions to Candidates:

- Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET <u>using HB pencil</u>.
- 4. Avoid blind guessing. A wrong answer will fetch you -1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	The	strongest Jahn-Teller distortion is obs	served	for
	(A)	Cr (II)	(B)	Mn (IV)
	(C)	Ni (III)	(D)	Cu (II)
2.	The	biological function of hemerythrin is		
	(A)	oxygen transport	(B)	photosynthesis
	(C)	metal storage	(D)	electron transfer
3.	The	colour of vanadium pentoxide is due t	0	
	(A)	d-d transition	(B)	charge transfer transition
	(C)	point defect	(D)	non-stoichiometry
4.	In X	I-ray, the position of following atom car	n not b	pe estimated accurately
	(A)	hydrogen	(B)	lithium
	(C)	helium	(D)	chlorine
5.	The	number of metal-metal bonds in [(C5H	I ₅)Fe(C	CO)2]2 is
	(A)	zero	(B)	one
	(C)	two	(D)	three
6.	The	bond orders of O2, O2+, O2- and O22- wi	ll be ir	n the order of
	(A)	$O_2 > O_2^+ > O_2^- > O_2^{2-}$	(B)	$O_2^+ > O_2 > O_2^- > O_2^{2-}$
	(C)	$O_2^{2-} > O_2^- > O_2^+ > O_2$	(D)	$O_2^{2-} > O_2^- > O_2 > O_2^+$
7.	The is	catalyst used in the conversion of ethy	ylene t	o acetaldehyde using Wacker process
	(A)	HCo(CO) ₄	(B)	$[PdCl_4]^{2^-}$
	(C)	V_2O_5	(D)	$TiCl_4$ and $Al(C_2H_5)_3$
8.	The	metal present in cytochrome is		
	$_{\alpha}(A)$	copper	(B)	cobalt
	(C)	iron	(D)	magnesium
9.		ordering of the d-orbital energies gation is expected to be	in an	octahedral complex on tetragonal
	(A)	$dxy > dyz$, $dxz > dz^2 > dx^2 - y^2$	(B)	$dx^2-y^2 < dz^2 < dxy > dyz, dxz$
	(C)	$dx^2-y^2 > dz^2 > dxy > dyz, dxz$	(D)	$dx^2-y^2 > dxy > dz^2 > dyz, dxz$

10.		crystal field s iguration t _{2g} 3, e ₈		ation energ	y for an	octahedral o	complex	with electronic			
	(A)	0	(B)	0.4 Δ	(C)	$1.2\ \Delta$	(D)	1.6Δ			
11.	The	inert is ascribed	to the	e group VIII	A element	ts is due to					
	(A)	very high elect	ronega	ativity	(B)	very high ic	onization	energy			
	(C)	very high elect	ron af	finity	(D)	very high					
12.	The	The ¹ H NMR spectrum of HD consists of a									
	(A)	singlet			(B)	1:1 doublet					
	(C)	1:1:1 triplet			(D)	1:2:1 triplet					
13.	Whi	ch one of the fol	lowing	statements	about dib	orane is not	correct?				
	(A)	It has one two	-center	two-electron	n B – B bo	nd.					
	(B)	Diborane is hi	ghly ai	r-sensitive w	hen it is i	not extremely	y pure.				
	(C)										
	(D)	It acts as a Le	wis aci	d.							
14.	The metal ion that is expected to shift the C_1 methylene group in heptanol from 2 to 10 ppm in 1H NMR is										
	(A)	Eu(III)	(B)	Tl(III)	(C)	Al(III)	(D)	Sc(III)			
15.	The	homogeneous ca	atalyst	used in the	hydroforn	nylation is ba	sed on				
	(A)	cobalt	(B)	chromium	(C)	titanium	(D)	vanadium			
16.	Among the following, the isoelectronic and isostructural pair is										
	(A)	CO ₂ and SO ₂			(B)	SO ₃ and Se	O ₃				
	(C)	NO2+ and TeO	2		(D)	SiO_4^{4-} and I	PO ₄ 3-				
17.	A physical method that can be used to identify the compounds, [NiCl ₂ (PPh ₃) ₂] and [PdCl ₂ (PPh ₃) ₂] unambiguously is										
	(A)	HPLC			(B)	EXAFS					
	(C)	Magnetic susc	eptibili	ity	(D)	Mossabauer	r spectros	сору			
18.	The	correct stateme	nt abo	ut the Cu-N	bond dista	ances in [Cu(NH3)6]2+ i	s			
	(A)	all the bond di	stance	s are equal							
	(B)	the axial bond	s are lo	onger than th	ne equator	rial ones					
	(C)	the equatorial	bonds	are longer tl	nan the ax	ial ones					
	(D)	all the bond di	stance	s are unequa	al						

3

19.	The reaction of						
	$[Co(H_2O)_5Cl]^{2^+} \ + \ [Cr(H_2O)_6]^{2^+} \ \to \ [Co(H_2O)_6]^{2^+} \ + \ [Cr(H_2O)_5Cl]^{2^+}$						
	occurs through the following mechanism	m					
	(A) S _N 1	(B)	isomerisation				
,	(C) inner sphere	(D)	outer sphere				
20.	2.5 g of an iron compound upon suitab (atomic weight of Fe: 55.847, O: 15.994						
	(A) 10.94 (B) 12.15	(C)	11.31	(D) 9.11			
21.	In EPR spectroscopy, the selection rule	is					
	(A) nuclear spin changes, while electronic	on spin d	oes not change				
	(B) electron spin changes, while nucle	ear spin d	oes not				
	(C) both electron and nuclear spin cha	ange					
	(D) both electron spin and nuclear spin	in do not	change				
22.	Treatment of W(CO) ₆ with one equivale compound M . Reaction of M with gla NMR spectrum of N displays two single and N , respectively, are	cial aceti	c acid results in	n product N. The ¹ H	I		
	(A) $[(C_5H_5)W(CO)_3]Na$ and $[(C_5H_5)W$	(CO) ₃ H]					
	(B) $[(C_5H_5)W(CO)_4]Na$ and $[(C_5H_5)W$	(CO) ₄ H]					
	(C) $[(C_5H_5)W(CO)_3]Na$ and $[(C_5H_5)W$	(CO) ₄ H]					
	(D) $[(C_5H_5)W(CO)_4]Na$ and $[(C_5H_5)W$	(CO) ₃ H]					
23.	Triphosphazene is prepared by reacting using appropriate solvents. The reacta	_	-)		
	(A) PCl ₃ and NH ₃	(B)	$PCl_5 \ and \ NH_3$				
	(C) PCl ₅ and NH ₄ Cl	(D)	PCl ₃ and NH ₄ C	21			
24.	The total number of isomers of [Co(en)2	Cl ₂] is					
	(A) four (B) three	(C)	six	(D) five			
25.	The structures of the complexes [Cu(N respectively are	NH3)4](ClC	O ₄) ₂ and [Cu(NH	[3)4](ClO4) in solution	1		
	(A) square planar and tetrahedral	(B)	octahedral and	l square pyramidal			
	(C) octahedral and trigonal bipyramic	dal (D)	tetrahedral and	d square planar			

26.	The number of M-M bonds in Ir4	(CO) ₁₂ are					
	(A) four (B) six	(C)	eight	(D) zero			
27.	In biological systems, the metal i	ons involved in	electron transpo	rt are			
	(A) Na ⁺ and K ⁺	(B)	$\mathrm{Zn^{2^{+}}}$ and $\mathrm{Mg^{2^{+}}}$				
	(C) Ca^{2^+} and Mg^{2^+}	(D)	Cu ²⁺ and Fe ³⁺				
28.	If ClF ₃ were to be stereochemica be (assume that Cl is not NMR a		NMR spectrum	$(I = \frac{1}{2} \text{ for } ^{19}F) \text{ would}$			
	(A) a doublet and a triplet	(B)	a singlet				
	(C) a doublet and a singlet	(D)	two singlets				
29.	29. In the complex, [Ni ₂ (η ⁵ -Cp) ₂ (CO) ₂], the IR stretching frequency appears at 1857 c (strong) and 1897 cm ⁻¹ (weak). The valence electron count and the nature of M-CO bond respectively are						
	(A) 16 e ⁻ , bridging	(B)	17 e⁻, bridging				
	(C) 18 e ⁻ , terminal	(D)	18 e⁻, bridging				
30.	The reaction of PCl ₃ with metha EI mass spectrum of X shows a shows that it contains C, H, O at 4.0 ppm (I = ½ for ³¹ P). The com	parent ion peand P. The ¹H N	ak at m/z = 124.	Microanalysis of X			
	(A) (CH ₃ O) ₃ P	(B)	$(CH_3O)_2P(O)\\$				
	$(C) (CH_3O)_2P(O)(OH) $	(D)	$(CH_3O)_3PH$				
31.	The number of carbon-13 signal decoupled ¹³ C NMR spectrum is	ls expected for	2,6-dihydroxyna	aphthalene in its ¹ H			
	(A) three (B) four	(C)	five	(D) six			
32.	The reaction of indole with acetic	anhydride lead	ls to				
	(A) 4-acetylindole	(B)	1-acetylindole				
	(C) 2-acetylindole	(D)	3-acetylindole				
33.	The characteristic absorption ba	and (cm ⁻¹) for b	utanal and buty	ronitrile respectively			
	(A) 1725 and 1795	(B)	1680 and 2240				
	(C) 1795 and 2240	(D)	1725 and 2240				

34.	Which among the following exhibit chara	acteristics of aromatic compounds?						
i. Cyclopentadiene; ii. Ferrocene; iii. Pentadienyl cation; iv. Pyrrole								
	(A) i and ii (B) ii and iii	(C) ii and iv (D) iii and iv						
35.	The orientation of two methyl groudimethylcyclohexane are	ps in the stable configuration of cis-1,2-						
	(A) equatorial and equatorial	(B) equatorial and axial						
	(C) axial and axial	(D) axial and pseudo-equatorial						
36.	The reaction of cyclohexanone sequent -78°C leads to	ially with i. pyrrole and ii. chlorine gas at						
	(A) 4-chlorocyclohexanone	(B) 2,4-dichlorocyclohexanone						
	(C) 2-chlorocyclohexanone	(D) 2,6-dichlorocyclohexanone						
37.	The reaction of 1-hexyne with methyl ma	agnesium bromide yields						
	(A) 1-hexynylmagnesium bromide and	ynylmagnesium bromide and methane						
	(B) 2-hexynylmagnesium bromide and	ethane						
	(C) 1-octyne							
	(D) 3-octyne							
38.	The reaction of hexanoic acid with exceleads to	ess of methyl lithium followed by hydrolysis						
	(A) heptanal (B) 2-heptanone	(C) 2-octanone (D) 3-octanone						
39.	The reaction of cyclohexene with N-brom	osuccinimide in methanol yields						
	(A) 3-bromocyclohexene							
	(B) 4-bromocyclohexene							
	(C) trans-1-bromo-2-methoxycyclohexa	ne						
	$({\rm D}) cis\hbox{-1-bromo-2-methoxycyclohexane}$							
40.	The stereochemistry of ring junction in butadiene with 1,4-benzoquinone	the product formed in the cycloaddition of						
	(A) cis (B) trans	(C) syn (D) anti						
41.	The acid catalyzed rearrangement of cycl an example for	opentanone oxime to corresponding lactam is						
	(A) Pinacol-pinacolone rearrangement	(B) Beckman Rearrangement						
	(C) Cope Rearrangement	(D) Claisen Rearrangement						
244/	/107							

42.		reaction of cy ected to provide	clohexe	none with i.	ethane	dithiol, BF3.E	t ₂ O, ii.	Raney Ni is
	(A)	cyclohexane			(B)	cyclohexene		
	(C)	cyclohexanone			(D)	cyclohexanol		
43.	The	reaction nesulfonylhydra				hexene-1-one pected to provid	with e	i. para-
	(A)	1,3,3-trimethy	l-1-cycle	ohexene	(B)	3,3,5-trimethy	l-1-cycle	ohexene
	(C)	2,4,4-trimethy	l-1-cycle	ohexene	(D)	2,6,6-trimethy	l-1,3-cy	clohexadiene
44.	The	reaction of benz	onitrile	with ethyl m	agnesiu	m iodide provid	es	
	(A)	benzaldehyde			(B)	acetophenone		
	(C)	propiophenone			(D)	phenyl acetald	lehyde	
45.	inac	ive carbon aldos tive product. Th alts in D-glucose	ne aldo	se A on one	carbon h	nomologation us		
	$\cdot(\mathbf{A})$	D-xylose	(B)	D-lyxose	(Ċ)	D-arabinose	(D)	D-ribose
46.	Rea	ction of phenyl a	zide wi	th dimethyl a	cetylene	dicarboxylate a	gives	
	(A)	imidazole	(B)	pyrrole	(C)	triazole	(D)	triazine
47.	Whe	en 1-methyl-3-(v	inyloxy)-1-cyclohexer	ne is hea	ted to 200 °C, th	ne produ	act formed is
	(A)	(2-methyl-2-cy	clohexe	nyl)acetic aci	d			
	(B)	methyl 2-(1-me	ethyl-2-	cyclohexenyl)	acetate			
	(C)	2-(1-methyl-2-	cyclohe	xenyl)acetald	ehyde			
	(D)	2-(1-methyl-3-	cyclohe	xenyl)acetalde	ehyde			
48.	The	base mediated o	condens	ation of diber	nzylketo	ne with benzil y	ields	
	(A)	2,3,4,5-tetraph	enylcyc	clopentadieno	ne			
	(B)	2,3,4-triphenyl	lcyclope	entadienone				
	(C)	2,3-diphenylcy	clopent	adienone				
	(D)	2,5-diphenylcy	clopent	adienone				

7

49.		one is condensed with cyclopentadi luct formed is	ene in	presence of sodium hydride. The		
	(A)	dicyclpentadiene				
	(B)	dimethylfulvene				
	(C)	morpholine oxide				
	(D)	2,2-dimethyl-2,2a,5,5a-tetrahydrocyd	clopent	a[b]oxete		
50.		major product obtained in the reaction	n betwe	een 2-phenylacetonitrile HNO ₃ /H ₂ SO ₄		
	(A)	phenyl acetic acid	(B)	2-(2-nitrophenyl)acetonitrile		
	(C)	2-(3-nitrophenyl)acetonitrile	(D)	2-(4-nitrophenyl)acetonitrile		
51.		reaction of an alkene with ozone foll lited in two moles of butanoic acid. Th		by treatment with hydrogen peroxide ne is		
	(A)	1-butene	(B)	2-hexene		
	(C)	4-octenene	(D)	6-dodecene		
52.	mas		um sh	eak (also base peak) at m/z 91 in its nows signals at 3.85 (s, 3H), 7.0 s, 1H). The compound is		
	(A)	2-hydroxy acetophenone	(B)	4-hydroxy acetophenone		
	(C).	2-methoxy benzaldehyde	(D)	4-methoxy benzaldehyde		
53.	The	reaction of 3-hexyne with sodium/ami	monia i	is expected to yield		
	(A)	E-3-hexene	(B)	Z-3-hexene		
	(C)	Hexane	(D)	Dodecane		
54.	54. An organic compound of molecular formula C ₈ H ₁₀ O ₂ exhibits base peak at 94. IR spectrum shows a broad band at 3300 cm ⁻¹ . The 1H NMR spectrum shows sig at δ 2.4 (1H, washable with D ₂ O), 3.9 (m, 2H), 4.2 (t, 2H), 6.9 (m, 3H), 7.4 (t, 2H). compound could be					
	(A)	4-(2-hydroxyethyl)phenol	(B)	2-(2-hydroxyethyl)phenol		
	(C)	2-(1-hydroxyethyl)phenol	(D)	2-phenoxy-1-ethanol		
55.		characteristic IR absorption band	(cm ⁻¹)	for ethyl acetate and butyrolactone		
	(A)	1775 and 1735	(B)	1680 and 1735		
	(C)	1735 and 1775	(D)	1735 and 2240		

56.	Rea	rrangement of pinacol to pinacolone u	nder a	cidic conditions goes through
	(A)	carbanion	(B)	carbocation
	(C)	carbene	(D)	free radical
57.	1764	eutral organic compound of molecular 4 cm ⁻¹ . The mass spectrum of this con R spectrum showed a singlet at δ 2.4 p	apound	l showed base peak at m/z 94. The ¹ H
	(A)	phenyl acetic acid	(B)	methyl benzoate
	(C)	4-methylbenzoic acid	(·D)	phenyl acetate
58.		rrangement of 2-chlorocyclohexanone um methoxide goes through	to met	hyl cyclopentane carboxylic acid with
	(A)	carbanion	(B)	carbocation
	(C)	carbene	(D)	free radical
59.	The	biosynthetic precursors for the alkalo	id rese	erpine are
	(A)	tyrosine and pinene	(B)	tryptophan and secologanin
	(C)	lysine and geraniol	(D)	phenyl alanine and camphor
60.	IR s	organic compound of MF C ₇ H ₁₄ O a spectrum are 2716 and 1727 cm ⁻¹ . The en distinct signals. The compound coul	13C N	
	(A)	2-methylhexanal	(B)	5-methylhexanal
	(C)	heptanal	(D)	2-heptanone
61.	Whi	ch of the following pairs of physical qu	uantitie	es commute?
	(A)	x and p; x is position vector and p is	the mo	omentum
	(B)	v and t; v is frequency and t is the ti	me,	
	(C)	K and λ ; K is the wave vector and		e de Broglie wavelength
	(D)	L and φ ; L is the angular momentum	m and	φ azimuthal angle
62.	The	numbers of radial nodes of 3d orbital	is	
	(A)	3 (B) 2	(C)	1 (D) 0
63.	If w	a and ψb are the atomic wave function	ions of	the two hydrogen atoms, then for the
	bono	ding sigma-bonding orbital of hydrogoability density between the two hydrogoability	en mo	lecule, the increase in the electronic
		ψ_{r}, ψ_{t} (B) $2\psi_{r}, \psi_{t}$	(C)	$-\psi_{-}\psi_{-}$ (D) $-2\psi_{-}\psi_{+}$

64.	The	numbers of c	lasses in	the C _{3v} poi	nt gro	up sy	mmetry is			
	(A)	1	(B)	2		(C)	3	(D)	4	
65.	The	general form	ula of a s	pinel is						
		AB ₂ O ₄	(B)	$A_2B_2O_3$		(C)	A_2BO_4	(D)	AB_3O_4	
66.	Whi	ich of the follo	wing is n	ot a therm	oelect	ric eff	ect?			
	(A)	Thomson eff				(B)	Seebeck effect			
	(C)	Peltier effec	t			(D)	Meissner effec	et		
67.	The	mean square	average	distance, <	(x ² >, o	f a dif	fusing species a	fter tir	me t is	
	(A)	$\langle x^2 \rangle = 2Dt$	(B)	$< x^2 > = Dt$;	(C)	$<\!\!x^2\!\!>=2Dt^2$	(D)	$\langle x^2 \rangle = 3Dt$	
68.	The	number of va	riables ii	n phase spa	ace is					
	(A)	3	(B)	4		(C)	5	(D)	6	
69.	The	total number	of hyper	fine lines i	n an is	sotrop	ic EPR spectrui	n of V ⁴	+ ion is	
	(A)	2	(B)	4		(C)	6	(D)	8	
70.	Whi	ch of the follo	wing pla	ne is not pa	arallel	to the	e z-axis?			
	(A)	(001)	(B)	(110)		(C)	(100)	(D)	(010)	
71.	Whi	ch of the follo	wing is t	rue for mel	ting?					
	(A)	exothermic p	process			(B)	endothermic p	rocess		
	(C)	irreversible	process			(D)	none of the ab	ove		
72.		Bragg formula n by	$n\lambda = 2a$	$d\sin\theta$, the	e poss	ible v	alue(s) on the	order 1	reflection, n, is	
	(A)	1 only				(B)	2 only			
	(C)	3 only				(D)	all values as a	bove		
73.							s -2.360 V, and $\rightarrow Mg^{2+} + Cu$,		u²+ is 0.337 V.	
	(A)	2.697 V	(B)	– 2.697 V		(C)	– 2.023 V	(D)	2.02 V	
74.	Whi	ch of the follo	wing is n	ot a Van de	er Waa	al forc	e?			
	(A)	Dipole -dipo	le intera	ction		(B)	London disper	sion for	rce	
	(C)	Dipole induc	ed –dipo	le force		(D)	Hydrogen bond	ding		

75.		a two component solid-solid phont is/are	ase diagram, t	he degrees of freedom at the eutectic
	(A)	3	(B)	2
	(C)	1	(D)	0
76.	The	SI unit of viscosity is		
	(A)	Kg S⁻¹m⁻¹	(B)	Kg S m ⁻¹
	(C)	Kg ⁻¹ S ⁻¹ m ⁻¹	(D)	Kg -1S-1m
77.	The	order of the reaction $H_2 + Br_2$	= 2HBr is	
	(A)	first order	(B)	second order
	(C)	zeroth order	(D)	none of the above
78.	The	number of normal modes of vi	bration in H ₂ S	molecule is
	(A)	4	(B)	2
	(C)	3	(D)	1
79.	Whi	ich of the following combination	n of liquids for	m ideal mixture?
	(A)	acetone and chloroform		
	(B)	benzene and toluene		
	(C)	carbon tetrachloride and met	thyl alcohol	
	(D)	water and ethyl alcohol		
80.		molality of a solution container is	ing 18 g of gl	ucose (molar mass 180 g) in 500 g of
	(A)	1 m	(B)	0.5 m
	(C)	0.2 m	(D)	1.2 m
81.		ΔG for a reaction at 300 K is stion is	s –16 kcal and	l ΔH is -10 kcal. The entropy of the
	(A)	20 cal deg ⁻¹	(B)	86.6 cal deg ⁻¹
	(C)	166 cal deg ⁻¹	(D)	100 cal deg-1
82.	The	pH of 10 ⁻³ M NaOH solution is	3	
	(A)	10	(B)	11
	(C)	12	(D)	13

11

83.				for water is 0.513 K mol-1 kg. What f glucose (mol. Mass 180) per 100 g of
	(A) 101.539° C		(B)	100.017° C
	(C) 100.153° C		(D)	99.983° C
84.	For the reaction The reaction	$A + B \rightarrow C + D, \Delta B$	H = -25	kcal and $\Delta S = 90$ cal deg ¹ at 27° C.
	(A) is reversibl	e at 27° C		
	(B) is not feasi	ole at 27° C		
	(C) represents	equilibrium state at 27	° C	
	(D) can occur o	nly at temperature high	ner than	27° C
85.	Which of the foll	owing is an example of	extensive	e property?
	(A) temperatur	e	(B)	pressure
	(C) specific hea	t at constant volume	(D)	enthalpy
86.		of vaporization of wat e mole of water at 100 °		00° C is 540 cal g ⁻¹ . The change in porated is
	(A) 260 cal K-1	mol·1	(B)	26 cal K-1 mol-1
	(C) 160 cal K-1	mol ⁻¹	(D)	360 cal K ⁻¹ mol ⁻¹
87.	In polar coordina	tes, the ranges of the v	ariables	are,
	(A) $r = -\infty$ to ∞	θ ; $\theta = 0$ to 2π	(B)	$r=-\infty$ to ∞ ; $\theta=0$ to π
	(C) $r = 0 \text{ to } \infty$;	$\theta = 0$ to 2π	(D)	$r = -\infty$ to ∞ ; $\theta = 0$ to 4π
88.		onent solid-solid phase ber Eutectic point(s) w		n with reactive system forming one
	(A) 0		(B)	1
	(C) 2		(D)	3
89.	Nernst- Einstein	relates diffusion consta	ant with	
	(A) coefficient	of viscosity	(B)	conductivity
	(C) resistivity		(D)	drift mobility

90.	The magnetic moment of a diamagnetic material is				
	(A)	positive value			
	(B)	zero			
	(C)	negative value			
	(D)	complex quantity with nonzero real	and im	aginary parts	
91.	In extended Huckel method, which one of the following is true?				
	(A)	the sum of Mulliken bond orders for	r all bor	nds is the total number of electrons	
	(B)	the sum of Mulliken charge densitie	es of all	atoms is the total no. of electrons	
	(C)	the sum of both bond orders and ch	arge de	nsities is the total no. of electrons	
	(D)	bond orders and charge densities electrons	have	no correlation with the total no. o	
92.	Hartree-Fock theory fails to include				
	(A)	internuclear repulsion	(B)	overlap	
	(C)	antisymmetry of wave functions	(D)	correlation	
93.	Both Simple MO theory and simple VB theory gives identical results for				
	·(A)	H_2	(B)	H_{2}^{+}	
	(C)	O_2	· (D)	F_2	
94.	The sum of one electron energies of all the occupied MOs will not give total energy in				
	the	case of			
	(A)	Huckel theory	(B)	Extended Huckel theory	
	(C)	Hartree-Fock theory	(D)	None of the above	
95.	The energies of S-cis and S-trans butadiene is identical in the case of				
	(A)	Huckel theory	(B)	Extended Huckel theory	
	(C)	Hartree-Fock theory	(D)	None of the above	

96.	The	C-C bond in C2 molecule has			
	(A)	one sigma and two pi bonds			
	(B)	two pi bonds alone			
	(C)	one sigma and three pi bonds			
	(D)	one sigma, two pi and one delta bond			
97.	The geometry around sulphur in >S=O is				
	(A)	planar			
	(B)	pyramidal			
	(C)	sometimes planar, sometimes pyramidal depending on the substituents			
	(D)	none of the above			
98.		sigma-pi separability of the Hamiltonian is impossible because of the eparbility of			
	(A)	inter-nuclear repulsion terms			
	(B)	nuclear-electron attraction terms			
	(C)	electron-electron repulsions terms			
	(D)	kinetic energy terms			
99.	The	nteraction between two fragment molecular orbitals depends on			
	(A)	symmetry (B) overlap			
	(C)	energy difference (D) all of the above			
100.	The reference molecule for free valence in Huckel theory is				
	(A)	trimethylene methane (B) benzene			
	(C)	ethylene (D) teramethyl silane			