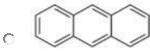
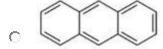
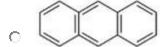
107 PU Ph D Chemistry

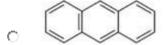
1 of 100

193 PU_2016_107_E


Which of the following statements is true for an *ideal-dilute* solution?


- The solute and solvent both obey Raoult's law.
- The solute obeys Henry's law and the solvent obeys Raoult's law.
- The solute and solvent both obey Henry's law.
- The solute obeys Raoult's law and the solvent obeys Henry's law.

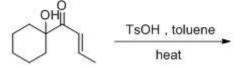

2 of 100

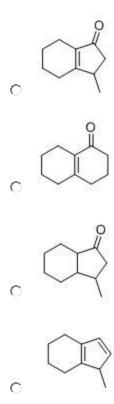

144 PU_2016_107_E

Which is impossible as a resonance contributor of anthracene:-

3 of 100

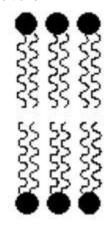
163 PU 2016 107 E

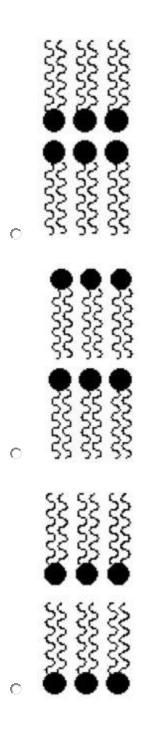

Among the following, the synthetic equivalent for acyl anion is:-


- Nitro ethane and a base
- α-Chloro acrylonitrile
- Acetyl Chloride and trimethyl amine
- Ethyl magnesium bromide

4 of 100

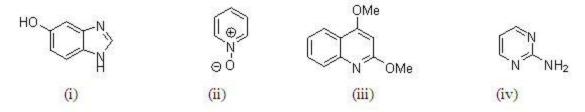
164 PU_2016_107_E


The major product obtained in the following transformation is



147 PU_2016_107_E

Which of the following is the correct representation for the structure of a lipid bilayer under physiological conditions?



6 of 100 158 PU_2016_107_E

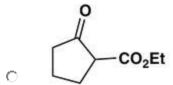
- (i) Presence of an imine nitrogen deactivates the heterocyclic system for an electophilic substitution reaction. But, performing electophilic substitution reaction is possible by incorporating an electron releasing group on such systems.
- (ii) Formylation using DMF/POC13 is possible only on very reactive aromatics.

Based on the information given in (i) & (ii) which of the following substrates can be readily formylated using DMF / POCl₃?

- (i), (iii) & (iv)
- (i) & (iii)
- (i), (ii) & (iii)
- (iii) & (iv)

7 of 100

212 PU_2016_107_E


The standard reduction potentials of Mg/Mg²⁺ is -2.360 , and Cu/Cu²⁺ is 0.337 V. The standard cell emf for the raction Mg + Cu2+ \rightarrow Mg²⁺ + Cu, will be given by:-

- 2.023 V
- 2.697 V
- C 2.02 V
- -2.697 V

8 of 100

153 PU 2016 107 E

Which is the main product of the following reaction?

136 PU_2016_107_E

 RCH_2CH_2 can be converted to corresponding aldehyde in the presence of CO and H_2 using one of the following catalysts:-

- RhL₂(PR₃)(Cl)
- Cu(OAc)₂
- Pd(OAc)₂
- Co₂(CO)₈

10 of 100

126 PU_2016_107_E

Fe(CO) reacts with BH₄ to yield:-

- aldehyde
- H- substituted product
- 1,2 one
- none of these

11 of 100

128 PU_2016_107_E

M-CH₂CH₂R cannot be isolated due to:-

- carbene generation
- [©] β-hydride elimination
- σ-bond metathesis
- α-hydride elimination

122	of 100 PU_2016_107_E ey mechanism explains:-
0	hydrogenation reaction
0	hydroformylation
0	olefin polymerization
0	hydrosilylation
143 Hov	of 100 PU_2016_107_E w many signals does the unsaturated ketone (CH ₃) ₂ CHCH ₂ C(O)CH=CH ₂ have in ¹ H NMR and ¹³ C R spectra?
0	five ¹ H signals and seven ¹³ C signals
0	five ¹ H signals and six ¹³ C signals
0	six ¹ H signals and six ¹³ C signals
0	six ¹ H signals and seven ¹³ C signals
180 A n	of 100 PU_2016_107_E uclear magnetic resonance transition is shifted from the reference in a 400 MHz NMR spectrometer by Hz. Calculate the chemical shift:- 1.76 1.32
\circ	5.29
0	7.56
100 The	of 100 PU_2016_107_E e neutral complex which follows the eighteen electron rule is:- $ (\eta^5\text{-}C_5H_5)\text{Mo}(\text{CO})_3 $
6	$(\eta 5-C_5H_5)_2Co$
0	$(\eta^5 - C_5 H_5) Re((\eta^6 - C_6 H_6))$
	$(\eta^5-C_5H_5)Fe(CO)_2$
206 The	of 100 PU_2016_107_E mean square average distance, $<$ X ² > of a diffusing species after time t is given by:- <x ² > = 2Dt <x ² > = 2Dt ²
0	$\langle x^2 \rangle = Dt$

0	$\langle x^2 \rangle = 3Dt$
150 40% mol	of 100 PU_2016_107_E of the bases in a certain DNA molecule are found to be C. What percent of thebases in this same ecule are A?
0	20%
0	80%
0	10%
0	40%
129 Fisc ions O	PU_2016_107_E cher carbene prefers low oxidation metal ions and Schrock carbene prefers high oxidation state metal ::- Correct Not correct Fischer carbene prefers para magnetic ions
0	both prefer unpaired electrons
157	of 100 PU_2016_107_E ch of the following statement(s) is / are true with respect to privileged scaffolds?
ii Tr iii A	e core structure of a molecule that is common to a series of compounds ne scaffold should not be capable of forming any binding interactions with the target. scaffold that is present in a wide range of drugs with different activities imilar functional groups on the scaffold should be capable of being varied independently of each other ii & iv alone
~	i,ii & iii
0	i,iii & iv
0	i & iii alone
123	of 100 PU_2016_107_E metal ion that is expected to shift the C_1 methylene group in heptanol, from δ 2 to 10 ppm in 1 H NMR
0	AI(III)
0	Sc(III)
0	Eu(III)
0	TI(III)
21	of 100

110 PU_2016_107_E

The pair of ions that most commonly forms complexes with coordination number 2 is:-

Cu(II) and Hg(I)

Cu(I) and Hg(II)

Cd(II) and Hg(I)

Cd(II) and Hg(II)

22 of 100

188 PU_2016_107_E

To which orbitals may an electron in a 2p orbital in a hydrogenic atom make allowed spectroscopic transitions?

1s and 3p

ns and nd

ns, np and nd

nd and nf

23 of 100

119 PU_2016_107_E

In biological systems, the metal ions involved in electron transport are:-

[©] Na⁺ and K⁺

Cu²⁺ and Fe³⁺

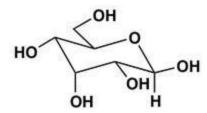
Ca²⁺ and Mg²⁺

C Zn²⁺ and Mg²⁺

24 of 100

179 PU_2016_107_E

The major product formed in the following reaction is


Ö

Ö

155 PU_2016_107_E

Which is the correct chair form of the \beta anomer of D-mannose?

D-mannose

O

Ö

26 of 100

104 PU_2016_107_E

Low oxidation metal centre can be stabilized using:-

σ acid ligands

π-acid ligands

more electron rich ligands

metal acids

27 of 100

194 PU_2016_107_E

A hypothetical system consists of 5 molecules and 2 quanta. What is the number of possible arrangements?

0 2

O 21

° 3

O 15

28 of 100

182 PU_2016_107_E

The root-mean-square distance between the ends of a polymer chain was found to be 6.2 nm. Estimate the number of monomers in the chain, given that the length of each monomer unit is 2.1 Å.

870

[©] 17

O 6

° 30

29 of 100

207 PU_2016_107_E

The number of variables in phase space is given:-

0 ,

O 4

° 3

^C 6

30 of 100

146 PU_2016_107_E

Which of the following equations shows an unlikely result?

31 of 100

Ö

189 PU_2016_107_E

On a pressure-temperature phase diagram, the conditions under which a one-component system exists as two phases in equilibrium corresponds to:-

an area.

the entire diagram

a point.

a line.

32 of 100

How many nodes are expected for the vibrational wavefunction with quantum number v = 4?

0 3

° 0

O 4

0 1

33 of 100

178 PU_2016_107_E

The major products X and Y formed in the following reaction sequence are

$$0 \xrightarrow{1) \text{LDA, PhSeCl, -50}^{0}C} \mathbf{x} \xrightarrow{H_2O_2} \mathbf{y}$$

$$X = \bigvee_{H}^{SePh} O Y = \bigvee_{H}^{SePh} O$$

$$\mathbf{X} = \bigvee_{\mathbf{H}}^{\mathbf{M}\mathbf{e}} O$$

$$\mathbf{Y} = \bigvee_{\mathbf{H}}^{\mathbf{M}\mathbf{e}} O$$

34 of 100

0

124 PU_2016_107_E

The ground state energy level of Co²⁺ in *Td* environment is:-

○ _{1T}。

O 4T1

O 4A2

○ _{4F}

162 PU_2016_107_E

Choose the correct combination of reagents/reaction conditions from M to P to carry out the following transformation

$$\bigcirc \qquad \stackrel{\circ}{\longrightarrow} \qquad \stackrel{\mathsf{M}}{\longrightarrow} \qquad \stackrel{\circ}{\longrightarrow} \qquad \stackrel{\mathsf{OH}}{\longrightarrow} \qquad \stackrel{\mathsf{$$

 $M = ZnCl_2$; $N = H_2$, Pd/C; O = Allyl bromide, acetone, K_2CO_3 ; $P = \Delta$

 $M = AICI_3$, N = DDQ; O = Vinyl chloride, $NaNH_2$; $P = \Delta$

 $M = \Delta$; $N = H_2$, Pd/C; $O = Vinyl chloride, KOH; <math>P = AlCl_3$

 $M = AICI_3$; N = DDQ; O = Allyl bromide, acetone, K_2CO_3 ; $P = \Delta$

36 of 100

177 PU_2016_107_E

The major product obtained upon epoxidation of the following triene with m-

chloroperbenzoic acid is

37 of 100

185 PU 2016 107 E

How many molecular orbitals may be constructed from the valence shell orbitals of the constituent atoms in CH_4 ?

0	6				
0	8				
0	4				
0	7				
138	of 100 B PU_2016_107_E nen we go from D ₃ h to remains unaltered Degeneracy will be degeneracy will not only a symmetry wil	lost be lost		nergy of do	ubly degenerate orbital:-
	of 100 5 PU_2016_107_E The electrical con-	ductivity	of a new m	aterial was	measured at different temperatures and
7		ACCOUNT OF THE PERSON AND ACCOUNT.			of the conduction properties of the material? 600 0.535
0	Semiconductor				
0	Conductor				
0	Insulator				
0	It is not possible to	infer anythi	ng about th	e properties	s of the material
209	of 100 9 PU_2016_107_E nich of the following pl	lane is not	parallel to tl	ne z-axis?	
0	(001)				
0	(110)				
0	(100)				
0	(010)				
	of 100 5 PU_2016_107_E				

The major product formed in the following reaction is

42 of 100

121 PU_2016_107_E

C₂H₄ can be converted into CH₃CHO in the presence of O₂ is known as:-

- Mansanto process
- Grubbs metathesis process
- Olefin reduction process
- Wacker process

43 of 100

131 PU_2016_107_E One of the following statement is correct for the CpRe(Me)(PMe $_3$)(NO):-

Me can be substituted by PMe₃

NO can be substituted by PMe₃ Cp can be substituted by PMe₃ PMe₃ can be substituted by NO 44 of 100 141 PU_2016_107_E Which is the correct assignment of chirality at C2 and C4 of the following molecule? 2S,4R 2R,4R 2R,4S 2S,4S 45 of 100 108 PU 2016 107 E The bonding in Cp in Fe(Cp)₂(CO)₂ is such that:both Cp rings are pentahapto both Cp rings are monohapto one Cp ring is pentahapto and other Cp ring is monohapto 0 both Cp rings are ionically bonded 46 of 100 133 PU_2016_107_E Ir(PPh₃)₃Cl shows one of the following:-Agostic interaction 100% ionic bond non covalent interaction 0 100 % covalent bond 47 of 100 114 PU_2016_107_E cis-platin can be synthesized as an exclusive product from:- $[Pt(NH_3)_4]^{2+}$

PtCl₄²-

0	cis-PtCl ₂ (NH ₃) ₂
\sim	trans-PtCl ₂ (NH ₃) ₂
211 In B	of 100 PU_2016_107_E ragg reflection formula $n\lambda$ = 2d Sin θ, the possible value(s) on the order reflection, n, is given by:-
0	2 only
0	1 only
0	3 only
0	all values as above
101 The	of 100 PU_2016_107_E zero magnetic moment of octahedral K ₂ NiF ₆ is due to:-
0	high spin d ⁶ Ni(IV) complex
0	low spin d ⁸ Ni(II) complex
0	high spin d ⁸ Ni(II) complex
0	low spin d ⁶ Ni(IV) complex
112	of 100 PU_2016_107_E nber of M-M bond present in Os ₄ (CO) ₁₄ is:-
0	7
0	6
0	2
0	3
187	of 100 PU_2016_107_E Hückel theory to determine the energies of the π orbitals of the allyl radical system, C_3H_4 :-
0	$\alpha + \sqrt{2}\beta$, α , $\alpha - \sqrt{2}\beta$
0	$\alpha + \beta, \alpha, \alpha - \beta$
0	$\alpha + 2\beta, \alpha, \alpha - 2\beta$
0	α, α, α
	of 100 PU 2016 107 E

The structures of N(CH₃)₃ and N(SiH₃)₃, respectively, are:-

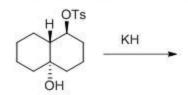
- pyramidal and pyramidal
- trigonal planar and pyramidal
- pyramidal and trigonal planar
- trigonal planar and trigonal planar

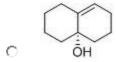
53 of 100

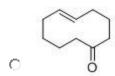
151 PU_2016_107_E

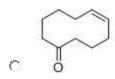
Which of the following reactions does not give a racemic mixture of the product?

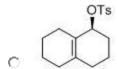
54 of 100


134 PU_2016_107_E


CpFe(CO)₂(C₂H₄) reacts with OMe to yield:-


- Aromatic nucleophilic substitution reaction on Cp
- addition on C centre of C₂H₄
- addition on C centre of CO
- addition on Fe centre


55 of 100


The major product formed in the following reaction is

56 of 100

181 PU_2016_107_E

How many normal modes of vibrational are possible for a benzene molecule?

30

31

12

57 of 100

139 PU_2016_107_E ΔH will be related to applied magnetic field is:-

H₀+B

B+H_o

H₀-B

B-H₀

192 PU_2016_107_E

Which of the following statements is always true for a liquid mixture of two components A and B in equilibrium with a mixture of their vapours?

$$\mu_A(I) \neq \mu_A(g) \neq \mu_B(I) \neq \mu_B(g)$$

$$\mu_A(I) = \mu_A(g)$$
 and $\mu_B(I) = \mu_B(g)$

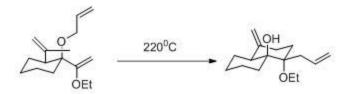
$$\mu_{A}(I) = \mu_{A}(g) = \mu_{B}(I) = \mu_{B}(g)$$

$$\mu_A(I) = \mu_B(I)$$
 and $\mu_A(g) = \mu_B(g)$

59 of 100

176 PU_2016_107_E

Structure of the starting material X in the following Photochemical Norrish reaction is


60 of 100

169 PU_2016_107_E

The reagent suitable for converting Oct-4-yne to trans -oct-4-ene is:-

61 of 100

The following transformation involves sequential

Cope rearrangement - Ene reaction - Claisen rearrangement

Cope rearrangement - Claisen rearrangement - Ene reaction

Claisen rearrangement Cope rearrangement - Ene reaction

Ene reaction - Claisen rearrangement - Cope rearrangement

62 of 100

240 PU 2016 107 M

The adsorption of a gas on a solid surface was found to follow a Langmuir isotherm with K = 3.76 kPa⁻¹ at a temperature of 25°C. Determine the pressure of gas required to achieve a fractional surface coverage of 10%.

© 30 Pa

© 270 Pa

C 27 Pa

O 38 Pa

63 of 100

229 PU_2016_107_M

If CIF₃ has to be stereochemically rigid, its ¹⁹F NMR spectrum (I = for ¹⁹F) would be (assume that CI is not NMR active)

a singlet

a doublet and a singlet

a doublet and a triplet

two singlets

64 of 100

225 PU_2016_107_M

The correct order of the CO stretching vibrational frequency is:-

 $[Ti(CO)_6]^{2-} > [V(CO)_6]^{-} > CO > Cr(CO)_6$

 $CO > [V(CO)_6]^T > [Ti(CO)_6]^{2-} > Cr(CO)_6$

 $^{\circ}$ CO > Cr(CO)₆ > [V(CO)₆] > [Ti(CO)₆]²

 $Cr(CO)_6 > CO > [V(CO)_6]^T > [Ti(CO)_6]^{2^-}$

65 of 100

A line in the Paschen series of the emission spectrum of atomic hydrogen is observed at a wavenumber of 7800 cm ⁻¹ . Deduce the upper state principal quantum number for this transition:-					
0	[©] 5				
0	[©] 6				
\circ	° 4				
\circ	° 7				
226	66 of 100 226 PU_2016_107_M Photochromism is defined as:-				
0	light induced irreversible color change				
_	light induced reversible color change				
0	thermally activated reversible color change				
0	light induced sensing of small molecules				
244 Wh	67 of 100 244 PU_2016_107_M What terms can arise from the configuration 2p ¹ 3p ¹ ? 3D, 3P, 3S 1D, 3P, 3S 3D, 1D, 3P, 1P, 3S, 1S 1D, 1P, 1S				
68 of 100 238 PU_2016_107_M The decreasing order of basicity of the following compounds is					
	HN N	N			
	1 11 111	IV			
0 0 0 0	IV> III> II>I				

Whi true	ch of the following statements about the kinetics of the reaction $H_2(g) + Br_2(g) \rightarrow 2HBr$ (g) is definitely ?
0	The reaction is second order overall
0	It is not possible to determine anything about the kinetics of the reaction from the stoichiometry
0	The reaction is first order with respect to bromine, Br ₂
0	The presence of hydrogen bromide, HBr, inhibits the rate of the reaction
247	of 100 PU_2016_107_M a galvanic cell, which of the following statements is never true? The electrons flow in the external circuit from the anode to the cathode.
O	Oxidation takes place at the anode
0	
0	Reduction takes place at the cathode.
	The potential of the cathode is higher than that of the anode.
228 The C C C 72 C 252	PU_2016_107_M order of MOs for PR $_3$ complexes of transition metals in Oh field is:- $t_{2g} > e_g > e_g^*$ $t_{2g}^* > e_g^* > t_{2g}$ $t_{2g}^* > e_g^* > t_{2g}^*$ $t_{2g}^* > e_g^* > t_{2g}^*$ of 100 PU_2016_107_M eminimal energy conformation of staggered form of ethane is attributed to:- steric attraction between hydrogen atoms steric repulsion between hydrogen atoms Polarizability Hyper-conjugation
237	of 100 PU_2016_107_M he compound that is antiaromatic is
1	II III IV

Ш

74 of 100

255 PU_2016_107_M
The tight-binding approximation is ideal for:-

All periodic systems

Ö metals

semi-conductors

insulators

75 of 100

234 PU_2016_107_M

The product of the following reaction is:

A

(i)

(ii)

(iii)

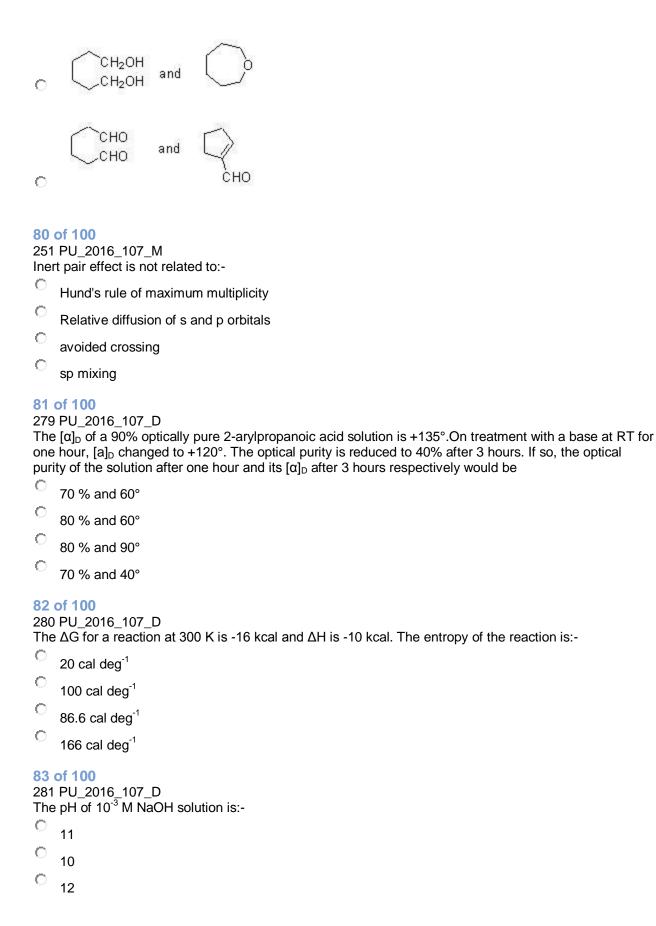
(iv)

(iii)

(i)

(ii) & (iv)

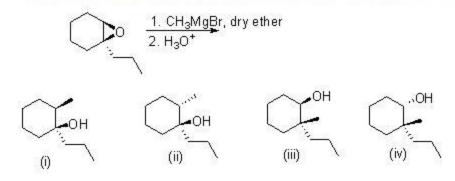
(i) & (iv)


76 of 100

frac	e dipole moment of hydrogen fluoride, HCl, is 1.91 D and the bond length is 0.917 Å . Calculate the stional charge on the hydrogen and chlorine atoms:-		
0	0.22e		
0	1.45e		
0	0.43e		
0	0.65e		
258	of 100 PU_2016_107_M ential energy surface is a plot of:-		
0	Total energy of the Schrodinger equation for nuclear motion		
0	Potential energy associated with nuclear-nuclear repulsion		
\circ	Total energy associated with electronic Schrodinger equation		
0	potential energy associated with the electronic Schrodinger equation		
249 The	of 100 PU_2016_107_M estandard Gibbs energy of reaction, ΔrG°, for the dissociation of phenol is 56.4 kJ mol-1 at 298 K. culate the Pk _a of phenol:- 9.88 5.24 22.8 4.12		
231	of 100 PU_2016_107_M		
Th	ne products of the following reaction P1 and P2 are		
	1) O ₃ P1 Base P2 2) Me ₂ S P1 P2		
0	COOH and OO HOO		

, СООН

 \circ


and

0	13		
290 In V	of 100 PU_2016_107_D /B theory, the stability of ground state H ₂ molecule is primarily attributed to:-		
0	Overlap		
0	Exchange interaction		
0	Kinetic energy of electrons.		
0	(e) electron-nuclear attraction		
293 Whi	of 100 PU_2016_107_D ich of the following is not unity in atomic units?		
0	Planck's energy packet h/2π		
0	Energy of the 1s electron in Hydrogen atom		
0	Mass of the electron		
0	Charge of the electron		
285	of 100 PU_2016_107_D s having same elements are called:-		
0	equivalent set		
0	(c) equal set		
0	overlapping set		
0	subset		
275	of 100 PU_2016_107_D he relative rates of solvolysis of iodides A- C are		
	1 0 00		
0	> >		
0			
0	> >		
0	> >		

	PU_2016_107_D near variational trial function should necessarily:-
0	Be the linear combination of Eigen functions of the Hamiltonian operator.
0	Satisfy the boundary conditions of the system.
0	Normalized.
0	Linear combination of orthogonal functions.
297 The	of 100 PU_2016_107_D Highest occupied molecular orbital in water molecule is:-
0	O-H Bonding
0	O-H antibonding
0	One of the nonbonding non-degenerate oxygen lone-pair
0	Non-bonding Doubly degenerate oxygen lone-pairs
282	of 100 PU_2016_107_D the reaction
Δ H The	$B \rightarrow C + D$, = -25 kcal and Δ S = 90 cal deg ⁻¹ at 27° C. reaction:-
0	is not feasible at 27° C
0	is reversible at 27° C
0	can occur only at temperature higher than 27° C.
0	represents equilibrium state at 27° C
284 The	of 100 PU_2016_107_D Italiant heat of vaporization of water at 100 °C is 540 cal g-1. What will be the change in entropy when mole of water at 100° C is evaporated:-
0	260 cal K ⁻¹ mol ⁻¹
0	26 cal K ⁻¹ mol ⁻¹
0	360 cal K ⁻¹ mol ⁻¹
0	160 cal K ⁻¹ mol ⁻¹
	of 100 PU_2016_107_D

Which of the following is the major product of the reaction shown below:

- (ii)
- (ii) & (iii)
- (iii) & (iv)
- (iv)

93 of 100

269 PU_2016_107_D
The low reactivity of N2 molecule is attributed to:-

- High electronegativity of nitrogen atoms
- The smaller size of the nitrogen atom
- High bond order
- sp-mixing

94 of 100

264 PU_2016_107_D

The ground term for d1 Oh and d9 Td is:-

- $^{0}T_{1u}$
- $^{2}T_{1u}$
- $^{1}A_{1g}$

95 of 100

286 PU_2016_107_D

If a function is defined as $f(x) = (x^2-1)/3$; then at which of the following point is the function singular?

- 0 -1

- none of the above

299 PU 2016 107 D

An acceptable wave function for a quantum mechanical system need not be:-

ີ Finit

Continuous

Real

Single valued

97 of 100

262 PU_2016_107_D

For Cr(III) ion which one of the following transition is lower in energy:-

 $^{\circ}$ $^{4}A_{2g}$ to $^{4}T_{2g}$

 $^{4}A_{2g}$ to $^{4}A_{1g}(P)$

A_{1g} to ⁴A_{1u}

 $^{\circ}$ $^{4}A_{2g}$ to $^{4}A_{1g}(F)$

98 of 100

266 PU_2016_107_D

K2PtCl6 shows one of the following:-

UV-Vis band at 450nm

EPR fine structure

IR band at 2435 cm⁻¹

NMR signal at 8 ppm

99 of 100

287 PU_2016_107_D

Which of the following is a monotonically increasing function?

 $y = ae^{bx}$, where a and b are positive constants,

 $y = (x^2-a^2)^{1/2}$, where a is a positive constant

 $y = ae^{-bx}$, where a and b are positive constants,

y = -mx, where m is positive constant,

100 of 100

277 PU 2016 107 D

The IUPAC name of the compound given below is

- Ethyl (S) 2-methyl 4-oxocyclohex -2- enecarboxylate
- (S) 4-ethoxycarbonyl -3-methylcyclohex-2-enone
- (R) 4-ethoxycarbonyl -3-methylcyclohex-2-enone
- Ethyl (R) 2-methyl 4-oxocyclohex -2- enecarboxylate