| Sr No. | PhD Chemistry                                     |
|--------|---------------------------------------------------|
| 1      | Choose the missing term out of the given options: |
|        | aababbabaab                                       |
| Alt1   | aaabb                                             |
| Alt2   | babab                                             |
| Alt3   | bbaab                                             |
| Alt4   | bbbaa                                             |

| 2    | Choose word from the given options which bears the same relationship to the third word, as the first two bears: |
|------|-----------------------------------------------------------------------------------------------------------------|
|      | Hour : Second :: Tertiary : ?                                                                                   |
|      |                                                                                                                 |
| Alt1 | Intermediary                                                                                                    |
| Alt2 | Primary                                                                                                         |
| Alt3 | Ordinary                                                                                                        |
| Alt4 | Secondary                                                                                                       |

| 3    | Select the lettered pair that has the same relationship as the original pair of words: |
|------|----------------------------------------------------------------------------------------|
|      | Stickler :Insist                                                                       |
| Alt1 | Laggard: Outlast                                                                       |
| Alt2 | Braggart: Boast                                                                        |
| Alt3 | Haggler: Concede                                                                       |
| Alt4 | Trickster: Risk                                                                        |

| 4    | Select the lettered pair that has the same relationship as the original pair of words: |
|------|----------------------------------------------------------------------------------------|
|      | Necromancy : Ghosts                                                                    |
| Alt1 | Romance: Stories                                                                       |
| Alt2 | Magie: Amulets                                                                         |
| Alt3 | Alchemy: Gold                                                                          |
| Alt4 | Sorcery: Spirits                                                                       |

| 5    | Find out the number that has the same relationship as the numbers of the given pair: |
|------|--------------------------------------------------------------------------------------|
|      | MAD: JXA: RUN: ?                                                                     |
| Alt1 | ORK                                                                                  |
| Alt2 | OSQ                                                                                  |
| Alt3 | PRJ                                                                                  |
| Alt4 | UXQ                                                                                  |

| 6    | Spot the defective segment from the following: |
|------|------------------------------------------------|
| Alt1 | Keep the miscreants                            |
| Alt2 | at your arm's length                           |
| Alt3 | for                                            |
| Alt4 | they will pull the wool over your eyes         |
|      |                                                |

| 7    | The terrorists held the tourists for ransom. |
|------|----------------------------------------------|
| Alt1 | as hostages                                  |
| Alt2 | hostages                                     |
| Alt3 | hostage                                      |

Alt4 captives

| 8    | If I wealthy, I would have got many friends. |
|------|----------------------------------------------|
| Alt1 | had been                                     |
| Alt2 | were                                         |
| Alt3 | was                                          |
| Alt4 | am                                           |

| 9    | Choose the option closest in meaning to the given word: |
|------|---------------------------------------------------------|
|      | NEOLOGISM                                               |
| Alt1 | inoculation                                             |
| Alt2 | coinage                                                 |
| Alt3 | consistency                                             |
| Alt4 | mirth                                                   |

| 10   | Choose the antonymous option you consider the best: |
|------|-----------------------------------------------------|
|      | SUAVE                                               |
| Alt1 | crestfallen                                         |
| Alt2 | polite                                              |
| Alt3 | rough                                               |
| Alt4 | cherished                                           |

| 11   | In a certain code, REFRIGERATOR is coded as ROTAREGIRFER. Which wordwould be coded as NOITINUMMA? |
|------|---------------------------------------------------------------------------------------------------|
|      |                                                                                                   |
| Alt1 | ANMOMIUTNI                                                                                        |
| Alt2 | AMNTOMUIIN                                                                                        |
| Alt3 | AMMUNITION                                                                                        |
| Alt4 | NMMUNITIOA                                                                                        |

| 12   | Traffic : Road in the same way as |
|------|-----------------------------------|
| Alt1 | Aeroplane : Aerodrome             |
| Alt2 | Blood : Veins                     |
| Alt3 | Roots : Tree                      |
| Alt4 | Car : Garage                      |

| 13   | The following information is given: One of M.Gopi, his wife, their son and Mr.Gopi's mother is an architect and<br>another is a doctor.<br>(i) If the doctor is younger than the architect, then the doctor and the architect are not blood relatives.<br>(ii) If the doctor is a woman, then the doctor and the architect are blood relatives.<br>(iii) If the architect is a man, then the doctor is a man.<br>Whose occupation is known by this information? |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Alt1 | Mr. Gopi is the doctor                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Alt2 | Mr. Gopi's son is the architect                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Alt3 | Mrs. Gopi is the doctor                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Alt4 | Mr. Gopi's mother is the doctor                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| 14   | Gopal was ranked 5th from the top and 16th from the bottom in a test. How many students were there in his |
|------|-----------------------------------------------------------------------------------------------------------|
|      | class                                                                                                     |
| Alt1 | 19                                                                                                        |
| Alt2 | 21                                                                                                        |
| Alt3 | 22                                                                                                        |
| Alt4 | 20                                                                                                        |

| 15   | Median of 10o, 5o, -2o, -1o, -5o, 15o is |
|------|------------------------------------------|
| Alt1 | -20                                      |
| Alt2 | -10                                      |
| Alt3 | 20                                       |
| Alt4 | 30                                       |

| 16   | Which of the following is 'OXYMORON'? |
|------|---------------------------------------|
| Alt1 | Found Missing                         |
| Alt2 | TIT-TAT                               |
| Alt3 | GOTO                                  |
| Alt4 | Misunderstood                         |

| 17   | There are 5 persons in a class. Each one is shaking hand with the other. Find the total number of hand shakes? |
|------|----------------------------------------------------------------------------------------------------------------|
|      |                                                                                                                |
| Alt1 | 5                                                                                                              |
| Alt2 | 10                                                                                                             |
| Alt3 | 20                                                                                                             |
| Alt4 | 60                                                                                                             |

| 18   | Of the 26 Capital letters, how many are symmetrical along with vertical and horizontal axes. |
|------|----------------------------------------------------------------------------------------------|
| Alt1 | 4                                                                                            |
| Alt2 | 3                                                                                            |
| Alt3 | 6                                                                                            |
| Alt4 | 5                                                                                            |

| 19   | There are 30 boys and 60 girls in a village . There are 70 men and 40 women in that village. What is the |
|------|----------------------------------------------------------------------------------------------------------|
|      | percentage of boys in that village?                                                                      |
| Alt1 | 0.1                                                                                                      |
| Alt2 | 0.25                                                                                                     |
| Alt3 | 0.2                                                                                                      |
| Alt4 | 0.15                                                                                                     |

| 20   | There are N students in a class and only 8 of them are girls. If 11 boys added to the class, how many students in |
|------|-------------------------------------------------------------------------------------------------------------------|
|      | the class are boys?                                                                                               |
| Alt1 | N+3                                                                                                               |
| Alt2 | N-3                                                                                                               |
| Alt3 | N-19                                                                                                              |

| Alt4 | 19                                                                                                                                                                                                                                                        |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21   | The following scheme shows a mechanism for the $\alpha$ -bromination of a methyl ketone with bromine in ethanoic acid. In which stage do the curly arrows wrongly show the flow of electrons?<br>$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$ |
| Alt1 | Α                                                                                                                                                                                                                                                         |
| Alt2 | В                                                                                                                                                                                                                                                         |
| Alt3 | C                                                                                                                                                                                                                                                         |
| Alt4 | D                                                                                                                                                                                                                                                         |
|      |                                                                                                                                                                                                                                                           |
| 22   | Which of the following pairs of physical quantities commute?                                                                                                                                                                                              |
| Alt1 | L and $\phi$ ; L is the angular momentum and $\phi$ azimuthal angle                                                                                                                                                                                       |
| Alt2 | x and p ; x is position vector and p is the momentum                                                                                                                                                                                                      |
| Alt3 | v and t ; v is frequency and t is the time,                                                                                                                                                                                                               |
| Alt4 | K and $\lambda$ ; K is the wave vector and $\lambda$ is the de Broglie wavelength                                                                                                                                                                         |
|      |                                                                                                                                                                                                                                                           |

| 23   | If Ψa and Ψb are the atomic wave functions of the two hydrogen atoms, then for the bonding sigma-bonding orbital of hydrogen molecule, the increase in the electronic probability density between the two hydrogen |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | atoms is given by:-                                                                                                                                                                                                |
| Alt1 | 2Ψa Ψb                                                                                                                                                                                                             |
| Alt2 | ΨaΨb                                                                                                                                                                                                               |
| Alt3 | -Ψa Ψb                                                                                                                                                                                                             |
| Alt4 | -2 Ѱа Ѱb                                                                                                                                                                                                           |

| 24   | Identify the correct match of amino acid to the characteristics of the amino acid described |
|------|---------------------------------------------------------------------------------------------|
|      | (a) Only standard amino acid whose side chain does not contain carbon                       |
|      | (b) Only standard amino acid with a cyclic side chain                                       |
|      | (c) Only standard amino acid that participates in disulfide bonds                           |
|      | (d) Only standard amino acid with a methyl group attached to its alpha carbon atom          |
|      |                                                                                             |
|      | (i) Alanine (ii) Glycine (iii) Proline (iv) Cysteine                                        |
| Alt1 | (a) - (ii); (b) - (iii); (c) - (iv); (d) - (i)                                              |
| Alt2 | (a) - (i); (b) - (ii); (c) - (iii); (d) - (iv)                                              |
| Alt3 | (a) - (iv); (b) - (i); (c) - (ii); (d) - (iii)                                              |
| Alt4 | (a) - (iii); (b) - (iv); (c) - (i); (d) - (ii)                                              |



| 26   | HV(CO)6 is:- |
|------|--------------|
| Alt1 | pH = 7       |
| Alt2 | not stable   |
| Alt3 | basic        |
| Alt4 | acidic       |

| 27   | The reaction of Potassium phthalimide with Ethyl Chloroacetate followed by hydrolysis results in:- |
|------|----------------------------------------------------------------------------------------------------|
| Alt1 | Glycine                                                                                            |
| Alt2 | Valine                                                                                             |
| Alt3 | Alanine                                                                                            |
| Alt4 | Leucine                                                                                            |

| 28   | The nature of HCo(CO)4 is:- |
|------|-----------------------------|
| Alt1 | inert                       |
| Alt2 | acidic                      |
| Alt3 | metallic                    |
| Alt4 | basic                       |

| 29   | The numbers of classes in the C3v point group symmetry is:- |
|------|-------------------------------------------------------------|
| Alt1 | 1                                                           |
| Alt2 | 4                                                           |
| Alt3 | 2                                                           |
| Alt4 | 3                                                           |



| 31   | Which of the following pattern of <sup>1</sup> H NMR will match with compounds (i) and (ii)?                                                                                                                                                                                                                                                                                                |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | $H_2N$ $H_2N$ $O$ $OH$ $H_2N$ $O$ $OH$                                                                                                                                                                                                                                                                                                                                                      |
|      | (i) (ii)                                                                                                                                                                                                                                                                                                                                                                                    |
| Alt1 | For (i): A complex multiplet in aromatic region; three doublets of doublets in aliphatic region in addition to two singlets for<br>NH2 and OH protons;<br>For (ii) Two doublets characteristic of A2B2 in aromatic region and two triplets in aliphatic region in addition to two singlets<br>for NH2 and OH protons;                                                                       |
| Alt2 | For(i) : A complex multiplet in aromatic region a triplet and doublet integrating for one and two protons respectively in<br>aliphatic region in addition to two singlets for NH2 and OH protons;<br>For (ii): Two doublets of doublets characteristic of AA'XX' spin system in aromatic region and two triplets in aliphatic region<br>in addition to two singlets for NH2 and OH protons; |
| Alt3 | For (i) : A complex multiplet in aromatic region; a triplet and doublet integrating for one and two protons respectively in<br>aliphatic region in addition to two singlets for NH2 and OH protons;<br>For (ii): Two doublets in aromatic region and two triplets in aliphatic region in addition to two singlets for NH2 and OH<br>protons;                                                |
| Alt4 | For (i) : A complex multiplet in aromatic region; three doublets of doublets in aliphatic region in addition to two singlets for<br>NH2 and OH protons;<br>For (ii): Two doublets of doublets characteristic of AA'XX' spin system in aromatic region and two triplets in aliphatic region<br>in addition to two singlets for NH2 and OH protons;                                           |
| 22   |                                                                                                                                                                                                                                                                                                                                                                                             |

| 32   | The hydrolysis of t-bromobutane, C4H9Br, by hydroxide, OH-, ions in aqueous solution follows an SN1 reaction     |
|------|------------------------------------------------------------------------------------------------------------------|
|      | mechanism in which the rate-determining step is the loss of a bromide, Br-, ion, followed by rapid reaction with |
|      | hydroxide ions. Which of the following rate laws is consistent with this mechanism?                              |
|      |                                                                                                                  |
| Alt1 | Rate = k [OH-]                                                                                                   |
| Alt2 | Rate = k[C4H9Br][OH-]                                                                                            |
| Alt3 | Rate = k[C4H9Br]                                                                                                 |
| Alt4 | Rate = k[C4H9Br]2                                                                                                |

| 33   | Which of the following is not a Van der Waal force? |
|------|-----------------------------------------------------|
| Alt1 | Dipole -dipole interaction                          |
| Alt2 | Hydrogen bonding                                    |
| Alt3 | Dipole induced- dipole force                        |
| Alt4 | London dispersion force                             |
|      |                                                     |

| 34   | Which of the following is true for melting? |
|------|---------------------------------------------|
| Alt1 | exothermic process                          |
| Alt2 | irreversible process                        |
| Alt3 | endothermic process                         |
| Alt4 | none of the above                           |



| 36   | M(CH2CHCH2) complex does not have interaction between:- |
|------|---------------------------------------------------------|
| Alt1 | LGO with dxz and dx2-y2                                 |
| Alt2 | LGO with dxz and dyz                                    |
| Alt3 | LGO with dxz and dz2                                    |
| Alt4 | LGO with dxy and dx2-y2                                 |

| 37   | In EPR spectroscopy, the selection rule is:-              |
|------|-----------------------------------------------------------|
| Alt1 | both electron and nuclear spin change                     |
| Alt2 | both electron spin and nuclear spin do not change         |
| Alt3 | electron spin changes, while nuclear spin does not        |
| Alt4 | nuclear spin changes, while electron spin does not change |
|      |                                                           |

| 38   | Use molecular orbital theory to determine the bond order for the O2+ ion:- |
|------|----------------------------------------------------------------------------|
| Alt1 | 1 1⁄2                                                                      |
| Alt2 | 3                                                                          |
| Alt3 | 2 1/2                                                                      |
| Alt4 | 2                                                                          |

|   | 39   | The number of normal modes of vibration in H2S molecule is:- |
|---|------|--------------------------------------------------------------|
|   | Alt1 | 2                                                            |
|   | Alt2 | 3                                                            |
|   | Alt3 | 4                                                            |
|   | Alt4 | 1                                                            |
| - |      |                                                              |

| 40   | When Al4C3 reacts with H2O, the major product is:- |
|------|----------------------------------------------------|
| Alt1 | methane                                            |
| Alt2 | propane                                            |
| Alt3 | ethyne                                             |
| Alt4 | propyne                                            |

| 41     | Which | compound is different from the others?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | A:    | H<br>CH(CH <sub>3</sub> ) <sub>2</sub><br>CH <sub>3</sub><br>H<br>CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        | B:    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | C:    | $H_{3}C = H_{1}C = H$ |
|        | D:    | $\begin{array}{c} CH_3 \\ CH_3 \\ CH_3 \\ H \end{array} \begin{array}{c} H \\ CH_3 \\ H \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Alt1 A | A     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Alt2 E | 3     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Alt3 C | 2     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Alt4 D | )     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| 42   | Cp2WCl2 complex is stable owing to one of the following reasons:- |
|------|-------------------------------------------------------------------|
| Alt1 | 18 electron                                                       |
| Alt2 | 16 electron                                                       |
| Alt3 | The molecule is unstable                                          |
| Alt4 | 8 electron                                                        |

| 43   | Oh CFSE is more for d6 ion in the case of:- |
|------|---------------------------------------------|
| Alt1 | strong field                                |
| Alt2 | magnetic field                              |
| Alt3 | weak field                                  |
| Alt4 | electric field                              |

| 44   | Aluminum chloride melts at a much lower temperature than that of sodium chloride, because:- |
|------|---------------------------------------------------------------------------------------------|
| Alt1 | aluminum chloride is dimeric                                                                |
| Alt2 | aluminum chloride is polymeric                                                              |
| Alt3 | the Al-Cl bond is more ionic than that of Na-Cl                                             |
| Alt4 | Al-Cl bond is highly covalent while NaCl is ionic                                           |
|      |                                                                                             |

| 45   | The first step in the Wilkinson's catalytic cycle is:- |
|------|--------------------------------------------------------|
| Alt1 | decomplexation                                         |
| Alt2 | Cl dissociation                                        |
| Alt3 | oxidation                                              |
| Alt4 | PPh3 dissociation                                      |



| 47   | Which of the following combination of liquids form ideal mixture? |
|------|-------------------------------------------------------------------|
| Alt1 | carbon tetrachloride and methyl alcohol                           |
| Alt2 | water and ethyl alcohol                                           |
| Alt3 | acetone and chloroform                                            |
| Alt4 | benzene and toluene                                               |

| 48   | 1.2 m The molality of a solution containing 18 g of glucose (molar mass 180 g) in 500 g of water is:- |
|------|-------------------------------------------------------------------------------------------------------|
| Alt1 | 1.2 m                                                                                                 |
| Alt2 | 0.2 m                                                                                                 |
| Alt3 | 1 m                                                                                                   |
| Alt4 | 0.5 m                                                                                                 |

| 49   | The major product obtained in the following reaction is |
|------|---------------------------------------------------------|
|      | $H_2SO_4$                                               |
|      | A:                                                      |
|      | в:                                                      |
|      | c:                                                      |
|      | D:                                                      |
| Alt1 | Δ                                                       |
| Alt2 | B                                                       |
| Alt3 | C                                                       |
| Alt4 | D                                                       |
| L    |                                                         |
| 50   | The numbers of radial nodes of 3d orbital is:-          |
| Alt1 | 3                                                       |
| Alt2 | 2                                                       |
| Alt3 | 1                                                       |
| Alt4 | 0                                                       |

| 51   | The general formula of a spinel is, AB2O4 , where A is a divalent and B is a trivalent cation. Then Fe3O4 is:- |
|------|----------------------------------------------------------------------------------------------------------------|
| Alt1 | an inverse spinel                                                                                              |
| Alt2 | a mixed spinel                                                                                                 |

| Alt3 | a normal spinel |
|------|-----------------|
| Alt4 | not a spinel    |



| 53   | Predict the geometry of a molecule in which the bonding may be described using the valence-bond model as |
|------|----------------------------------------------------------------------------------------------------------|
|      | being made up of sp3 hybrid orbitals on the central atom:-                                               |
| Alt1 | tetrahedral                                                                                              |
| Alt2 | octahedral                                                                                               |
| Alt3 | trigonal bipyramidal                                                                                     |
| Alt4 | square planar                                                                                            |

| 54   | Cis-Pt(Cl)2(NH3)2 from one of the following complexes:- |
|------|---------------------------------------------------------|
| Alt1 | Pt, NH3 and Cl                                          |
| Alt2 | Pt(NH2)4                                                |
| Alt3 | PtCl4                                                   |
| Alt4 | Pt(NH3)4                                                |

55 Which of the following is an arachno borane ? Alt1 [B5H9]

| Alt2 | [B6H12]  |
|------|----------|
| Alt3 | [B2H6]   |
| Alt4 | [B6H6]2- |

| 56   | The major product obtained in the following reaction is     |
|------|-------------------------------------------------------------|
|      | OMe (CH <sub>3</sub> ) <sub>3</sub> Cl<br>AICl <sub>3</sub> |
|      | A: OMe                                                      |
|      | B:                                                          |
|      | C:                                                          |
|      | D: OMe                                                      |
| Alt1 | Α                                                           |
| Alt2 | В                                                           |
| Alt3 | c                                                           |
| Alt4 | D                                                           |

| 57   | Which of the following is the SI unit of viscosity? |
|------|-----------------------------------------------------|
| Alt1 | Kg -1S-1m                                           |
| Alt2 | Kg-1 S-1m-1                                         |
| Alt3 | Kg S m-1                                            |
| Alt4 | Kg S-1m-1                                           |

| 58   | 106 _E                                                                  |
|------|-------------------------------------------------------------------------|
|      | The subs tu on reac on in [Co(NH3)5Cl]2+ is faster in the presence of:- |
| Alt1 | pressure                                                                |
| Alt2 | photo light                                                             |
| Alt3 | OH-                                                                     |
| Alt4 | Metal catalyst                                                          |

| 59   | If position vectors of points A and B are 3i-2j+k and 2i+4j-3k, where i , j, k are unit vectors, then the length AB is |
|------|------------------------------------------------------------------------------------------------------------------------|
|      | given by:-                                                                                                             |
| Alt1 | √ 14                                                                                                                   |
| Alt2 | √ 53                                                                                                                   |
| Alt3 | √ 29                                                                                                                   |
| Alt4 | √ 43                                                                                                                   |

| 60   | Hydrogen, H2, may exist in two forms: in ortho-hydrogen, o-H2, the nuclear spins are parallel, whilst in para-<br>hydrogen, p-H2, the spins are antiparallel. Ortho-hydrogen is threefold degenerate, so that the nuclear partition<br>function qS = 3, whilst para-hydrogen is singly degenerate and has a nuclear partition function qS = 1. Only<br>rotational levels with odd values of J are permitted for ortho-hydrogen, whilst only even values of J are<br>permitted for para-hydrogen. The two forms of hydrogen coexist in equilibrium in the presence of a catalyst<br>such as charcoal. Calculate, by direct summation, the equilibrium constant for the conversion of ortho-hydrogen<br>to para-hydrogen at a temperature of 200 K. The rotational constant of hydrogen is 60.80 cm-1. |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alt1 | 3.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Alt2 | 3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Alt3 | 1.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Alt4 | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| 61   | What is the symmetry of the antibonding molecular orbital formed by a linear combination of the px or py |
|------|----------------------------------------------------------------------------------------------------------|
|      | atomic orbitals in a homonuclear diatomic molecule?                                                      |
| Alt1 | συ                                                                                                       |
| Alt2 | πυ                                                                                                       |
| Alt3 | πg                                                                                                       |
| Alt4 | σg                                                                                                       |



| 63   | The biological role of ferritin is:- |
|------|--------------------------------------|
| Alt1 | metal transport                      |
| Alt2 | oxygen storage                       |
| Alt3 | electron transfer                    |
| Alt4 | iron storage                         |

| 64   | Among, RO-, AsMe3, ROR', CN-, RCO2-, SCN-, the set of ligands with good $\pi$ -acceptor nature are:- |
|------|------------------------------------------------------------------------------------------------------|
| Alt1 | RO-, RCO2-, SCN-                                                                                     |
| Alt2 | AsMe3, CN-, SCN-                                                                                     |
| Alt3 | RO-, ROR', RCO2-                                                                                     |
| Alt4 | RO-, RCO2-, AsMe3                                                                                    |

| 65   | The ordering of the d-orbital energies in an octahedral complex on tetragonal elongation is expected to be:- |
|------|--------------------------------------------------------------------------------------------------------------|
| Alt1 | dxy > dyz, $dxz > dz2 > dx2-y2$                                                                              |
| Alt2 | dx2-y2 > dz2 > dxy > dyz, dxz                                                                                |
| Alt3 | dx2-y2 > dxy > dz2 > dyz, dxz                                                                                |
| Alt4 | dx2-y2 < dz2 < dxy > dyz, dxz                                                                                |

| 66   | 107Q42.jpg |
|------|------------|
| Alt1 | A          |
| Alt2 | В          |
| Alt3 | C          |
| Alt4 | D          |

| 67   | H2 and CO can be produced from one of the following reactions:- |
|------|-----------------------------------------------------------------|
| Alt1 | H2O reaction with C                                             |
| Alt2 | H2O reaction with Mn(CO)6                                       |
| Alt3 | H2O reaction with CO2                                           |
| Alt4 | H2O reaction with Na                                            |

| 68   | Identify the correct match of monosacharide to the characteristics of the monosacharide described                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | a) CH <sub>2</sub> OH<br>OH<br>OH<br>OH<br>OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | c) HOCH <sub>2</sub><br>OH OH<br>OH OH<br>d) HOCH <sub>2</sub> CH <sub>2</sub> OH<br>OH<br>OH<br>OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      | (i) Open-chain form is an aldopentose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      | (ii) Open-chain form is a ketohexose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      | (iii) D-glucose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | (iv) A glycoside                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Alt1 | $\begin{array}{c} (a) - (ii);  (b) - (iii);  (c) - (iv);  (d) - (i) \\ \hline (c) - (iv) - (c) - (iv);  (c) - (iv);  (c) - (iv); \\ \hline (c) - (c) - (iv) - (c) - (iv);  (c) - (c) - (iv); \\ \hline (c) - (c) $ |
| Alt2 | (a) - (1);  (b) - (11);  (c) - (111);  (d) - (1V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | (a) - (iv); (b) - (i); (c) - (ii); (d) - (iii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| AIL4 | (a) - (ii), (b) - (iv), (c) - (i), (u) - (ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 69   | L2Ir(CO)Cl reaction with H2 is called:-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Alt1 | oxidative addition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Alt2 | sigma bond metathesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Alt3 | substitution reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

Alt4 Oxidation reaction

70 Fe(CO)4 is isolobal to:-

| Alt1 | Cu(CO)4 |
|------|---------|
| Alt2 | Mn(CO)4 |
| Alt3 | Ru(CO)4 |
| Alt4 | Cr(CO)4 |

| 71   | Naphthalene-2-ol (2-naphthol) readily gives a dibromo substitution product with bromine in ethanoic acid. What |
|------|----------------------------------------------------------------------------------------------------------------|
|      | is the most likely structure of this compound?                                                                 |
| Alt1 | OH<br>Br<br>Br                                                                                                 |
| Alt2 | Вг ОН                                                                                                          |
| Alt3 | Вr<br>OH<br>Br                                                                                                 |
| Alt4 | Br<br>OH<br>Br                                                                                                 |

| 72   | Which of the following is not a thermoelectric effect? |
|------|--------------------------------------------------------|
| Alt1 | Peltier effect                                         |
| Alt2 | Thomson effect                                         |
| Alt3 | Meissner effect                                        |
| Alt4 | Seebeck effect                                         |

| 73   | The total number of hyperfine lines in an isotropic EPR spectrum of V4+ ion is given by:- |
|------|-------------------------------------------------------------------------------------------|
| Alt1 | 8                                                                                         |
| Alt2 | 6                                                                                         |
| Alt3 | 2                                                                                         |
| Alt4 | 4                                                                                         |

| 74   | In a two component solid-solid phase diagram, what is the degrees of freedom at the eutectic point? |
|------|-----------------------------------------------------------------------------------------------------|
| Alt1 | 0                                                                                                   |
| Alt2 | 2                                                                                                   |
| Alt3 | 1                                                                                                   |
| Alt4 | 3                                                                                                   |

| ST          | ubstrates:                                           |              | нусі  | н√сі |
|-------------|------------------------------------------------------|--------------|-------|------|
|             | ci~~~ci                                              | CI~~S~~CI    | A     | A    |
|             | (i)                                                  | (ii)         | (iii) | (iv) |
| Alt1 (ii) a | nd (iv) faster than (i) and (iii)                    |              |       |      |
| Alt2 (i) a  | nd (ii) faster than (iii) and (iv)                   |              |       |      |
| Alt3 (i) a  | nd (iii) faster than (ii) and (iv)                   |              |       |      |
| Alt4 (iii ) | and (iv) faster than (i) and (ii)                    |              |       |      |
| 76 In tl    | ne following reactions,                              |              |       |      |
| (i) N       | /In2(CO)10 + Na → X                                  |              |       |      |
| (ii)        | K + CH3COCI $\rightarrow$ Y The X and Y respectively | tively are:- |       |      |
| -           |                                                      |              |       |      |

Alt1 [Mn(CO)4]2- , [ClMn(CO)5 ]-Alt2 [Mn(CO)5]- , CH3C(O)Mn(CO)5

Alt3 [Mn(CO)4]2- , [CH3C(O)Mn(CO)5]-

Alt4 [Mn(CO)5]- , ClMn(CO)5

Ugi four component reaction involves reaction between an aldehyde, amine, isocyanide and an acid. Based on the scheme given below identify the correct set building blocks to be used in Ugi reaction to obtain the compound shown in Fig.A:  $\begin{array}{c} & & \\ R_1 & + & R_2 \\ \hline R_1 & H & & \\ R_2 & & \\ \hline R_1 & H & & \\ \hline R_2 & & \\ \hline R_3 & & \\ \hline R_3 & & \\ \hline R_4 & & \\ \hline R_1 & & \\ \hline R_1 & & \\ \hline R_1 & & \\ \hline R_2 & & \\ \hline R_1 & & \\ \hline R_2 & & \\ \hline R_1 & & \\ \hline R_2 & & \\ \hline R_1 & & \\ \hline R_2 & & \\ \hline R_1 & & \\ \hline R_2 & & \\ \hline R_1 & & \\ \hline R_2 & & \\ \hline R_1 & & \\ \hline R_2 & & \\ \hline R_1 & & \\ \hline R_1 & & \\ \hline R_2 & & \\ \hline R_1 & & \\ \hline R_2 & & \\ \hline R_1 & & \\ \hline R_1 & & \\ \hline R_2 & & \\ \hline R_1 & & \\ \hline R_2 & & \\ \hline R_1 & & \\ \hline R_2 & & \\ \hline R_1 & & \\ \hline R_1 & & \\ \hline R_2 & & \\ \hline R_1 & & \\ \hline R_2 & & \\ \hline R_1 & & \\ \hline R_2 & & \\ \hline R_1 & & \\ \hline R_2 & & \\ \hline R_1 & & \\ \hline R_2 & & \\ \hline R_1 & & \\ \hline R_2 & & \\ \hline R_1 & & \\ \hline R_2 & & \\ \hline R_1 & & \\ \hline R_2 & & \\ \hline R_1 & & \\ \hline R_2 & & \\ \hline R_1 & & \\ \hline R_2 & & \\ \hline R_1 & & \\ \hline R_2 & & \\ \hline R_1 & & \\ \hline R_2 & & \\ \hline R_1 & & \\ \hline R_2 & & \\ \hline R_1 & & \\ \hline R_2 & & \\ \hline R_1 & & \\ \hline R_2 & & \\ \hline R_1 & & \\ \hline R_2 & & \\ \hline R_1 & & \\ \hline R_2 & & \\ \hline R_1 & & \\ \hline R_2 & & \\ \hline R_1 & & \\ \hline R_2 & & \\ \hline R_1 & & \\ \hline R_2 & & \\ \hline R_1 & & \\ \hline R_2 & & \\ \hline R_1 & & \\ \hline R_2 & & \\ \hline R_1 & & \\ \hline R_2 & & \\ \hline R_1 & & \\ \hline R_1 & & \\ \hline R_2 & & \\ \hline R_1 & & \\ \hline R_2 & & \\ \hline R_1 & & \\ \hline R_1 & & \\ \hline R_1 & & \\ \hline R_2 & & \\ \hline R_1 & & \\ \hline R_2 & & \\ \hline R_1 & &$ 



| 78   | The higher stability of cis dichloro ethylene compared to its trans form is due to:- |
|------|--------------------------------------------------------------------------------------|
| Alt1 | Hydrogen bonding                                                                     |
| Alt2 | steric repulsion                                                                     |
| Alt3 | inter-halogen attraction from weak interactions                                      |
| Alt4 | hyper-conjugation                                                                    |

| 79   | Calculate the ionic strength of a solution of iron (III) carbonate, Fe2(CO3)3 of concentration 0.020 mol dm-3 |
|------|---------------------------------------------------------------------------------------------------------------|
| Alt1 | 0.3                                                                                                           |
| Alt2 | -0.1                                                                                                          |
| Alt3 | 0                                                                                                             |
| Alt4 | 0.25                                                                                                          |

| 80   | The calculated magnetic moment of Cr2+ ion in a weak field is:- |
|------|-----------------------------------------------------------------|
| Alt1 | 4.12 BM                                                         |
| Alt2 | 4.90 BM                                                         |
| Alt3 | 2.80 BM                                                         |
| Alt4 | 7.18 BM                                                         |

| 81   | The complexes [Cu(NH3)4] [PtCl4] and [Pt(NH3)4] [CuCl4] represents an example of:- |
|------|------------------------------------------------------------------------------------|
| Alt1 | linkage isomerism                                                                  |
| Alt2 | coordination isomerism                                                             |
| Alt3 | ionisation isomerism                                                               |
| Alt4 | geometrical isomerism                                                              |

| 82   | Reduction of [Co(NH3)5Cl]2+ by [Cr(H2O)6]2+ is faster owing to:- |
|------|------------------------------------------------------------------|
| Alt1 | presence of water                                                |
| Alt2 | presence of Cl-                                                  |
| Alt3 | high oxidation state                                             |
| Alt4 | presence of amine                                                |
|      |                                                                  |

| 83   | The separation of bonding as $\sigma$ type and $\pi$ -type is strictly applicable only to:- |
|------|---------------------------------------------------------------------------------------------|
| Alt1 | diatomics                                                                                   |
| Alt2 | systems with center of symmetry                                                             |
| Alt3 | linear systems                                                                              |
| Alt4 | planar molecules                                                                            |

| 84   | The rate law for the multistep chain reaction<br>$H_2 + Br_2 \rightarrow 2 HBr$<br>is<br>$Rate = \frac{d[HBr]}{dt} = \frac{k_{r1}[H_2][Br_2]^{3/2}}{[Br_2] + k_{r2}[HBr]}$<br>Which of the following expresses the rate law in the limit of high pressures of bromine, Br <sub>2</sub> ? |  |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Alt1 | Rate = kr1[H2][Br2]1/2                                                                                                                                                                                                                                                                   |  |
| Alt2 | Rate = kr1[H2][Br2]3/2                                                                                                                                                                                                                                                                   |  |
| Alt3 | Rate = kr1[Br2]3/2                                                                                                                                                                                                                                                                       |  |
| Alt4 | Rate = kr1[H2][Br2]                                                                                                                                                                                                                                                                      |  |
| 85   | spin-orbit coupling is not significant for:-                                                                                                                                                                                                                                             |  |

| 65   | spin-orbit coupling is not significant for |
|------|--------------------------------------------|
| Alt1 | First row elements                         |
| Alt2 | metals                                     |
| Alt3 | Lanthanides                                |

 Alt4
 s block elements

 86
 On the potential energy surface of cyclohexane, the boat form is: 

 Alt1
 higher order saddle point

 Alt2
 not a stationary point at all

 Alt3
 minimum energy conformer

 Alt4
 transition state

| 87   | The number of chemical shift non equivalent protons expected in <sup>1</sup> H NMR spectrum of $\alpha$ -Pinene is |
|------|--------------------------------------------------------------------------------------------------------------------|
| Alt1 | 9                                                                                                                  |
| Alt2 | 7                                                                                                                  |
| Alt3 | 10                                                                                                                 |
| Alt4 | 8                                                                                                                  |

| 88   | Assign the Bravais lattice type for the following unit-cell structure. |
|------|------------------------------------------------------------------------|
|      |                                                                        |
|      | C •                                                                    |
|      | a                                                                      |
| Alt1 | Cubic I                                                                |
| Alt2 | Monoclinic                                                             |
| Alt3 | Tetragonal I                                                           |
| Alt4 | Orthorhombic I                                                         |

| 89   | Trans effect is more for:- |
|------|----------------------------|
| Alt1 | Н2О                        |
| Alt2 | NH3                        |
| Alt3 | CI-                        |
| Alt4 | Br-                        |

| 90 The original of VB theory is not associated with the works of:- |  |
|--------------------------------------------------------------------|--|
| Alt1 Lewis                                                         |  |

| Alt2 | Heitler |
|------|---------|
| Alt3 | London  |
| Alt4 | Pauling |

| 91   | A compound with molecular formula C4H6O2 shows band at 1770 cm-1 in IR spectrum and peaks at 178, 68, 28 and 22 ppm in 13C NMR. The correct structure of the compound is |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alt1 |                                                                                                                                                                          |
| Alt2 |                                                                                                                                                                          |
| Alt3 |                                                                                                                                                                          |
| Alt4 | L.                                                                                                                                                                       |

| 92   | The violet colour of [Ti(H2O)6]3+ is due to:- |
|------|-----------------------------------------------|
| Alt1 | f-f transition                                |
| Alt2 | ligand to metal charge transfer transition    |
| Alt3 | d-d transition                                |
| Alt4 | metal to ligand charge transfer transition    |

| 93   | The non-Planarity of Si2H4 is associated with:- |
|------|-------------------------------------------------|
| Alt1 | Weak Si-Si pi bonds                             |
| Alt2 | Steric repulsion                                |
| Alt3 | Inert pair effect                               |
| Alt4 | Weak Si-H bonds                                 |
|      |                                                 |

| 94   | For a d9 ion the singly occupied orbital is:- |
|------|-----------------------------------------------|
| Alt1 | b2g                                           |
| Alt2 | b1g                                           |
| Alt3 | alg                                           |
| Alt4 | eg                                            |

| 95   | The bonding pattern of M(CO)x complex can be explained using one the following methods:- |
|------|------------------------------------------------------------------------------------------|
| Alt1 | 16 electron count                                                                        |
| Alt2 | 18 electron count                                                                        |
| Alt3 | VSEPR                                                                                    |
| Alt4 | DCD                                                                                      |

| 96   | 107Q76.jpg |
|------|------------|
| Alt1 | A          |
| Alt2 | b1g        |
| Alt3 | c          |
| Alt4 | D          |

| 97   | Which one of the following ground state term will not have Jahn-Teller distortion? |
|------|------------------------------------------------------------------------------------|
| Alt1 | 1A1g (low spin)                                                                    |
| Alt2 | 2Eg (low spin)                                                                     |
| Alt3 | 3T1g                                                                               |
| Alt4 | 2T2g                                                                               |

| 98   | 107Q78.jpg |
|------|------------|
| Alt1 | A          |
| Alt2 | В          |
| Alt3 | C          |
| Alt4 | D          |

| 99   | The point group for chair form of cyclohexane is:- |
|------|----------------------------------------------------|
| Alt1 | D3d                                                |
| Alt2 | C2h                                                |
| Alt3 | C2v                                                |
| Alt4 | None of the above                                  |

| 100  | The correct order of acidity of the following compounds I – III is |                                          |   |                |  |  |  |
|------|--------------------------------------------------------------------|------------------------------------------|---|----------------|--|--|--|
|      |                                                                    | $F_3C$ $CF_3$<br>$F_3C$ $CF_3$<br>$CF_3$ |   | Me<br>Me<br>Me |  |  |  |
|      |                                                                    | 1                                        | Ш | ш              |  |  |  |
| Alt1 | >   >                                                              |                                          |   |                |  |  |  |
| Alt2 | >   >                                                              |                                          |   |                |  |  |  |
| Alt3 | >   >                                                              |                                          |   |                |  |  |  |
| Alt4 | >  >                                                               |                                          |   |                |  |  |  |