ENTRANCE EXAMINATION FOR ADMISSION, MAY 2011.

Ph.D. (CIVIL ENGINEERING)

COURSE CODE: 137

Register Number :	
	Signature of the Invigilator (with date)

COURSE CODE: 137

Time: 2 Hours Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- Avoid blind guessing. A wrong answer will fetch you −1 mark and the correct answer will fetch 4 marks.
- Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	Fact	tor of safety is		
	(A)	Ultimate stress/working stress	(B)	Working stress/ ultimate stress
	(C)	Ultimate load/ Poisson's ratio	(D)	None of these
2.	The	load required to produce a unit defle	ection in	a spring is called
	(A)	Flexural rigidity	(B)	Torsional rigidity
	(C)	Spring stiffness	(D)	Young's modulus
3.		imum limiting load at which the c	olumn to	ends to have lateral displacement is
	(A)	Critical load	(B)	Bucking load
	(C)	Crippling load	(D)	Any of the above
1.	The	energy stored in a body when strain	ed withi	n elastic limit is known as
	(A)	Resilience	(B)	Proof resilience
	(C)	Strain energy	(D)	Impact energy
5 .	Whe	en a load on the free end of cantileve	r beam i	s increased failure will occur
	(A)	At the free end	(B)	At the fixed end
	(C)	In the middle to the beam	(D)	At a distance 2/3 from free end
3.		en a beam is subjected to a bending r ance from the neutral axis	noment	the strain in a layer is — the
	(A)	Equal to	(B)	Directly proportional to
	(C)	Inversely proportional to	(D)	Independent of
7.	The	bending stress in a beam is section	modules	
	(A)	equal to	(B)	less than more that
	(C)	more than	(D)	directly proportional to
3.	A C	ouple can be balanced by		
	(A)	An equal and opposite couple	(B)	Another couple
	(C)	A torque	(D)	None of the above
).	The to	effect of a given force remains unalt	ered aloi	ng the line of action. This is according
	(A)	Resolution	(B)	Law of motion
	(C)	Law of transmissibility	(D)	Newton's law

10.	In a	rectangular beam the maximum shear	stres	s occurs at
	(A)	top fibre of the section	(B)	anywhere cross the depth
	(C)	bottom of the section	(D)	neutral axis
11.	A U	DL on a cantilever gives on the SFD a	10000	12-27
	(A)	Linear line	(B)	Cubic curve
	(C)	Parabolic curve	(D)	None of the above
12.	Ben	ding moment is maximum where shear	force	is
		Zero (B) Maximum		Constant (D) Uniform
13.		free body diagram of a joint should	satisfy	which of the following equilibrium
	(A)	A CONTRACTOR OF THE CONTRACTOR		$\sum V = 0, \sum M = 0$
	(C)	$\sum H = 0, \sum V = 0$	(D)	$\sum M = 0$
14.	Ĭf th	ne section modules of a beam decreases	than	the bending stress will
IT.	(A)	decrease	(B)	remain same
	(C)	increase	(D)	there is no such correlation
	(0)		(-/	
15.	A hy	yetograph is a plot of		
	(A)	Cumulative rainfall vs time	(B)	Rainfall intensity vs time
	(Ĉ)	Rainfall depth vs duration	(D)	Discharge vs time
16.	Dire	ect runoff is made up of		
	(A)	Surface runoff, prompt interflow, and	l chan	nel precipitation
	(B)	Surface runoff, infiltration and evapo	-trans	spiration
	(C)	Overland flow only		
	(D)	Rainfall and evaporation		
17.		hrs storm with a uniform intensity of average infiltration rate during this s		
	(A)	3 mm/h (B) 6 mm/h	(C)	9 mm/h (D) 12 mm/h
18.	Sur	face tension of a fluid		
	(A)	Depends on the forces of molecular a	ttracti	ion
	(B)	Is inversely proportional to fluid den	sity	
	(C)	Is zero when the fluid is at rest		
	(D)	Is the result of interaction		

19.	Viso	cosity of a gas									
	(A)	Increases with decrease in temperat	ure								
	(B)	Increases with increase in temperature									
	(C)	Is independent of temperature									
	(D)	Increases up to a critical									
20.		pressure at a point in a static liquid of	lepend	s on the							
	(A)	Depth of the container									
	(B)	Depth of point below free surface an	d speci	fic weight of liquid							
	(C)	Depth of point below free surface	1	.,							
	(D)	Depth of container and specific weig	nt of h	quid							
21.		ertical triangular area of altitude h ha ex is downward. The depth of its cent									
	(A)	0.8 h (B) 0.75 h	(C)	0.5 h (D) h/3							
22.	The	Surveying used to determine additi	onal d	etails such as boundaries of field is							
	(A)	City surveying	(B)	Location Surveying							
	(C)	Cadastral Surveying	(D)	Topographical Surveying							
23.	The	fundamental Principle of Surveying is	s to wo	rk from the							
	(A)	Whole to the Part	(B)	Part to the Whole							
	(C)	Lower level to higher level	(D)	Higher level to lower level							
24.		en 1 cm on a map represents 10 m or scale is	the g	round. The representative fraction of							
	(A)	1/10 (B) 1/100	(C)	1/1000 (D) 1/10000							
25.	The	method of measuring distance by pac	ing is c	hiefly used is							
	(A)	Reconnaissance survey	(B)	Preliminary survey							
	(C)	Location Surveying	(D)	All of the above							
26.	The	error in measured Length due to in co	orrect l	nolding of chain							
	(A)	Compensating error	(B)	Cumulative error							
	(C)	Instrumental error	(D)	Negative error							
27.		en the position of points to be locate ction of perpendicular is set out by me									
	(A)	Theodolite	(B)	Optical square							
	(C)	Dumpy level	(D)	Planimeter							

28.	An imaginary line joining the point of int and the optical centre of the object glass i		on of the cross	hairs of	the diaphra	ıgm
	(A) Fundamental line	(B)	Axis of teles	cope		
	(C) Axis of level tube	(D)	Line of collin	mation		
29.	Coincident draft in relation to water dem	and is b	ased on	4		
	(A) Peak hourly demand	(B)	Max daily d	emand		
	(C) Max daily demand + fire demand	(D)	Greater of (A) and (C	5)	
30.	The population of a town in three cons 1.68 lakh respectively. The population is method, would be					
	(A) 1.9 lakh (B) 2.184 lakh	(C)	2.2 lakh	(D)	2.5 lakh	
31.	Presence of Algae in water indicates that	the wa	ter is			
	(A) Hard (B) Soft		Acidic	(D)	Pure	
32.	Service connection consists of					
	(A) Ferrule, stopcock and gooseneck	(B)	Ferrule, che	ck valve	and goosen	eck
	(C) Stop cock, meter and sluice valve	(D)	Sluice valve			
33.	Membrane filter technique is used for tes	ting				
	(A) E-Coli	(B)	Copper			
	(C) Pathogenic bacteria	(D)	Boron			
34.	For a flow of 5.7 MLD (million liter day) area of a rectangular sedimentation ta velocity of 0.33 mm/s is					
	(A) 20 m ² (B) 100 m ²	(C)	200 m^2	(D)	$400\ m^2$	
35.	Settling velocities of spherical bodies in s	till wat	er is given by			
	(A) Lacey's equation		Darcy's equa			
	(C) Hazen William's equation	(D)	Stoke's equa	ations		
36.	The allowable tensile stress in HYSD st (in MPa)	irrups ı	used in reinfo	rced cem	ent concret	e is
	(A) 140 (B) 190	(C)	230	(D)	260	
37.	If the modular ratio is 'm', steel ratio is given by	s 'r', th	e critical neu	tral axis	constant 'l	ς' is
	(A) <u>m</u> (B) <u>m</u>	(C)	m+r	(D)	m-r	
	(~~)	(0)	222	1-1	200	

38.	The	maximum diameter of the reinforcem	ent bar	rs in RCC beams is limited to
	(A)	28 mm		
	(B)	40 mm		
	(C)	One-eighth of the least dimension of	the be	ams
	(D)	One-tenth of the depths of beams		
39.		deflection including the effects of to r erection of partitions and the applic	-	
	(A)	$\frac{\text{span}}{250}$ or 20 mm whichever is less	(B)	span 250
	(C)	$\frac{\text{span}}{350}$ or 20 mm whichever is less	(D)	<u>span</u> 350
40.		effective length of column with one rained against rotation at both direct		ffectively held in position and other
	(A)	2l (B) 1.2 l	(C)	l (D) 0.65 <i>l</i>
41.	The	minimum number of longitudinal ste	eel bars	s in helically reinforced RCC columns
	(A)	2 (B) 4	(C)	6 (D) 8
42.	The	minimum factor of safety against ove	rturnir	ng for a retaining wall is
		3.0 (B) _2.0		1.5 (D) 1.0
43.	The	post -tender stage of construction con	nsist of	
	(A)	Assessment of work		
	(B)	Assessment of expenditure during e	xecutio	n
	(C)	Finalization of accounts		
	(D)	All of the above		
44.	The	construction of airports are treated a	S	
	(A)	light construction	(B)	heavy construction
	(C)	industrial construction	(D)	study and evaluation
45.	The	major principle of an organization is		
	(A)	Principle of span of management	(B)	Principle of unity of command
	(C)	Principle of delegation	(D)	Scalar principle
46.	Bar	chart is suitable for		
	(A)	large project	(B)	major work
	(C)	minor work	(D)	all of the above
	. /		, ,	

47.	The	start or completion of task is called		
	(A)	As event	(B)	As activity
	(C)	A duration	(D)	Any of the above
48.	CPN	A requires		
	(A)	Single time estimate	(B)	Double time estimate
	(C)	Triple time estimate	(D)	None of the above
49.	The	estimated time required to complete a	an acti	vitv is known as
	(A)	Duration	(B)	Float
	(C)	Restraint	(D)	All of the above
50.		commonly used test method to distruction site is	leterm	ine workability of concrete in the
	(A)	Slump Test	(B)	Compaction factor test
	(C)	Flow Table test	(D)	Vee-bee consistometer test
51.	Plas	sticizers are added to concrete to		
	(A)	Decrease workability of concrete at h	nigher	w/c ratio
	(B)	Increase workability of concrete at lo	-	
	(C)	Maintain the workability of concrete		
	(D)	All the above		
52.	Wha	at is the unit weight of reinforced ceme	ent cor	ncrete as per IS 456 – 2000?
	(A)			24.50 kN/m^3 (D) 25.50 kN/m^3
53.		ormal circumstances, corrosion of stee	el in co	oncrete is accelerated when reinforced
	(A)	Completely immersed in water	(B)	Dry atmosphere
	(C)	Alternate wetting and drying	(D)	Snow fall
54.	Mod	ulus of elasticity of concrete, Ec of con	crete i	in terms of strength of concrete, fck is
	(A)	$Ec = 5200\sqrt{fck}$	(B)	$Ec = 5300 \sqrt{fck}$
	(C)	$Ec = 5400 \sqrt{fck}$	(D)	$Ec = 5000 \sqrt{fck}$
55.		strength of concrete for an existing	g struc	ctural member can be found out by
	(A)	Rebound hammer test	(B)	Concrete core test
	(C)	Ultrasonic pulse velocity test	(D)	All the above

56.	The	final setting tim	e of ce	ement should n	ot exce	ed	
	(A)	250 minutes	(B)	450 minutes	(C)	600 minutes (D) 550 minutes	
57.	Wh	ich of the following thering of aggre	ng tes	ts is performed for road works	d in the	laboratory to determine the extent of	
	(A)	Soundness test			(B)	Crushing test	
	(C)	Impact test			(D)	Abrasion test	
58.	Whi	ich of the followir	ng met	hods is used in	n the de	sign of rigid pavements?	
	(A)	CBR method			(B)	Group index method	
	(C)	Westergards			(D)	McLeod method	
59.	Whi	ich set of traffic gn?	is nee	ded for functi	onal de	sign as well as for highway capacity	
	(A)	O/D studies			(B)	Parking and accident	
	(C)	Speed & volum	e stud	ies	(D)	Axle load studies	
60.		ich of the followi	ng equ	ipments is us	eful in	determining the spot speed in traffic	
	(A)	Endescope	(B)	Radar	(C)	Periscope (D) Tachometer	
61.		ch of the follow ting major Route			scheme	s is not relevant when deciding on	
	(A)	Traffic volume	survey	7	(B)	O/D survey	
	(C)	Speed survey			(D)	Traffic capacity survey	
62.		ius of relative sti of the following.	ffness	of cement con	crete pa	wement does not depend upon which	
	(A)	Modulus of sub	grade	reaction			
	(B)	Modulus of elas	ticity	of cement conc	rete		
	(C)	Wheel load					
	(D)	Poisson's ration	of cor	ncrete			
63.		ch one of the follo	owing	is not a desira	ble pro	perty of the subgrade soil as highway	
	(A)	Stability			(B)	Good drainage	
	(C)	Ease of compact	tion		(D)	Bitumen adhesion	
64.		saturated and d	ry der	sities of a soil	are 1.	93g/cc and 1.47g/cc respectively. The	
	(A)	46 %	(B)	60%	(C)	30% (D) 10%	
137				8			

65.	Pri	mary consolidation in a fully saturate	ed soil is	due to
	(A)	compression of soil solids	(B)	decrease in total stress
	(C)	compression of pore water	(D)	expulsion of water from voids
66.		appropriate triaxial test to assemblem, such as excavation of a clay slo		ong term stability of an unloading
	(A)	unconsolidated undrained test	(B)	consolidated drained test
	(C)	consolidated undrained test	(D)	unconsolidated drained test
67.	For	all soils an increase in compactive e	ffort cau	ses optimum moisture content to
	(A)	Increase	(B)	No change
	(C)	Decrease	(D)	No appreciable increase or decrease
68.	Ulti	mate settlement of footings on cohes	ive soils	is best estimated from
	(A)	Plate load test	(B)	Consolidation test
75	(C)	Cone penetration test	(D)	Standard penetration test
69.	Upli	ift pressure beneath a foundation car	n be corr	ected by
	(A)	pressure relief	(B)	direct resistance
	(C)	counter balancing	(D)	vertical sand drains
70.	Vibr	ration of machine foundation is often	idealize	d as
	(A)	Free vibration	(B)	Forced vibration with damping
	(C)	Forced vibration	(D)	Free vibration with damping
71.	The	first watering before sowing of the c	rop is kr	nown as
	(A)	kor watering	(B)	paleo
	(C)	delta	(D)	none of the above
72.	The	field capacity of soil depends upon		
	(A)	Capillary tension is soil	(B)	Porosity of soil
	(C)	Either (A) or (B)	(D)	Both (A) and (B)
73.		total depth of water required by a co	rop durir	ng the entire period of the crop in the
	(A)	delta	(B)	duty
	(C)	base period	(D)	crop period

74.	A pa	arabolic glacis ty	pe fal	l in comm	only k	nown a	as			
	(A)	Montague fall				(B)	Inglis fall			
	(C)	Sarda fall				(D)	Vertical ty	ype fall		
75.	Esca	apes are also kno	own a	s ———	fo	or the	canals			
	(A)	Outlet				(B)	Safety val	ves		
	(C)	Regulators				(D)	None of th	ne above		
76.	Whe	en the drain is o	ver the	e canal, tl	ne stru	cture p	orovide is k	nown as		
	(A)	aqueduct				(B)	canal sypl			
	(C)	super - passag	e			(D)				
77.	The	bed of a canal is	lowe	red in cas	e of					
	(A)	Syphon aquedu				(B)	Level Cro	ssing		
	(C)	Canal syphon				(D)	All of the			
78. 79.	rota (A)	tion of the hinge δ/L niform simply so The moment re	d end (B)	will be $2\delta/L$ ted beam	is subj	(C)	$1.5\delta/L$ to a clockw	(D)	Zero	t
		is Zero is equal		u at the i	igni ci	iu oi t	ne beam so	tilat tile i	otation of right	
		2M	(B)	M		(C)	M/2	(D)	M/3	
80.		kwise moment l ratio of slope a						n simply s	upported beam	l.
	(A)	0.5	(B)	1		(C)	2	(D)	3	
81.		rotation of the f							0.001 rad. Thei	n
	(A)	1.2 mm	(B)	2.4 mm		(C)	3.6 mm	(D)	4.8 mm	
82.		total strain ener kN. The extensi				is 500	joules and	it carries	an axial force o	f
	(A)	1 mm	(B)	2 mm		(C)	5 mm	(D)	10 mm	
83.	hing	propped cantile ge support, the lement will be								
		More	(B)	Less		(C)	Equal	(D)	Less or equal	1

84.		in energy stored P ² L/AE		od of length I P ² L/2AE	L and		rigidity AE due P ² L/3AE		axial force P is P ² L/4AE
85.	diffe		ds is eq	qual to the s	um o	f defle	total deflection e ections under ea n.		
	(A)	Limit state		/					
	(B)	Proportionalit	ty limit	without buc	kling	5			
	(C)	Elastic limit							
	(D)	Elastic limit i	ncludin	g buckling					
86.	Reas	son for steel to	be cons	idered as a g	good :	reinfo	rcing material		
	(A)	High Tensile	Strengt	h		(B)	Cheap and rea	dily av	ailable
	(C)	High Modulus	s of Ela	sticity		(D)	All the above		
87.	Max	cimum Slenderi	ness rat	tio of ties per	rmiss	ible i	n steel is		
	(A)	250	(B)	350		(C)	450	(D)	no limit
88.	Stee	el member whic	h is sul	jected to pr	imar	tens	ion is called		
	(A)	Tie	(B)	Beam		(C)	Strut	(D)	Sling
89.	The	allowable direc	et tensil	le stress in s	truct	ural	steel is		
	(A)	0.45 fy	(B)	0.6 fy		(C)	0.85 fy	(D)	0.75 fy
90.	Max	cimum slenderr	ness rat	io of steel co	lumr	subj	ected to dead an	d live	loads is
	(A)	_120	(B)	180		(C)	250	$_{\rm L}({ m D})$	350
91.	Effe	ctive length of	a steel	column fixed	d at b	oth tl	ne ends is		
	(A)	0.5L	(B)	0.67L		(C)	L	(D)	2L
92.	Mos	st economical se	ection fo	or a steel col	umn	is			
	(A)	square	(B)	circular		(C)	tubular	(D)	hexagonal
93.	Bea	ring stiffeners	in plate	girders are	used	to			
	(A)	decrease the	effective	e depth of th	ie we	b			
	(B)	prevent buck	ling of t	the web					
	(C)	transfer the l			tom				
	(D)	increase the				ange			
	(1)	THUI CASC DITC I	- curing	capacial or					

94.	Colu	umn bases of industrial buildings are n	nainly	subjected to and designed for
	(A)	Bending, compression	(B)	Bearing, compression
	(C)	Compression, tension	(D)	Bearing, tension
95.	The	effective area of weld structural steel	tie ang	gle for design purpose is equal to
	(A)	gross area		
	(B)	full area of welded plus 50% of outsta	anding	leg
	(C)	full area of welded plus certain % of o	outsta	nding leg
	(D)	net area		
96.	The	dry brick is usually expected to have n	noistu	re content of about
	(A)	2 per cent	(B)	6 percent
	(C)	10 percent	(D)	20 percent
97.	San	dstones are generally weak in		
	(A)	Hardness	(B)	Abrasion
	(C)	Compression	(D)	All of the above
98.	The	maximum percentage of ingredient in	cemen	at is that of
	(A)	Lime	(B)	Alumina
	(C)	Silica	(D)	Magnesium oxide
99.	As t	he cement sets and hardens it generate	es hea	t. This is called
	(A)	Heat of vapourisation	(B)	Sensible heat
	(C)	Latent heat	(D)	Heat of hydration
100.	Whi	ch proportion of cement mortar is used	for pl	astering work?
. 1	(A)	1:2	(B)	1:3
	(C)	1:5	(D)	1:7